Fine mapping of QT interval regions in global populations
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refines previously identified QT interval loci and identifies
signals unique to African and Hispanic descent populations
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BACKGROUND The electrocardiographically measured QT interval
(QT) is heritable and its prolongation is an established risk factor
for several cardiovascular diseases. Yet, most QT genetic studies
have been performed in European ancestral populations, possibly
reducing their global relevance.

OBJECTIVE To leverage diversity and improve biological insight,
we fine mapped 16 of the 35 previously identified QT loci (46%) in

populations of African American (n = 12,410) and Hispanic/Latino
(n = 14,837) ancestry.

METHODS Racial/ethnic-specific multiple linear regression analy-
ses adjusted for heart rate and clinical covariates were examined
separately and in combination after inverse-variance weighted
trans-ethnic meta-analysis.
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RESULTS The 16 fine-mapped QT loci included on the Illumina
Metabochip represented 21 independent signals, of which 16 (76%)
were significantly (P-value<9.1x107°) associated with QT.
Through sequential conditional analysis we also identified three
trans-ethnic novel SNPs at ATP1B1, SCN5A-SCN10A, and KCNQ1 and
three Hispanic/Latino-specific novel SNPs at NOS1AP and SCN5A-
SCN10A (two novel SNPs) with evidence of associations with QT
independent of previous identified GWAS lead SNPs. Linkage
disequilibrium patterns helped to narrow the region likely to
contain the functional variants at several loci, including NOS1AP,
USP50-TRPM7, and PRKCA, although intervals surrounding SLC35F1-
PLN and CNOT1 remained broad in size (>100 kb). Finally,
bioinformatics-based functional characterization suggested a

regulatory function in cardiac tissues for the majority of independ-
ent signals that generalized and the novel SNPs.

CONCLUSION Our findings suggest that a majority of identified
SNPs implicate gene regulatory dysfunction in QT prolongation,
that the same loci influence variation in QT across global
populations, and that additional, novel, population-specific QT
signals exist.

KEYWORDS Hispanic/Latino; African American; QT interval; Fine
mapping; Electrocardiography

(Heart Rhythm 2017;14:572-580) © 2016 Heart Rhythm Society.
Published by Elsevier Inc. All rights reserved.

Introduction
The role of QT interval (QT) prolongation in the etiology of
ventricular arrthythmias that predispose to sudden cardiac
death (SCD), a leading cause of mortality," was recognized
as early as 1957 upon the identification of a congenital long
QT syndrome.” Sixty years later, population-based research
has demonstrated the potential for studies of QT prolonga-
tion to enhance mechanistic understanding of SCD*~ as well
as coronary heart disease” and stroke.” Drug-induced QT
prolongation has also attracted regulatory scrutiny as the
most common cause of the withdrawal or restricted market-
ing of pharmaceuticals.™” Yet, identification of populations
at increased risk of SCD following innate or acquired QT
prolongation remains difficult, necessitating a better under-
standing of underlying molecular mechanisms.”
Genome-wide association studies (GWAS) have identi-
fied 35 QT loci,”™"® predominantly in large (n ~ 100,000)
populations of European descent,””"> providing new insights
into mechanisms underlying ventricular conduction."” QT
GWAS in Indian Asian,> East Asian,'®!” and African
American'® populations have been performed, but identified
fewer loci than GWAS in European descent populations,
likely reflecting smaller sample sizes (n = 2,994-12,097),
lower genotyping array coverage,'”'”'® or imputation to
suboptimal reference panels.'® The global relevance of
previously identified QT loci and whether population-spe-
cific single nucleotide polymorphism (SNP) influencing QT
exists therefore remain largely unknown. Furthermore,
several populations not yet included in QT GWAS, including
Hispanics/Latinos, trace their recent origins to Europe,
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Africa, and the Americas,”’ presenting exceptional yet
underutilized opportunities for fine mapping, particularly
when combined with data from African Americans. Here, we
extend our previous QT fine-mapping study of 8644 African
American participants and 11 QT loci densely genotyped on
the Illumina Metabochip (San Diego, CA) array’' by
including 3766 additional African American and 14,837
Hispanic/Latino participants and evaluating 4 additional loci.

Methods

Study populations

The Population Architecture Using Genomics and Epidemi-
ology consortium is a National Human Genome Research
Institute—funded effort examining the epidemiologic architec-
ture of genetic variants associated with human diseases and
traits across diverse populations. Six Population Architecture
Using Genomics and Epidemiology studies,” in addition to
the Multi-Ethnic Study of Atherosclerosis, contributed data to
this study (Online Supplemental Methods). For all popula-
tions, race/ethnicity was defined by self-report; ancestral
outliers were identified principal component analysis and
excluded. All procedures performed in studies of human
participants were approval by local institutional review boards.

Genotype platforms

The Metabochip is a custom Illumina iSELECT array designed
to support large-scale follow-up of cardiovascular and metabolic
loci, including QT.” Sixteen QT loci (46% of QT loci identified
as of October 2016) were represented on the Metabochip
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(Table 1; Online Supplement). Index SNPs, that is, locus-
specific SNPs with the lowest P value reported by previous
GWAS, that were not directly genotyped on the Metabochip
were, when possible, represented by SNPs in high linkage
disequilibrium (LD; 7 > 0.80) with the index SNP in the
ancestral population in which the association was first reported.

Statistical analysis
To interpret fine-mapping results, LD was calculated in 500
kb sliding windows using PLINK* and African American,
Hispanic/Latino, and transethnic (ie, combined African
American and Hispanic/Latino) data, the latter in proportion
to racial/ethnic-specific (ie, each race/ethnicity separately)
sample sizes. Metabochip LD and allele frequency informa-
tion for a European population was provided for 2143
Malmé Diet and Cancer Study control participants.”
Racial/ethnic-stratified linear regression (Atherosclerosis
Risk in Communities Study [ARIC] Epidemiologic Archi-
tecture using Genomics and Epidemiology Vanderbilt Uni-
versity Biobank [EAGLE BioVU] Coronary Artery Risk
Development in Young Adults [CARDIA] Cardiovascular
Health Study [CHS] Multi-Ethnic Study of Atherosclerosis
[MESA], and Women’s Health Initiative [WHI]; imple-
mented in PLINK®*) or a weighted version of generalized
estimating equations (The Hispanic Community Health
Study/Study of Latinos [HCHS/SOL]; implemented in
SUGEN)”® were used to evaluate the association between
QT and a maximum of 7239 SNPs (racial/ethnic-specific
minor allele frequency [MAF] >0.01) from 16 previously
identified QT loci assuming an additive genetic model and
including age, sex, study center/region, ancestry principal
components, and heart rate as covariates. Racial/ethnic-
stratified and transethnic estimates were combined via
inverse variance meta-analysis using METAL.”’

Generalization

We first evaluated whether loci identified in European
populations generalized to African American and Hispanic/
Latino populations by identifying all common and low-
frequency (MAF >1%) index SNPs, and all SNPs correlated
with the index SNPs (* > 0.20) using Malmo Diet and
Cancer Study LD estimates; these are the only SNPs
evaluated for generalization. For loci with multiple index
SNPs, SNPs with ¥ < 0.20 were considered independent
signals. The generalization significance criterion was defined
as o, = 9.1 X 107, calculated using the number of tag SNPs
in African Americans (r2 > 0.80; determined using African
American LD patterns) that captured all SNPs that were
correlated with the index SNPs (r2 > 0.20; determined using
Malmo Diet and Cancer Study LD patterns). Index SNPs
rs10919070 (ATPIBI), rs11756438 (SLC35FI-PLN),
152072413 (KCNH?2), rs7122937 (KCNQ1), and 152074238
(KCNQ1) did not pass quality control, and no proxy was
available for rs2968864 (KCNH2). For KCNJ2, all SNPs
correlated with the index SNPs either did not pass quality
control or had MAF <0.01.

Novel SNP identification

To identify novel SNPs, we selected all SNPs at the 16 QT
loci that were uncorrelated with the index SNPs (r2 < 0.20in
the Malmo Diet and Cancer Study), which potentially
represent genetic associations not previously reported for
QT. Sequential conditional analyses were then performed
adjusting for significant lead SNPs, that is, the most significant
transethnic or racial/ethnic SNP at each locus, until no
significant SNPs remained. If a statistically significant SNP
was identified, defined as 0.05 divided by the number of SNPs
in African Americans with MAF > 0.01 that were uncorre-
lated with the index SNPs (n = 6082; oq, = 8.22 X 10_6), the
SNP was identified as novel and added to the adjustment set.

Bioinformatics categorization of QT loci

Functional annotation was performed for all significant lead
SNPs, novel SNPs, and correlated SNPs (r2 > 0.80; identified
in the appropriate 1000 Genomes reference populations) in
relevant cardiac tissues. Specifically, using HaploReg v2
(http://www .broadinstitute.org/mammals/haploreg/haploreg.
php), all SNPs in each LD block were characterized with
putative functional roles including conservation; promoter
and/or enhancer epigenetic markers, derived from the Road-
map Epigenomics Project and ENCODE; DNAse hyper-
sensitive sites; and transcription factor binding motifs.

Results
Participants were drawn from 7 studies (Online Supplement),
which contributed 12,410 African American and 14,837
Hispanic/Latino participants (Online Supplemental Table S1).
The majority of participants were women (19,345 [71%]), and
the mean age ranged from 39 to 73 years. Estimates of mean
QT and heart rate were generally consistent across studies
(weighted mean 408 ms), but were expectedly lower in
EAGLE BioVU given exclusion criteria (Online Supplement).
We examined a maximum of 7239 SNPs at 16 previously
identified QT loci represented on the Metabochip. In African
Americans, the number of SNPs at each locus ranged from
42 to 1195 (mean number of SNPs per locus 451; Online
Supplemental Table S2). Among Hispanics/Latinos, the
number of SNPs per locus was slightly lower and ranged
from 33 to 97 (mean number of SNPs per locus 361).

Generalization

A total of 39 QT index SNPs across 21 independent signals
were identified, with the NOSIAP, ATP1BI1, SLC35F1-PLN,
and KCNH?2 loci harboring multiple independent signals
(Table 1). Sixteen (76%) independent signals generalized to
the transethnic population, encompassing 12 QT loci
(Table 1; Online Supplemental Tables S3 and S4). Among
these 16 independent signals, 6 lead SNPs were identical to
previously reported index SNPs (rs846111 [RNF207],
1512143842 [NOSIAP], 152968863 [KCNH?2], rs12296050
[KCNQI],1s735951 [LITAF], and rs2074518 [LIG3]), 6 lead
SNPs were equivalent to previously reported index SNPs (ie,
P values within ~1 order of magnitude), and 4 lead SNPs had
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Table 1  Association results examining evidence of generalization for trans-ethnic lead SNPs at 21 independent signals at 16 QT loci to n=12,410 African Americans and n=14,837
Hispanic/Latinos.
Genome-wide Significant Published Index SNPs Trans-Ethnic Population African Americans Hispanic/Latino
Locus Ind. Signal Index SNP®  A1/A2 Race/Ethnicity Beta  SE CAF  Lead SNP A1/A2 Beta  SE P-value Beta  SE P-value CAF Beta  SE P-value CAF
RNF207 1 rs846111 /G EA 173 0.13  0.28 rs846111 /G 1.73 029 1.4x107° 039 0.62 0.54 0.056 2.09 032 8.4 x 107 0.17
NOS1AP 1 512143842  T/C EA 3.50  0.11 0.24 rs12143842 T/C 286 023 1.1x107° 240 037 6.9x107* 012 3.5 0.29 6.3 x 10727 0.22
152880058  G/A  EA 0.19¢  0.06° 0.32
r51572498°  G/T EA 490 1.0  0.39
rs10494365  NR AS NR NR  0.39
2 154657178  G/T EA 219  0.26  0.33 1512123267 T/C 1.89  0.19 1.9x 1072 1.60 0.27 2.0x10° 030 2.18 0.27 4.8 x 10°*® 0.28
1512029454  A/G  EA 3.00 0.18 0.15
rs10800352° NR AS .71 NR NR
3 1516857031  G/C EA 3.32 035 0.14 rs885148 T/C 1.29  0.21 6.6 x107*° 1.26 037 81x10™% 0.14 130 0.25 2.1x 107 0.46
ATP1B1 1 1510919071 A/G EA 2.05 029 0.87 1572706963 (/T 246 029 27x107Y 203 078 9.0x 107 097 253 031 7.2x107*° 0.82
1510919070  C/A EA —1.68 0.14 0.13
2 rs12061601° /T AA —1.89 0.30 0.29 rs12061601  C/T —2.01 0.22 34x107" —1.91 0.28 8.4 x107*% 0.26 —2.19 0.38 58x 107° 0.12
SCN5A-SCN10A 1 156793245  A/G  EA —1.12 0.10 0.32 rs62241188  G/C —1.64 0.30 3.2x107® 0.87 054 0.11 0.05 1.96 0.35 2.8x107% 0.13
1512053903 (/T EA —1.40 0.18 0.34
511129795 A/G  EA —1.27 0.23 0.23
SLC35F1-PIN 1 511153730 T/C EA —1.65 0.10 0.50 5763254 T/C —1.58 0.20 2.1x10° " —1.12 0.28 7.3 x10° 0.75 —2.03 0.28 4.6 x 1072 0.74
1511970286  T/C EA 1.64  0.20 0.44
1511756438  A/C EA 1.58  0.18  0.47
2 1512210810  C/G EA —3.13 0.43 0.06 153901856  G/A  —0.90 0.25 2.9 x 107 —0.28 0.35 0.41 0.15 —1.55 0.36 1.4x 107> 0.13
CAV1 1 1s9920 /T EA 0.79  0.14 0.09 rs6978354  A/G —0.67 0.19 3.1x107* —0.71 0.28 0.012 0.47 —0.64 0.25 9.3 x 107° 0.48
KCNH2 1 152968863  T/C EA —1.35 0.23  0.29 152968863  T/C —1.74 0.29 29x10°° —1.40 0.56 0.012 0.046 —1.86 0.34 5.9 x 10°% 0.14
152968864 /T EA —1.40 0.35 0.25
152072413 T/C EA —1.68 0.11 0.27
2 154725982 T/C EA 1.60  0.35 0.22 153815459  T/C 1.09  0.20 3.7x10° 0.88 030 3.9x107> 0.31 1.24 0.26 1.8x10°° 0.35
KcnQ1 1 1512296050  T/C EA 1.93  0.12 0.19 1512296050 T/C 113 0.18 1.9 x107'° 0.94 025 1.3 x 107 0.48 133 0.26 1.8x 1077 0.35
1512576239 T/C EA 210 035 0.13
ATP2A2 1 rs3026445 (/T EA 0.62  0.09 0.36 rs4630352 A/G  0.52  0.17 0.0028 0.43  0.25 0.086 0.59 0.61 0.24 0.012 0.43
USP50-TRPM7 1 153105593 T/C EA 0.66 0.10 0.45 rs3109882 A/G  0.82 0.18 2.9x10°° 0.96 0.25 1.2x 107 0.38 0.69 0.25 5.6 x 107>  0.47
LITAF 1 15735951 A/G EA —1.15 0.10 0.46 15735951 A/G —1.33 0.17 1.5x10°* —0.85 0.25 57 x 10°% 0.44 —1.80 0.24 1.3 x 10°** 0.41
158049607  T/C EA 1.25 0.22 0.46
CNOT1 1 15246196 c/T EA —1.73 0.11 0.26 159926577 T/C —1.99 0.21 2.7 x107?' —1.46 032 1.5x 10> 0.84 —2.32 0.27 4.8 x 107" 0.66
rs37060° A/G  EA 1.66  0.23 0.74
1537062 G/A  EA —2.10 0.35 0.24
LIG3 1 152074518  T/C EA —1.23 0.18 0.46 152074518  T/C —0.71 0.20 3.4 x107* —0.73 0.32 0.024 0.17 —0.71 0.25 4.8x107% 0.38
151052536 (/T EA 0.98 0.10 0.53
PRKCA 1 rs9892651 (/T EA —0.74 0.10 0.43 1556152251 A/G —1.00 0.17 85x107° —0.67 0.24 3.4x107% 0.48 —1.34 0.25 6.3x 107 0.45
Keng2 1 151396515 (/G EA —0.98 0.09 0.52 15189495613 T/C 0.72 018 5.1x10° 049 024 3.4x10% 057 099 0.26 1.6 x 10°% 0.69
1517779747 T/G EA -1.16 0.21 0.35
KCNE1 1 rs1805128  T/C EA 7.42  0.85 0.01 N/a°

A = adenine; A1/A2 = coded/non-coded allele; AA = African American; AS = East Asian ancestry; C = cytosine; CAF = coded allele frequency; EA = European ancestry; G = guanine; Ind = independent; N/a = not

applicable; NR = not reported; SE = standard error; T = thymine.

aProxy substituted.
bNo SNPs with minor allele frequency >0.01.
cIf SNP reported by multiple studies, effect from largest study reported.
dRank transformation applied.
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Figure 1

Racial/ethnic-specific and transethnic regional association plots for NOSIAP independent signals 1 (A-C), 2 (D-F), and 3 (G-I). Population-

specific log;o(P values) (left y axis) are plotted against the SNP genomic position (National Center for Biotechnology Information Build 36 [NCBI Build 36], x
axis); the estimated recombination rate from the 1000 Genomes Project is shown in blue on the right y axis. Lead SNPs are denoted with a purple diamond. SNPs
are colored to reflect population-specific 7> with the lead SNP. Novel SNPs are denoted by vertical lines and stars. SNP = single nucleotide polymorphism.

P values at least 2 orders of magnitude farther from the null
than index SNP P values (Online Supplemental Table S3).
For example, the SCN5A-SCN10A index SNP P values were
~5 times lower in magnitude (index SNP P-value range
0.0015-0.024; Online Supplemental Table S3) than the
transethnic lead SNP P value of 3.2 x 1078 (Table 1). Effect
sizes also were consistently lower in African Americans than
in Hispanics/Latinos.

The transethnic lead SNP was also identical to the racial/
ethnic-specific lead SNP for 11 of the 16 independent signals
in African Americans and 10 of the 16 independent signals in
Hispanics/Latinos (Online Supplemental Table S5), and
effect sizes were again consistently of smaller magnitude
in African Americans. For the remaining independent
signals, P values for the racial/ethnic-specific lead SNPs
were equivalent to (ie, within ~1 order of magnitude) those
for the transethnic lead SNP, with the exception of 1 lead SNP
in African Americans (RNF207) and 2 lead SNPs in Hispanics/
Latinos (NOSIAP independent signal 3 and KCNH2 inde-
pendent signal 1) (Online Supplemental Table S3).

Among the 5 independent signals that did not general-
ize to the transethnic population (SLC35FI-PLN inde-
pendent signal 2, CAVI, ATP2A2, LIG3, and KCNEI),
effect estimates for all but KCNEI were directionally
consistent with effects estimated in European ancestral
populations, but of considerably smaller magnitude, par-
ticularly in African Americans (Online Supplemental
Table S4). For the KCNEI independent signal, no SNPs
with MAF > 1% were identified, although rs1805128, the
KCNE]! index SNP, was significant in Hispanics/Latinos
(MAF 0.0053; P = 1.4 x 107') (Online Supplemental
Table S3).

Finally, varied generalization success was observed for
racial/ethnic-specific analyses. For example, only 5 inde-
pendent signals generalized to African Americans,
whereas 15 independent signals generalized to His-
panics/Latinos. Other notable observations include the
consistently lower estimated effects in African Americans
than in  Hispanics/Latinos  (Online  Supplemental
Table S3).
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Figure 2  Racial/ethnic-specific and transethnic regional association plots for ATP/BI independent signals 1 (A—C) and 2 (D-F). Population-specific log;o(P
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shown in blue on the right y axis. Lead SNPs are denoted with a purple diamond. SNPs are colored to reflect population-specific > with the lead SNP. Novel
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Locus refinement

We then examined the degree to which LD patterns assisted
with the narrowing of independent signals that generalized
(Online Supplemental Table S6, Figures 1-4, and Online
Supplemental Figures S1-S8). On average, African Ameri-
can LD patterns were associated with the fewest number of
SNPs correlated with the lead SNP and the smallest interval
size. However, transethnic LD patterns produced slightly
smaller interval sizes when restricted to independent signals
that generalized to African Americans and Hispanics/Latinos

separately.

A African Americans

Novel signals

We identified 3 transethnic novel SNPs at ATPIB1, SCN5A-
SCNI0A, and KCNQ1 and 3 Hispanic/Latino-specific novel
SNPs at NOSIAP and SCN5A-SCN10A (2 SNPs) (Tables 2
and 3 and Figures 1-4). Notably, the 3 SCN5A-SCNI10A
novel SNPs were uncorrelated when examining African
American (¥ < 0.038), European (** < 0.052), and
Hispanic/Latino (+* < 0.095) LD patterns. Effect estimates
for novel Hispanic/Latino SNPs ( range —1.17 to —2.34)
also were almost twice as large as effects estimated in

African Americans (f range —0.62 to —1.22; Table 2).
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Bioinformatics characterization

Bioinformatics characterization identified 3 nonsynonymous
coding SNPs, for which in silico prediction algorithms
indicated that the amino acid changes were tolerated
(Online Supplemental Tables S7 and S8). With the exception
of 4 SNPs in Hispanics/Latinos and 2 SNPs in African
Americans, all independent signals contained at least 1 SNP
with evidence for a regulatory function in >1 relevant
tissues.

Discussion

Here, we conducted the largest and most racially/ethnically
diverse fine-mapping study of QT to date. We demonstrated
allelic heterogeneity through the identification of multiple
independent signals, refined the location of previously
known QT loci by reducing the number of potential causal
variants for future interrogation, and identified racial/ethnic-
specific signals. These efforts enhance our understanding of
the genetic architecture of QT in previously underrepre-
sented populations.

One notable observation was our success generalizing QT
loci transethnically, suggesting that previously identified
independent signals are relevant across global populations.
However, we had different degrees of success generalizing
QT loci to each population separately. Although we
increased our sample size by ~50%,”" we still generalized
only a handful (~24%) of independent signals to African
Americans, for whom effect sizes were consistently of
smaller magnitude than for Hispanic/Latino or European

populations. In contrast, 71% of independent signals suc-
cessfully generalized to Hispanics/Latinos, despite approx-
imately equivalent effective sample sizes between the 2
study populations. These distinctions may reflect greater
average European ancestry in Hispanics/Latinos than in
African Americans”® and a higher proportion of shared
functional variants. The LD structure in Hispanic/Latino
and European ancestral populations also may be more similar
to each other than to African populations, thus enabling the
detection of functional variants. In addition, the Metabochip
was developed using an early release of the 1000 Genomes
Project and therefore incompletely captured African-specific
variation,” despite low LD and high genetic heterogeneity
that make African populations ideal for fine mapping.”’
The need to further expand fine-mapping efforts is
underscored by findings for NOSIAP independent signal 1
that harbors rs12143842. rs12143842 is the most commonly
reported QT index SNP identified to date and was also
identified by our transethnic and racial/ethnic-specific meta-
analyses. Yet, functional studies of NOSIAP identified
157539120, not rs12143842, as the functional variant,"
although rs7539120 was not genotyped on the Metabochip.
Inconsistencies between prior GWAS and NOSIAP func-
tional studies likely reflect both the HapMap2 platform to
which the majority of prior GWAS were imputed, which did
not include rs7539120, and the decreased imputation accu-
racy for rs7539120 compared to rs12143842 that lowered
estimated effects for rs7539120 in contrast to rs12143842.
Interestingly, rs12143842 and rs7539120 are weakly corre-
lated in the 1000 Genomes Americans of African Ancestry in

Table 2  Novel SNPs at three previously identified QT loci in n=12,410 African Americans and n=14,837 Hispanic/Latinos.

Trans-Ethnic Population African Americans Hispanic/Latinos
Locus Lead SNP  Beta SE P-value CA Beta SE P-value CAF  Beta SE P-value CAF
ATP1B1 rs1138486 —1.79 0.25 2.0 x 1072 T —1.12 0.34 9.9 x 107 0.16 —2.34 0.38 1.0 x 107° 0.15
SCN5A-SCNI0A  rs6801957 —0.97 0.21 3.7 x 107% A —0.62 0.34 0.073 0.16 —1.17 0.26 85 x 107% 0.38
KcnQ1 rs7110663 —1.49 0.25 6.5x 107 T —1.22 0.29 2.6 x 107> 0.34 —1.92 0.37 1.8x 1077 0.33

A = adenine; CA = coded allele; CAF = coded allele frequency; SE = standard error; T = thymine.

Downloaded from ClinicalKey.com at University of Washington - Sesattle - WSC March 22, 2017.
For personal use only. No other uses without permission. Copyright ©2017. Elsevier Inc. All rights reserved.



Avery et al QT Interval Fine Mapping 579
Table 3  Novel SNPs at 2 previously identified QT loci in 14,837 Hispanics/Latinos

Coded allele frequency
Locus Lead SNP B SE P CA EU” AFf HLF ASN®
NOS1AP rs7416392 -1.76 0.38 5.0 x 107 T 0.32 0.57 0.42 0.50
SCN5A-SCN10A rs6764249 1.70 0.31 3.8 x 1078 G 0.15 0.22 0.24 0.35
SCN5A-SCN10A rs1805124 1.35 0.29 4.3 x107° G 0.21 0.29 0.22 0.10

AF = African American; ASN = East Asian; CA = coded allele; EU = European; HL = Hispanic/Latino; QT = QT interval; SE = standard error; SNP = single

nucleotide polymorphism.

“Calculated in the Malmo Diet and Cancer Study.

TCalculated in the Atherosclerosis Risk in Communities Study.
*(alculated in the Hispanic Community Health Study/Study of Latinos.
$Calculated in the 1000 Genomes ASN population.

SW USA population (+* = 0.16), but moderately correlated
in the European ( > = 0.54) and admixed American (¥ =
0.38) populations. These findings suggest that fine mapping
in African American populations, enabled by denser geno-
typing or high-quality imputation, may have negated the
targeted saturation sequencing of NOSIAP in European
ancestral populations that was required to pinpoint the causal
variant.

We also reported varied success in narrowing intervals
surrounding previously identified GWAS index SNPs. For
several loci, including RNF207, NOSIAP, ATPIBI, SCN5A-
SCNIOA, and KCNQI, we identified a limited number of
SNPs for future interrogation. Indeed, recent functional
studies have identified RNF207 as an important regulator
of cardiac excitation, although few studies have been
performed to pinpoint the exact causal SNPs.”’ RNF207
also was the only locus for which bioinformatics character-
ization identified a nonsynonymous SNP, 1s846111,
although in silico prediction suggested that the amino acid
change was tolerated. Yet, transethnic and racial/ethnic-
specific LD patterns did not identify any SNPs in high LD
with rs846111. Additional work examining a denser panel of
SNPs at this locus is likely warranted.

Despite success for several independent signals, substan-
tial narrowing of intervals was not achieved for other
independent signals, including CNOT! and SLC35F1-PLN
independent signal 1, possibly reflecting LD block size and
the extent of LD differences with the causal variant between
ancestral populations. Expansion of fine-mapping efforts to
include other global populations may offer improved locus
refinement. For example, wide variation in the number of
SNPs correlated with SLC35F1-PLN index SNP rs11153730
in 1000 Genomes populations was observed, ranging from
61 in the Han Chinese in Beijing to 134 in the African
Ancestry in SW USA population. Future studies should
evaluate the extent to which East Asian populations can be
used to further narrow the SCL35F1-PLN locus.

Study limitations

There are several limitations of the present study. First,
although the Metabochip included dense genotyping of 16
QT loci, the majority of recently discovered QT loci were

excluded.'? Second, it is possible that the causative variants
were not included on the Metabochip, necessitating future
sequencing studies or studies for which high imputation
accuracy is possible, both of which are outside the scope of
the current effort. Finally, the implications of conducting a
QT GWAS in predominantly female populations shoulder-
ing higher burdens of QT-prolonging risk factors than in the
original discovery populations, for example, obesity and
diabetes, also deserve examination, including the degree to
which variation in known QT correlates modify reported
genetic associations and underlying pathways.”'**

Conclusion

Our findings suggest that the same genes influence variation
in QT across ancestral populations and that additional, novel,
and possibly population-specific signals exist, which
together implicate gene regulatory dysfunction. Additional
characterization of QT loci through whole-genome sequenc-
ing or large-scale genotyping combined with imputation
panels that capture population genetic content may further
illuminate the genetic and molecular mechanisms underlying

QT.

Appendix
Supplementary data
Supplementary data associated with this article can be found

in the online version at http://dx.doi.org/10.1016/j.hrthm.
2016.12.021.
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