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BACKGROUND
The discovery of low-frequency coding variants affecting the risk of coronary 
artery disease has facilitated the identification of therapeutic targets.

METHODS
Through DNA genotyping, we tested 54,003 coding-sequence variants covering 
13,715 human genes in up to 72,868 patients with coronary artery disease and 
120,770 controls who did not have coronary artery disease. Through DNA sequenc-
ing, we studied the effects of loss-of-function mutations in selected genes.

RESULTS
We confirmed previously observed significant associations between coronary 
artery disease and low-frequency missense variants in the genes LPA and PCSK9. 
We also found significant associations between coronary artery disease and low-
frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 
3.60%; odds ratio for disease, 1.14; P = 4.2×10−10) and ANGPTL4 (p.E40K; minor-
allele frequency, 2.01%; odds ratio, 0.86; P = 4.0×10−8), which encodes angiopoietin-
like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function 
mutations among 6924 patients with myocardial infarction, as compared with 19 
carriers among 6834 controls (odds ratio, 0.47; P = 0.04); carriers of ANGPTL4 loss-
of-function alleles had triglyceride levels that were 35% lower than the levels 
among persons who did not carry a loss-of-function allele (P = 0.003). ANGPTL4 
inhibits lipoprotein lipase; we therefore searched for mutations in LPL and iden-
tified a loss-of-function variant that was associated with an increased risk of 
coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; 
P = 2.0×10−4) and a gain-of-function variant that was associated with protection 
from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 
0.94; P = 2.5×10−7).

CONCLUSIONS
We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride 
levels that were lower than those among noncarriers; these mutations were also 
associated with protection from coronary artery disease. (Funded by the National 
Institutes of Health and others.)
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A lthough genomewide association 
studies have identified more than 56 loci 
associated with the risk of coronary ar-

tery disease,1-3 the disease-associated variants are 
typically common (minor-allele frequency >5%) 
and located in noncoding sequences; this has 
made it difficult to pinpoint causal genes and 
affected pathways. This lack of a causal mecha-
nism has in part hindered the immediate trans-
lation of the findings of genomewide association 
studies into new therapeutic targets. However, 
the discovery of rare or low-frequency coding-
sequence variants that affect the risk of coronary 
artery disease has facilitated advances in the 
prevention and treatment of disease. The most 
recent example of such advances is the develop-
ment of a new class of therapeutic agents that is 
based on the discovery of the gene encoding pro-
protein convertase subtilisin/kexin type 9 (PCSK9) 
as a regulator of low-density lipoprotein (LDL) 
cholesterol4 and the discovery that low-frequency 
and loss-of-function variants in this gene protect 
against coronary artery disease.5,6

Recently, low-frequency coding variation across 
the genome was systematically tabulated with the 
use of next-generation exome and whole-genome 
sequencing data from more than 12,000 persons 
of various ancestries (including a major contri-
bution from the National Heart, Lung, and Blood 
Institute Exome Sequencing Project). Protein-
altering variants (i.e., nonsynonymous, splice-site, 
and nonsense single-nucleotide substitutions) 
that were observed at least twice among these 
12,000 persons were included in a genotyping 
array (hereafter referred to as the exome array). 
In addition, the exome array contains previously 
described variants from genomewide association 
studies, a sparse genomewide grid of common 
markers, markers that are informative with re-
gard to ancestry (i.e., African American, Native 
American, and European), and some additional 
content. Additional information on the design of 
the exome array is provided at http://genome . sph 
. umich . edu/  wiki/  Exome_Chip_Design. In this 
study, we focused on the 220,231 autosomal 
variants that were present on the array and were 
expected to alter protein sequence (i.e., mis-
sense, nonsense, splice-site, and frameshift 
variants) and used these to test the contribution 

of low-frequency coding variation to the risk of 
coronary artery disease.

Me thods

Study Design and Participants

We performed a discovery study involving 42,335 
patients with coronary artery disease and 78,240 
controls from 20 individual studies (hereafter 
referred to as the discovery cohort). For variants 
with suggestive associations, we sought replica-
tion of our findings in an independent study of 
30,533 patients and 42,530 controls assembled 
from 8 individual studies (hereafter referred to 
as the replication cohort). The names of the indi-
vidual studies and information on the numbers 
of participants and phenotypic definitions of pa-
tients and controls in the discovery cohort and 
the replication cohort are provided in Tables S1 
and S2, respectively, in the Supplementary Appen-
dix, available with the full text of this article at 
NEJM.org. The 5755 participants from the Bangla-
desh Risk of Acute Vascular Events (BRAVE) 
study and the 22,072 participants from the Paki-
stan Risk of Myocardial Infarction Study (PROMIS) 
were of South Asian ancestry; all other partici-
pants were of European ancestry.

Genotyping and Quality Control

Samples were genotyped on the Illumina Human-
Exome BeadChip array, version 1.0 or 1.1, or the 
Illumina OmniExome array (which includes 
markers from the HumanExome BeadChip) in 
accordance with the manufacturer’s recommend-
ed protocol. Our genotyping methods, as well as 
the quality-control procedures that were used 
to remove low-quality samples and variants, are 
described in the Supplementary Appendix.

Follow-up ANGPTL4 Sequencing

The exon sequences of ANGPTL4 were obtained 
from the exome sequences7 of 6924 persons who 
had early-onset myocardial infarction and those 
of 6834 persons who were free from coronary 
artery disease (see the Methods section in the 
Supplementary Appendix for details). The names 
of the individual studies and information on the 
numbers of participants and phenotypic defini-
tions of patients and controls for ANGPTL4 se-
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quencing are provided in Table S3 in the Supple-
mentary Appendix.

Statistical Analysis

Of the 220,231 variants on the exome array, 
54,003 (covering 13,715 genes) were present in 
our study at sufficient frequency (minor-allele 
frequency >0.01%) to allow for individual-variant 
association testing as described in the Supple-
mentary Appendix. In the discovery phase, we 
defined a suggestive novel association between 
a variant and the risk of coronary artery disease 
as one with a meta-analysis P value of 1×10−4 or 
lower. For variants with suggestive association, 
we performed association analysis in the replica-
tion studies as described in the Supplementary 
Appendix. We defined significant novel associa-
tions as those that were nominally significant 
(P<0.05) in the replication cohort and that had 
an overall P value of less than 7.7×10−8 in the 
discovery and replication cohorts combined (a 
Bonferroni-corrected threshold that accounted 
for 54,003 markers with minor-allele frequencies 
>0.01% being tested initially and 12 markers 
being tested in the replication cohort).

To test for association between variants and 
risk factors for coronary artery disease, we ex-
amined the relationship between low-frequency 
variants that were significantly associated with 
disease in the combined (i.e., discovery and 
replication) analysis and plasma lipid levels in 
10,088 samples from the discovery cohort; in 
order to minimize any effect of ascertainment 
bias, we limited the analysis to persons without 
coronary artery disease who had lipid measure-
ments available. We also examined the relation-
ships between the significantly associated low-
frequency variants and blood pressure in 146,562 
persons from the Cohorts for Heart and Ag-
ing Research in Genomic Epidemiology Plus 
(CHARGE+) consortium. Tables S4 and S5 in the 
Supplementary Appendix list the individual stud-
ies and numbers of participants that contributed 
to the analyses of plasma lipid levels and blood 
pressure, respectively. Finally, we queried pub-
licly available exome-array data to explore the 
relationship between significantly associated low-
frequency variants and type 2 diabetes (data from 
the Type 2 Diabetes Genetic Exploration by Next-
Generation Sequencing in Multi-Ethnic Samples 
[T2D-GENES] Consortium, Genetics of Type 2 

Diabetes [GoT2D] Consortium, and the Diabe-
tes Genetics Replication and Meta-Analysis 
[DIAGRAM] Consortium; accessed in Novem-
ber 2015 at www . type2diabetesgenetics . org/  ). 
Additional details of the risk-factor association 
analyses are provided in the Methods section in 
the Supplementary Appendix.

From the sequencing data, we used linear re-
gression to test the association between ANGPTL4 
loss-of-function alleles and plasma lipid levels 
in 8085 persons for whom lipid measurements 
were available, using models described in the 
Supplementary Appendix. We calculated the sig-
nificance of the association between ANGPTL4 
loss-of-function alleles and the risk of coronary 
artery disease with the use of 100,000 study-
stratified permutations of case–control pheno-
types.

R esult s

Low-Frequency Coding Variants Associated 
with Coronary Artery Disease

The discovery cohort comprised 120,575 persons 
(42,335 patients and 78,240 controls) (Table S1 in 
the Supplementary Appendix). In the discovery 
cohort, we found significant associations be-
tween low-frequency coding variants in the LPA 
and PCSK9 genes and coronary artery disease 
(Table 1). Both gene loci also harbor common 
noncoding variants associated with coronary 
artery disease that had previously been discov-
ered through genomewide association studies. 
These variants were also present on the exome 
array and had significant associations with coro-
nary artery disease in our study (Table 1). In a 
conditional analysis, the associations between 
coronary artery disease and the low-frequency 
coding variants in both LPA and PCSK9 were 
found to be independent of the associations be-
tween coronary artery disease and the more 
common variants (Table 1).

In addition to the variants in LPA and PCSK9, 
12 additional suggestive associations (P<1×10−4) 
between low-frequency coding variants and 
coronary artery disease were identified in the 
discovery study (Table S6 in the Supplementary 
Appendix). We tested for associations between 
these variants and coronary artery disease among 
the 73,063 persons (30,533 patients and 42,530 
controls) in the replication cohort (see Tables S2 
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and S6 in the Supplementary Appendix for de-
tails). Variants in two genes showed association 
in the replication set and reached the genome-
wide level of significance (P<7.7×10−8) in the 
combined data set (Table 2). A missense variant 
(encoding p.D2702G; minor-allele frequency, 
3.60%) in the gene SVEP1 (which encodes sushi, 
von Willebrand factor type A, EGF and pentraxin 
domain containing 1) was associated with an in-
creased risk of coronary artery disease, and a low-
frequency missense variant (encoding p.E40K; 
minor-allele frequency, 2.01%) in ANGPTL4, which 
encodes angiopoietin-like 4, was associated 
with protection against coronary artery disease 
(Table 2).

Association between Variants and Risk 
Factors for Coronary Artery Disease

We next examined the associations of the SVEP1 
p.D2702G and ANGPTL4 p.E40K variants with 
plasma lipid levels, blood pressure, and type 2 
diabetes to determine whether their associations 
with coronary artery disease could potentially be 
mediated through an effect on these known risk 
factors. To minimize any potential effect of 
case–control ascertainment in testing the asso-
ciation with plasma lipid levels, we restricted 
our analysis to 10,088 controls who were free 
from coronary artery disease and to population-
based samples with available lipid data from the 
discovery cohort. The tests of association with 

Locus and SNP
Chromosome and 

Nucleotide Position†
Allele 1/
Allele 2

Frequency 
of Allele 1

Functional 
Effect

Odds 
Ratio‡ P Value

Conditional 
P Value§

%

LPA

rs3798220 6: 160961137 C/T 1.99 p.I4399M 1.54 9.7×10−24 1.9×10−18

rs2048327 6: 160863532 C/T 37.36 NA 1.09 8.1×10−21 1.8×10−15

PCSK9

rs11591147 1: 55505647 T/G 1.52 p.R46L 0.78 8.0×10−10 1.9×10−7

rs11206510 1: 55496039 C/T 18.23 NA 0.93 1.7×10−8 4.6×10−6

*  NA denotes not applicable, and SNP single-nucleotide polymorphism.
†  Chromosome numbers and positions refer to genome build GRCh37.
‡  Odds ratios are for the development of disease in carriers of allele 1.
§  The conditional P value is the P value from an association test conditioning on the other marker listed in the locus.

Table 1. Low-Frequency Coding Variations Previously Associated with Coronary Artery Disease.*

Locus and SNP
Chromosome and 

Nucleotide Position*
Allele 1/
Allele 2

Frequency 
of Allele 1

Functional 
Effect Stage

Odds 
Ratio† P Value

%

SVEP1 rs111245230 9: 113169775 C/T 3.60 p.D2702G Discovery 1.14 1.1×10−7

Replication 1.13 1.0×10−3

Combined‡ 1.14 4.2×10−10

ANGPTL4 rs116843064 19: 8429323 A/G 2.01 p.E40K Discovery 0.87 3.0×10−5

Replication 0.86 3.4×10−4

Combined‡ 0.86 4.0×10−8

*  Chromosome numbers and positions refer to genome build GRCh37.
†  Odds ratios are for the development of disease in carriers of allele 1. P values for testing differences between the effects observed in the dis-

covery and replication results were 0.73 for rs111245230 and 0.11 for rs116843064 (Cochran’s Q test for heterogeneity).
‡  The combined stage refers to a meta-analysis that included 72,868 patients with coronary artery disease and 120,770 controls free from the 

disease.

Table 2. Novel Low-Frequency Coding Variations Showing Significant Association with Coronary Artery Disease.
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blood pressure were performed on a set of 
146,562 samples from the CHARGE+ consor-
tium, and the results for tests of association 
with type 2 diabetes were extracted from publicly 
available databases. Additional details of the 
sources and samples for these analyses of risk 
factors are provided in Tables S4 and S5 in the 
Supplementary Appendix.

We found a significant association between 
SVEP1 p.D2702G and blood pressure (Table 3, 
and Table S7 in the Supplementary Appendix). 
The allele associated with an increased risk of 
coronary artery disease was also associated with 
higher systolic blood pressure (0.94 mm Hg 
higher for each copy of the allele among allele 
carriers, P = 3.0×10−7) and higher diastolic blood 
pressure (0.57 mm Hg higher for each copy of 
the allele among allele carriers, P = 4.4×10−7). We 
did not find an association between SVEP1 
p.D2702G and any plasma lipid trait. In contrast, 
ANGPTL4 p.E40K was not associated with blood 
pressure but instead was found to be associated 

with significantly lower levels of triglycerides 
(approximately 0.3 standard deviation units lower 
for each copy of the allele among allele carriers, 
P = 1.6×10−13) (Table 3) and with higher levels of 
high-density lipoprotein (HDL) cholesterol (ap-
proximately 0.3 standard deviation units higher 
for each copy of the allele among allele carriers, 
P = 8.2×10−11) (Table 3). In a conditional analysis, 
these effects appeared to be at least partially 
independent of each other (Table S8 in the Sup-
plementary Appendix). We did not observe any 
significant association between ANGPTL4 p.E40K 
and LDL cholesterol level (Table 3). Both SVEP1 
p.D2702G and ANGPTL4 p.E40K were nominally 
associated with type 2 diabetes in a direction 
concordant with the associated risk of coronary 
artery disease.

ANGPTL4 Loss-of-Function Mutations, Plasma 
Lipid Levels, and Coronary Artery Disease

The finding that a missense allele in ANGPTL4 
reduced the risk of coronary artery disease, poten-
tially by reducing triglyceride levels, raised the 
possibility that complete loss-of-function variants 
in ANGPTL4 may have an even more dramatic ef-
fect on triglyceride concentrations and the risk 
of coronary artery disease. We therefore exam-
ined sequence data for the seven protein-coding 
exons of ANGPTL4 in 6924 patients with early-
onset myocardial infarction and 6834 controls 
free from coronary artery disease (details of the 
patients and controls are provided in Table S3 in 
the Supplementary Appendix). We discovered a 
total of 10 variants that were predicted to lead to 
loss of gene function (Fig. 1A, and Table S9 in 
the Supplementary Appendix), carried by 28 
heterozygous persons; no homozygous or com-
pound heterozygous persons were discovered. 
Carriers of loss-of-function alleles had signifi-
cantly lower levels of triglycerides than did non-
carriers (a mean of 35% lower among carriers, 
P = 0.003) (Fig. 1B, and Table S10 in the Supple-
mentary Appendix), with no significant differ-
ence in LDL or HDL cholesterol levels. Moreover, 
we found a lower risk of coronary artery disease 
among carriers of loss-of-function alleles (9 car-
riers among 6924 patients vs. 19 carriers among 
6834 controls; odds ratio for disease, 0.47; 
P = 0.04) (Table S11 in the Supplementary Ap-
pendix). A similar investigation was performed 
for the 48 protein-coding exons of SVEP1; how-
ever, only 3 loss-of-function allele carriers were 

Variant and Risk Factor Effect (95% CI)† P Value

SVEP1 rs111245230 C allele

LDL cholesterol 0.011 (−0.066 to 0.088) 0.78

HDL cholesterol 0.023 (−0.054 to 0.099) 0.56

Triglycerides 0.050 (−0.025 to 0.125) 0.19

Systolic blood pressure 0.94 (0.58 to 1.3) 3.0×10−7

Diastolic blood pressure 0.57 (0.35 to 0.79) 4.4×10−7

Type 2 diabetes 1.13 (1.10 to 1.16) 0.0062

ANGPTL4 rs116843064 A allele

LDL cholesterol −0.064 (−0.153 to 0.025) 0.16

HDL cholesterol 0.295 (0.206 to 0.384) 8.2×10−11

Triglycerides −0.335 (−0.424 to −0.246) 1.6×10−13

Systolic blood pressure −0.18 (−0.66 to 0.30) 0.46

Diastolic blood pressure −0.13 (−0.43 to 0.16) 0.38

Type 2 diabetes 0.90 (0.87 to 0.92) 0.028

*  Shown in the table are low-frequency variants associated with coronary artery 
disease that are outside of known loci that were previously identified in genome-
wide association studies. CI denotes confidence interval, HDL high-density lipo-
protein, and LDL low-density lipoprotein.

†  The effect is the difference per each copy of the allele in units of standard de-
viation change (in LDL cholesterol level, HDL cholesterol level, and the natural 
logarithm of triglyceride level), millimeters of mercury (for systolic and dia-
stolic blood pressure), or the odds ratio for disease (for type 2 diabetes) for 
carriers as compared with noncarriers.

Table 3. Association between Low-Frequency Variants and Traditional Risk 
Factors.*
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discovered (2 carriers among 6924 patients vs. 
1 carrier among 6834 controls).

 Coding Variation in LPL and the Risk 
of Coronary Artery Disease

On the basis of the fact that a loss of ANGPTL4 
function was associated with reduced risk of 
coronary artery disease and that ANGPTL4 in-
hibits lipoprotein lipase (LPL), one would expect 
a gain of LPL function to also be associated with 
a lower risk of coronary artery disease, whereas a 
loss of LPL function would be expected to be 
associated with a higher risk. In observations 
consistent with these expectations, we found a 
low-frequency missense variant in LPL on the 
exome array that was associated with an increased 
risk of coronary artery disease (p.D36N; minor-
allele frequency, 1.9%; odds ratio for disease, 
1.13; P = 2.0×10−4) (Table S12 in the Supplemen-
tary Appendix); previous studies have shown that 
this allele (also known as p.D9N) is associated 
with LPL activity that is 20% lower in allele car-
riers than in noncarriers.8 We also identified a 
nonsense mutation in LPL on the exome array that 
was significantly associated with a reduced risk 
of coronary artery disease (p.S447*; minor-allele 
frequency, 9.9%; odds ratio, 0.94; P = 2.5×10−7) 
(Table S12 in the Supplementary Appendix). Con-
trary to most instances in which the premature 
introduction of a stop codon leads to loss of 
gene function, this nonsense mutation, which 
occurs in the penultimate codon of the gene, 
paradoxically induces a gain of LPL function.9

 Discussion

Through large-scale exomewide screening, we 
identified a low-frequency coding variant in 
ANGPTL4 that was associated with protection 
against coronary artery disease and a low-fre-
quency coding variant in SVEP1 that was associ-
ated with an increased risk of the disease. More-
over, our results highlight LPL as a significant 
contributor to the risk of coronary artery disease 
and support the hypothesis that a gain of LPL 
function or loss of ANGPTL4 inhibition protects 
against the disease.

ANGPTL4 has previously been found to be 
involved in cancer pathogenesis and wound 
healing.10 Previous functional studies also re-
vealed that ANGPTL4 regulates plasma triglycer-
ide concentration by inhibiting LPL.11 The minor 

allele at p.E40K has previously been associated 
with lower levels of triglycerides and higher levels 
of HDL cholesterol.12 We now provide indepen-
dent confirmation of these lipid effects. In vitro 
and in vivo experimental evidence suggests that 
the lysine allele at p.E40K results in destabiliza-
tion of ANGPTL4 after its secretion from the cell 
in which it was synthesized. It may be that the 
p.E40K variant leads to increases in the enzy-
matic activity of LPL because of this destabiliza-
tion.13 Previous, smaller studies produced con-
flicting results regarding p.E40K and the risk 
of coronary artery disease14,15; we now provide 
robust support for an association between p.E40K 
and a reduced risk of coronary artery disease.

To provide confirmatory orthogonal evidence 
that a loss of ANGPTL4 function is associated 

Figure 1. Loss-of-Function Alleles in ANGPTL4 and Plasma Lipid Levels.

Panel A shows the loss-of-function mutations discovered by sequencing 
the seven exons of ANGPTL4 in 9731 persons of European ancestry. The 
 locations of the individual mutations are depicted along the length of the 
ANGPTL4 gene, starting at the 5′ end (left), along with the predicted func-
tional effect. An asterisk indicates the introduction of a premature stop 
 codon. Panel B shows the mean plasma lipid levels according to loss-of-
function allele carrier status. T bars indicate standard deviations. P values 
were calculated from a linear regression (with the use of a logarithm trans-
formation in the case of triglycerides) with covariates of age, sex, and study. 
HDL denotes high-density lipoprotein, and LDL low-density lipoprotein.
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with a decreased risk of coronary artery disease, 
we searched for loss-of-function mutations in 
this gene. We found that ANGPTL4 loss-of-func-
tion mutations were associated with substan-
tially lower triglyceride levels (35% lower than in 
persons who were not carriers of a loss-of-func-
tion mutation), and we also found that these 
loss-of-function alleles were associated with a 
53% lower risk of coronary artery disease. The 
identification by Dewey et al.16 of additional 
ANGPTL4 inactivating mutation carriers, now 
reported in the Journal, provides further evidence 
of the association between a loss of ANGPTL4 
function and lower triglyceride levels and a re-
duced risk of coronary artery disease.

Because ANGPTL4 inhibits LPL, we examined 
coding variants in LPL that were present on the 
exome array. A gain-of-function mutation in LPL 
was found to be associated with protection 
against coronary artery disease, whereas a par-
tial loss-of-function mutation was associated 
with increased risk. These data corroborate evi-
dence that has connected the risk of myocardial 
infarction to coding-sequence mutations in two 
other genes encoding proteins that modulate 
LPL activity: apolipoprotein A57 and apolipopro-
tein C3.17,18 Thus, the available human genetic 
evidence, including our current findings, is 
coalescing around the conclusion that, in addition 
to elevated levels of LDL cholesterol, disordered 
metabolism of triglyceride-rich lipoproteins 
through the LPL pathway contributes substan-
tively to coronary artery disease (Fig. 2). These 
data also support the hypothesis that therapeutic 
modulation of this pathway — either by direct 
enhancement of LPL activity or by blocking of 
the effects of natural LPL inhibitors, such as 
ANGPTL4 (Fig. 2B) — should reduce both tri-
glyceride levels and the risk of coronary artery 
disease. Studies involving inhibitors of APOC3,19 
of ANGPTL4,16,20 or of other inhibitory regula-
tors in the LPL pathway will be needed to ad-
dress this possibility.

The identification of a disease-associated mis-
sense variant in SVEP1 points to a potentially 
novel genetic mechanism leading to atheroscle-
rosis. SVEP1 is a cell-adhesion molecule that acts 
as a ligand for integrin α9β121; knockdown of 
SVEP1 alters inflammatory signaling in a cellular 
model of sepsis.22 Although we observed that the 
low-frequency variant that was associated with 

an increased risk of coronary artery disease was 
also associated with significantly higher blood 
pressure, the latter effect was modest as com-
pared with that found in a previous study, in 
which a genetically mediated 1.6–mm Hg in-
crease in systolic blood pressure was associated 
with a 10% increased risk of coronary artery 
disease23 (in our study, SVEP1 p.D2702G was as-
sociated with an approximately 1–mm Hg increase 
in systolic blood pressure but a 14% increased 
risk of coronary artery disease). Thus, the exact 
mechanism by which SVEP1 contributes to coro-
nary artery disease and the extent to which hyper-
tension and diabetes mediate this risk remain to 
be clarified.

Several limitations of our study deserve con-
sideration. In our samples, approximately three 
quarters of the variants on the array were either 
monomorphic (i.e., only the human reference 
allele was observed among the persons in the 
discovery cohort) or very rare (frequency below 
0.1%); therefore, we cannot make any estimates 
of their contribution to the risk of coronary 
artery disease. Moreover, we estimate that the 
Illumina HumanExome BeadChip, version 1.0, 
covers only approximately 80% of coding vari-
ants in persons of European ancestry that have 
an allele frequency of 0.1% or higher (Fig. S1 in 
the Supplementary Appendix). Furthermore, de-
spite a combined sample size of more than 
120,000 persons in the discovery cohort, we had 
only 80% power to detect an odds ratio of ap-
proximately 1.5 for variants with a minor-allele 
frequency of 0.5% (or an odds ratio of approxi-
mately 2.0 for variants with a minor-allele fre-
quency of 0.1%) at the required stringent level of 
significance (Fig. S2 in the Supplementary Ap-
pendix). Hence, analyses of even larger data sets 
and more comprehensive coverage of exonic 
variants may reveal further coding variants as-
sociated with the risk of coronary artery disease.

In summary, through large-scale exomewide 
screening, we identified several low-frequency 
coding variants that are associated with either 
an increased risk of or protection against coro-
nary artery disease. Our results highlight the 
LPL pathway as a significant contributor to the 
risk of coronary artery disease and support 
speculation that therapeutic modulation of this 
pathway might be protective against coronary 
artery disease.
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Figure 2. Genetic Variants Affecting the Lipoprotein Lipase Pathway and the Risk of Coronary Artery Disease.

Panel A shows normal physiological function of lipoprotein lipase (LPL) and regulation of LPL by gene products of ANGPTL4, APOC3, 
and APOA5. LPL, which is both transported across and anchored to capillary endothelial cells by the protein GPIHBP1, normally hydro-
lyzes the triglycerides that are present in circulating lipoproteins and reduces the plasma triglyceride level. Its activity is reduced by 
 ANGPTL4 and APOC3 and increased by APOA5. Not shown here are other important regulators of LPL activity, including APOC2 and 
ANGPTL3. Green arrows indicate enhancers, and red blocked arrows indicate inhibitors. IDL denotes intermediate-density lipoprotein, 
and VLDL very-low-density lipoprotein. Panel B shows altered function of LPL in mutation carriers. Mutations affecting LPL and pro-
teins interacting with LPL are shown, along with expected effect on LPL activity, plasma triglyceride levels, and risk of coronary artery 
disease. LPL loss of function refers to p.D36N, and gain of function refers to p.S477* (see Table S12 in the Supplementary Appendix). 
ANGPTL4 loss of function refers to both p.E40K and loss-of-function mutations (Tables S9, S10, and S11 in the Supplementary Appendix). 
APOC317,18 and APOA57 loss of function refers to multiple loss-of-function mutations.
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SHARING DATA IN A PUBLIC HEALTH EMERGENCY

The case for sharing data, and the consequences of not doing so, have been brought into stark relief by the Ebola and Zika 
outbreaks. In response, the New England Journal of Medicine has become a journal signatory to the following statement.

“In the context of a public health emergency of international concern, it is imperative that all parties make available any information 
that might have value in combatting the crisis. As research funders and journals, we are committed to working in partnership to 

ensure that the global response to public health emergencies is informed by the best available research evidence and data.

 Journal signatories will make all content concerning the Zika virus free access. Any data or preprint deposited  
for unrestricted dissemination ahead of submission of any paper will not preempt later publication in these journals.

Funder signatories will require researchers undertaking work relevant to public health emergencies to establish mechanisms  
to share quality-assured interim and final data as rapidly and widely as possible, including with public health and research 

communities and the World Health Organization.

We urge other journals and research funders to make the same commitments.”
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