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KCNN2, KLHL3–WNT8A–FAM13B, SLC35F1–PLN, ASAH1–PCM1, 
SH3PXD2A, and KCNJ5 (Figs. 2 and 3, Table 1, Supplementary Fig. 1,  
and Supplementary Table 3). The 13 genetic loci previously associ-
ated with atrial fibrillation in Europeans were again observed, while 1 
locus previously reported in Asians only did not reach genome-wide 
significance in our study (CUX2).

In a meta-analysis of ExWAS in 17 studies, we identified two 
additional new genetic loci (SCN10A and SOX5; P < 1.04 × 10−6) 
as well as one new locus also identified in the GWAS meta-analysis 
(SLC35F1–PLN) (Table 2 and Supplementary Figs. 2 and 3). Variants 
at each of these three loci have previously been associated with elec-
trocardiographic traits (Supplementary Table 3).

Finally, in an RVAS or burden test of rare variants, one gene, 
SH3PXD2A, reached genome-wide significance. This association was 
mainly driven by a rare coding variant that is unique to individuals of 
Asian ancestry (rs202011870, minor allele frequency (MAF) = 0.18%, 
odds ratio (OR) = 4.68, 95% confidence interval (CI) = 2.97–7.39,  
P = 3.3 × 10−11; Supplementary Tables 3–5), and the same locus 
was significantly associated with atrial fibrillation in the GWAS 
meta-analysis. Of the 11 variants in the Asian-ancestry burden test, 
rs149867987 also reached genome-wide significance and had an effect 
in the same direction as rs202011870. There was no genome-wide 
significant signal at SH3PXD2A in RVAS analyses in individuals of 
European- or African-American ancestry.

Ancestry-specific GWAS analysis identified a significant associa-
tion for African Americans (641 cases and 5,234 referents) between 
atrial fibrillation and variants on chromosome 4q25 upstream of 
PITX2 (rs6843082, OR = 1.40, 95% CI = 1.24–1.58, P = 4.31 × 10−8; 
Supplementary Fig. 4 and Supplementary Table 6). Similarly, the 
4q25/PITX2 region was the most significant locus for atrial fibrillation 
in individuals of Japanese ancestry (rs2723334, OR = 1.94, 95% CI =  
1.68–2.25, P = 8.46 × 10−19) and European ancestry (rs2129977, OR = 1.45,  
95% CI = 1.41–1.49, P = 7.25 × 10−136), and the lead SNPs in all 
three ancestry groups are in strong linkage disequilibrium (LD), with 
r2 > 0.94. Further ancestry-specific meta-analyses did not produce 
additional robust associations for atrial fibrillation (Supplementary 
Figs. 4–6, Supplementary Tables 6 and 7, and Supplementary Note). 
Separate meta-analyses of incident and prevalent atrial fibrillation in 
Europeans identified one additional genome-wide signal at chromo-
some 12p11/PKP2 that was only present in the prevalent atrial fibrilla-
tion analysis (Supplementary Figs. 7 and 8, Supplementary Tables 8  
and 9, and Supplementary Note); however, because this locus was not 
present in the combined analyses it was not pursued further.

Atrial	fibrillation	affects	more	than	33	million	people	
worldwide	and	increases	the	risk	of	stroke,	heart	failure,	and	
death1,2.	Fourteen	genetic	loci	have	been	associated	with	atrial	
fibrillation	in	European	and	Asian	ancestry	groups3–7.	To	further	
define	the	genetic	basis	of	atrial	fibrillation,	we	performed	
large-scale,	trans-ancestry	meta-analyses	of	common	and	
rare	variant	association	studies.	The	genome-wide	association	
studies	(GWAS)	included	17,931	individuals	with	atrial	
fibrillation	and	115,142	referents;	the	exome-wide	association	
studies	(ExWAS)	and	rare	variant	association	studies	(RVAS)	
involved	22,346	cases	and	132,086	referents.	We	identified	
12	new	genetic	loci	that	exceeded	genome-wide	significance,	
implicating	genes	involved	in	cardiac	electrical	and	structural	
remodeling.	Our	results	nearly	double	the	number	of	known	
genetic	loci	for	atrial	fibrillation,	provide	insights	into	the	
molecular	basis	of	atrial	fibrillation,	and	may	facilitate	the	
identification	of	new	potential	targets	for	drug	discovery8.

Atrial fibrillation is a common cardiac arrhythmia that can cause 
serious complications such as stroke, heart failure, dementia, and 
death1,2. The lifetime risk of atrial fibrillation is one in four9, and it 
has been estimated that more than 33 million individuals worldwide  
are affected1. During the last decade, GWAS have identified 13 genetic 
loci associated with atrial fibrillation in Europeans and 1 Asian-specific  
atrial fibrillation locus, of which a region near the gene encoding 
the PITX2 transcription factor showed the strongest association3–7. 
Recently, genome and exome sequencing studies have identified rare 
atrial fibrillation–associated mutations in MYL4 (ref. 10), MYH6  
(ref. 11), CACNB2 (ref. 12), and CACNA2D4 (ref. 12). Given the 
incomplete understanding of the biology of atrial fibrillation and 
the modestly sized previous genetic association analyses, we sought  
to identify additional susceptibility loci by increasing the size and 
diversity of the atrial fibrillation studies.

We therefore investigated both common and rare variants in a large 
collection of individuals in the Atrial Fibrillation Genetics (AFGen) 
Consortium, by meta-analyses of GWAS, ExWAS, and RVAS in 33 
studies, including 22,346 individuals with atrial fibrillation and 
132,086 referents (Online Methods). Figure 1 shows our study design, 
and Supplementary Tables 1 and 2 show the baseline characteristics 
of the study participants.

In a meta-analysis of GWAS in 31 studies, we identified ten 
new genetic loci associated with atrial fibrillation (P < 5 × 10−8) at 
METTL11B–KIFAP3, ANXA4–GMCL1, CEP68, TTN–TTN-AS1, 
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We then performed an in silico replication of our results using two 
studies in distinct ancestry groups. First, we replicated the atrial fibril-
lation–associated variants in 8,180 cases and 28,612 referents from the 
BioBank Japan study (Online Methods and Supplementary Table 10). 
The new atrial fibrillation variant intronic to CEP68 reached genome-
wide significance among Japanese, whereas the atrial fibrillation vari-
ants at KCNN2 and SOX5 achieved significance when correcting for 
multiple testing of 33 variants (P < 1.5 × 10−3). The loci at ASAH1, 
TTN, and METTL11B reached nominal significance in Japanese  
(P < 0.05). Of note, approximately 10% of the cases in the GWAS 
discovery analysis and Japanese replication analysis were overlapping 
(837 cases and 3,293 referents). The lack of replication of the remain-
ing loci likely reflects the heterogeneous nature of atrial fibrillation 
across different ancestry groups.

Next, we performed replication in 3,366 cases and 139,852 referents 
of mainly European ancestry in the UK Biobank (Online Methods and 
Supplementary Table 11). The atrial fibrillation locus at SH3PXD2A 
reached genome-wide significance in the UK Biobank, whereas the 
METTL11B, CEP68, and KLHL3–WNT8A–FAM13B loci were signifi-
cantly associated when correcting for multiple testing of 31 variants  
(P < 1.6 × 10−3) and the TTN, ASAH1, KCNJ5, and SCN10A loci 
reached nominal significance (P < 0.05). The lack of replication for 
all of the atrial fibrillation loci is likely caused by reduced statisti-
cal power due to decreased sample size in the replication sample 
(3,366 atrial fibrillation cases versus 17,931 in the discovery cohort).  
However, the direction of effect was consistent for all atrial fibrillation 
loci in the discovery and replication analyses.

Conditional analyses based on the summary-level results of the 
GWAS meta-analysis were performed to identify multiple, independ-
ent signals on each chromosome containing atrial fibrillation loci 
(Online Methods). We confirmed that the two loci at METTL11B–
KIFAP3 and PRRX1, located ~350 kb apart on chromosome 1, were 
independent signals, as were the two loci at SH3PXD2A and NEURL1, 
which are ~200 kb apart on chromosome 10 (Supplementary Fig. 9 
and Supplementary Table 12).

We found that seven of the known or new atrial fibrillation loci 
were associated with atrial fibrillation–related phenotypes, such as 
electrocardiographic traits, left-ventricle internal diastolic diameter, 
and stroke (Supplementary Fig. 10 and Supplementary Tables 3 
and 13). Given the close relationship between atrial fibrillation 
and cardioembolic stroke, we then sought to determine whether 
the new atrial fibrillation variants were associated with stroke risk.  

We performed an in silico lookup in GWAS data for stroke subtypes 
from the Neuro-CHARGE and METASTROKE consortia. None 
of the new loci for atrial fibrillation were associated with ischemic 
stroke, cardioembolic stroke, or small- or large-vessel disease 
(Supplementary Tables 14 and 15).

Next, we performed an in silico evaluation of the known and newly 
identified atrial fibrillation–associated loci (Online Methods and 
Supplementary Note). We compared the atrial fibrillation loci (n = 24)  
to other trait-associated loci from the NHGRI-EBI GWAS catalog  
(n = 3,381) and matching control loci selected for similar architectural 
properties (n = 9,093). Interestingly, the atrial fibrillation loci were sig-
nificantly conserved across species and were also significantly enriched 
for active enhancers in cardiac tissues, as denoted by H3K27ac marks, 
in comparison to other trait-associated loci from the NHGRI-EBI 
GWAS catalog and matching control loci (Supplementary Fig. 11). 
Moreover, the genes at atrial fibrillation loci displayed enrichment 
for Gene Ontology (GO) terms important for cardiac action potential 
propagation and cardiac contractility in comparison to genes in the 
control loci, although this enrichment was not significant when cor-
rected for multiple-hypothesis testing (Supplementary Table 16).

We also performed expression quantitative trait locus (eQTL) analy-
ses of the atrial fibrillation–associated genetic loci using two additional 
approaches (Online Methods). We identified significant eQTLs for 7 
of the 12 new atrial fibrillation–associated loci (closest gene:eQTL 
gene: METTL11B:KIFAP3, ANXA4:ANXA4–GMCL1–PCYOX1–
SNRNP27, CEP68:CEP68, KCNN2:KCNN2, KLHL3:FAM13B–REEP2, 
ASAH1:ASAH1–PCM1–RP11-806O11.1, and KCNJ5:KCNJ5–
C11orf45) and 8 of the 13 previously reported atrial fibrillation loci 
(Supplementary Fig. 12 and Supplementary Tables 17–20).

In the current work, we have identified 12 new genetic loci for 
atrial fibrillation in our large-scale analyses of common, coding, and 
rare genetic variation (Supplementary Table 3). When the genes 
in these loci are considered together with those in the known atrial 
fibrillation loci, the genes at associated loci broadly encode ion chan-
nels, sarcomeric proteins, and transcription factors that underlie 
this common arrhythmia. Genes at five of the genetic loci identified 
encode potassium or sodium channels, including two new loci at 
the KCNN2 and KCNJ5 genes that are known to be involved in the 
maintenance of atrial cardiac action potential. Because the cellular 
hallmark of atrial fibrillation is shortening of atrial action potential 
duration and calcium overload, the KCNN2 and KCNN3 genes are 
particularly interesting. The lead variant on chromosome 5q22 is 
located intronic to and has a significant eQTL with KCNN2, which 
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17 studies
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Figure 1 Study flowchart. Overview of the approach employed for genome-
wide and exome-wide association analyses.

KCNN3

PRRX1

CEP68
ANXA4

TTN CAND2

METTL11B

PITX2

KCNN2

KLHL3

CAV1–CAV2

GJA1

SLC35F1–PLN

ASAH1
C9orf3
SYNPO2L

NEURL1

SH3PXD2A

KCNJ5

TBX5

SYNE2

HCN4

ZFHX3

155
150
35
30
25
20
15
10
5

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21 X
Chromosome

–l
og

10
 (P

)

Figure 2 Manhattan plot of the combined-ancestry GWAS meta-analyses. 
The plot shows new (red) and replicated (blue) genetic loci associated 
with atrial fibrillation in the combined-ancestry GWAS meta-analysis.  
The dashed line represents the threshold of statistical significance  
(P = 5 × 10−8). Gene names correspond to the gene in closest proximity  
to the most significant variant at each locus. There is a break in the  
y axis to increase the resolution of the genetic loci near the genome-wide 
significance threshold.
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Figure 3 Regional plots from the combined-ancestry GWAS meta-analysis. (a–j) Plots are shown for METTL11B–KIFAP3 (a), CEP68 (b), ANXA4–GMCL1 
(c), TTN/TTN-AS1 (d), KCNN2 (e), KLHL3–WNT8A–FAM13B (f), SLC35F1–PLN (g), ASAH1–PCM1 (h), SH3PXD2A (i) and KCNJ5 (j). The most 
significant variant at each locus is plotted (purple diamond) and identified by rsID. Each dot in the plots represents a single variant present in our 
results, and the color of the dot corresponds to the degree of LD with the most significant variant. The lower part of each panel shows the locations of 
genes in the respective locus. r2, degree of LD; chr., chromosome. Regional plots were created using LocusZoom16. 
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encodes the calcium-dependent potassium channel SK2. The SK2 
protein is known to form heteromeric channel complexes with SK3, 
which is a product of the KCNN3 gene that was strongly associated 
with atrial fibrillation in the present and previous atrial fibrillation 
GWAS meta-analyses5,6.

Similarly, KCNJ5 encodes the potassium channel Kir3.4 (also 
known as GIRK4) that is known to form heteromers with Kir3.1 
(GIRK1; encoded by KCNJ3) and assemble to form the inwardly rec-
tifying IKAch channel complex. The IKAch complex is regulated by G 
protein signaling, is well known to regulate membrane potential in 
the sinoatrial node and atria, and has been considered as a therapeutic 
target for atrial fibrillation.

The SH3PXD2A gene identified in our rare and common vari-
ant analyses is expressed in human atria and ventricles and encodes 
TKS5, a tyrosine kinase substrate. The rare variant association  
was largely driven by the rs202011870 variant, which results in a  
leucine-to-arginine substitution at position 396 of the encoded 
protein. TKS5 has been shown to be important in determining the 
invasiveness of cancer cells13 and has been suggested to mediate 
the neurotoxic effect of β-amyloid in Alzheimer disease in asso-
ciation with the matrix metalloproteinase gene ADAM12 (ref. 14). 
Developmentally, SH3PXD2A is important for neural crest migration; 
homozygous knockout of Sh3pxd2a in mice results in complete cleft in 
the secondary palate and neonatal death15. However, the relationship 

table 1 results from combined-ancestry GWAs meta-analysis

rsID Chr. Gene(s)
Location  

relative to gene
Risk/reference 

allele
Risk allele 

frequency, % OR 95% CI P value
Mean imputation 

quality

New associations
rs72700118 1q24 METTL11B–KIFAP3 Intergenic A/C 12 1.14 1.10–1.19 2.60 × 10−11 0.959

rs3771537 2p13 ANXA4–GMCL1 Intronic A/C 53 1.09 1.06–1.12 7.92 × 10−12 0.987

rs2540949 2p14 CEP68 Intronic A/T 61 1.08 1.06–1.11 2.93 × 10−10 0.991

rs2288327 2q31 TTN–TTN-AS1 Intronic G/A 20 1.09 1.06–1.13 2.05 × 10−8 0.994

rs337711 5q22 KCNN2 Intronic T/C 39 1.07 1.05–1.10 2.93 × 10−8 0.995

rs2967791 5q31 KLHL3–WNT8A–FAM13B Intronic T/C 54 1.07 1.05–1.10 2.73 × 10−8 0.961

rs4946333 6q22 SLC35F1–PLN Intronic G/A 50 1.08 1.05–1.10 1.89 × 10−9 0.995

rs7508 8p22 ASAH1–PCM1 3′ UTR A/G 72 1.09 1.06–1.12 5.16 × 10−10 0.977

rs35176054 10q24 SH3PXD2A Intronic A/T 13 1.14 1.10–1.18 8.63 × 10−12 0.939

rs75190942 11q24 KCNJ5 Intronic A/C  8 1.17 1.11–1.24 1.59 × 10−8 0.744

Previously known associations
rs11264280 1q21 KCNN3 Intergenic T/C 31 1.12 1.09–1.15 6.41 × 10−17 0.942

rs520525 1q24 PRRX1 Intronic A/G 71 1.12 1.09–1.15 6.39 × 10−16 0.955

rs11718898 3p25 CAND2 Exonic C/T 65 1.08 1.05–1.10 4.68 × 10−8 0.969

rs6843082 4q25 PITX2 Intergenic G/A 25 1.45 1.41–1.49 3.41 × 10−155 0.989

rs12664873 6q22 GJA1 Intergenic T/G 70 1.08 1.05–1.11 1.19 × 10−8 0.968

rs1997572 7q31 CAV1/2 Intronic G/A 59 1.10 1.08–1.13 6.64 × 10−15 0.988

rs7026071 9q22 C9orf3 Intronic T/C 40 1.09 1.07–1.12 1.31 × 10−12 0.970

rs7915134 10q22 SYNPO2L Intergenic C/T 85 1.12 1.08–1.16 1.68 × 10−10 0.975

rs11598047 10q24 NEURL1 Intronic G/A 16 1.18 1.14–1.21 1.67 × 10−22 0.971

rs883079 12q24 TBX5 3′ UTR T/C 70 1.11 1.09–1.14 1.80 × 10−15 0.991

rs1152591 14q23 SYNE2 Intronic A/G 46 1.09 1.06–1.11 1.04 × 10−10 0.960

rs74022964 15q24 HCN4 Intergenic T/C 17 1.12 1.08–1.15 2.37 × 10−11 0.970

rs2106261 16q22 ZFHX3 Intronic T/C 19 1.20 1.17–1.24 8.18 × 10−32 0.973

The most significant variant at each genetic locus associated with atrial fibrillation is listed. Gene names in bold indicate that the variant is located within the gene, whereas  
additional gene names indicate an eQTL gene or gene strongly suspected to be causal owing to the function of the encoded protein. For intergenic variants, the closest gene(s)  
are listed. Chr., chromosome; OR, odds ratio; CI, confidence interval.

table 2 results from combined-ancestry exWAs meta-analysis

rsID Chr. Gene(s) Location relative to gene
Risk/reference 

allele
Risk allele  

frequency, % OR 95% CI P value

New associations
rs6800541 3p22 SCN10A Intronic T/C 61 1.08 1.05–1.12 8.79 × 10−7

rs89107 6q22 SLC35F1–PLN Intronic G/A 58 1.07 1.04–1.10 9.51 × 10−7

rs11047543 12p12 SOX5 Intergenic G/A 86 1.14 1.10–1.19 2.47 × 10−12

Previously known associations
rs13376333 1q21 KCNN3 Intronic T/C 23 1.13 1.09–1.16 1.46 × 10−12

rs17042171 4q25 PITX2 Intergenic A/C 21 1.64 1.59–1.69 8.31 × 10−227

rs3807989 7q31 CAV1 Intronic G/A 58 1.09 1.06–1.12 6.52 × 10−8

rs60632610 10q22 SYNPO2L Exonic; nonsynonymous C/T 85 1.12 1.08–1.15 1.54 × 10−10

rs10151658 14q23 SYNE2 Exonic; nonsynonymous C/A 49 1.07 1.04–1.09 5.16 × 10−7

rs2106261 16q22 ZFHX3 Intronic A/G 17 1.21 1.16–1.26 4.00 × 10−19

The most significant variant at each genetic locus associated with atrial fibrillation is listed. Gene names in bold indicate that the variant is located within the gene, whereas  
additional gene names indicate an eQTL gene or gene strongly suspected to be causal owing to the function of the encoded protein. For intergenic variants, the closest gene(s) are 
listed. Chr., chromosome; OR, odds ratio; CI, confidence interval.
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between SH3PXD2A and atrial fibrillation is unclear, and, as with any 
rare variant association, replication in a large, independent data set 
will ultimately be required.

Finally, we found that the atrial fibrillation loci have significant 
conservation across species and are enriched for active enhancers in 
cardiac tissues, as compared to other GWAS or control loci. Because 
many of the identified atrial fibrillation loci include genes that encode 
transcription factors (PITX2, ZFHX3, PRRX1, SOX5, and TBX5), we 
hypothesize that these loci may be more conserved because they may 
underlie a canonical program for left-atrial and/or pulmonary venous 
development.

The strengths of our study include the large sample sizes, analyses 
of common and rare genetic variation, and the inclusion of different  
ancestry groups, although our study was subject to some limitations.  
Specifically, it is important to note that estimating the variance 
explained by genetic variation can be challenging for qualitative traits 
such as atrial fibrillation, particularly given the marked variability in 
prevalence of the disease according to age. Thus, as with GWAS for 
other common conditions, we anticipate that the newly described 
loci for atrial fibrillation would only explain a small portion of the 
variance in atrial fibrillation.

In conclusion, we have nearly doubled the number of known 
genetic loci associated with atrial fibrillation through meta-analysis 
of more than 22,000 individuals with atrial fibrillation. We have iden-
tified a series of new atrial fibrillation–associated variants, which lie 
proximal to genes involved in atrial electrical and mechanical func-
tion. Our results will facilitate downstream research establishing the 
mechanistic links between identified genetic loci and atrial fibrillation 
pathogenesis, potentially aiding in the discovery of new therapeutic 
targets for the treatment of atrial fibrillation8.

METhOdS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE	METhOdS
Study population. The Atrial Fibrillation Genetics (AFGen) consortium is a 
collaboration among multiple studies with the aim of investigating the genetic 
causes of atrial fibrillation. In this study, we included 33 studies from AFGen, 
of which 31 participated in the GWAS meta-analysis while 17 were part of the 
exome chip analyses. Supplementary Table 21 shows the overlap by study of 
samples between the GWAS and exome chip analyses. The majority of the 
participants were of European ancestry (15.979 cases, 102,776 referents).  
We also included studies with African-American (3 studies; 641 cases, 5,234 
referents), Japanese (1 study; 837 cases, 3,293 referents), Hispanic (1 study; 277 
cases, 3,081 referents), and Brazilian (1 study; 197 cases, 758 referents) ances-
try (Supplementary Table 1). The ExWAS and RVAS involved 22,346 cases 
and 132,086 referents of European (13,485 cases, 96,184 referents), African-
American (681 cases, 7,290 referents), and Asian (8,180 cases, 28,612 referents) 
ancestry (Supplementary Table 2). Overall, adjudication of atrial fibrillation 
included either documented atrial fibrillation on an electrocardiogram and/or 
one in-patient or two out-patient diagnoses of atrial fibrillation. Referents were 
free of atrial fibrillation. All participating studies obtained informed consent 
from all cases and referents and obtained approval from their respective ethics 
committees or institutional review boards.

GWAS meta-analyses. Each study performed genotyping and imputation 
to the 1000 Genomes Project Phase 1 reference panel (March 2012 release). 
Detailed methods for each study are described in the Supplementary Note 
and in Supplementary Table 22. Cox proportional-hazards models were used 
for incident data with time to event calculated from study enrollment. Logistic 
regression models were used for prevalent and case–control data. Models 
were adjusted for age and sex if available and, if appropriate, for principal 
components of the genotype matrix to control for population stratification. 
For studies with prevalent cases at the time of enrollment (or blood draw) 
and incident cases identified during follow-up, two analyses were performed:  
(i) prevalent analysis at baseline/blood draw: all individuals who were diag-
nosed with atrial fibrillation before baseline were defined as cases and all 
individuals who were not diagnosed with atrial fibrillation before baseline were 
defined as referents in a logistic regression analysis (future cases were controls 
in this analysis) and (ii) incident analysis looking forward from baseline: prev-
alent cases were excluded and time to atrial fibrillation diagnosis was analyzed 
using Cox proportional-hazards models, with censoring at last follow-up. The 
two analyses are approximately independent because they consider different 
periods of risk, as described by Benjamin et al.4.

Pre- and post-GWAS filtering steps were performed according to prede-
fined quality control filters (Supplementary Table 23). Briefly, variants with 
MAF <1% or imputation quality <0.3 (IMPUTE) or that were present in <2 
studies were excluded.

We performed meta-analysis of summary-level GWAS results using an 
inverse-variance-weighted fixed-effects model with METAL software17. For 
the combined-ancestry GWAS meta-analysis, we tested 11,795,432 variants. 
The traditional Bonferroni correction for the number of variants tested is 
often regarded as too conservative because the tests are not independent, 
owing to LD. Thus, we chose the most widely used and accepted significance 
threshold for GWAS in our GWAS meta-analyses18–21. Variants that reached 
a genome-wide P value <5 × 10−8 were considered statistically significant. 
Meta-analyses were also performed separately for each ancestry group and 
for incident and prevalent atrial fibrillation to identify potentially differential 
associations and effects.

ExWAS and rare variant meta-analyses. Each study performed exome variant 
genotyping and association analyses locally, using a logistic model that com-
bined incident and prevalent cases and referents (Supplementary Table 24).  
Individual variants that passed quality control filters and were present in at 
least two studies with average MAF ≥0.5% (Supplementary Table 23) were 
subjected to meta-analysis using the score test implemented in the seqMeta 
package of R statistical software22. For the combined-ancestry ExWAS meta-
analysis, we tested 48,133 variants and used a significance level of 1.04 × 10−6, 
which is approximately a Bonferroni adjustment of 0.05/48,133. For MAF 
>0.5%, we had approximately 80% power to detect variants with a multiplica-
tive genotype relative risk of 1.4. RVAS was performed on rare variants from 

the exome chip array using SKAT23 and burden tests with three approaches: 
(i) all nonsynonymous and splice-site variants, (ii) nonsynonymous variants 
annotated as possibly damaging, and (iii) loss-of-function variants only. For 
each gene-based test, we excluded variants with MAF >5% and excluded genes 
with cumulative MAF <0.05%.

Approximate joint and conditional analysis. To identify independent  
variants within the 12 significant genetic loci, we performed an approxi-
mate joint and conditional association analysis implemented in the software  
GCTA24 using summary-level statistics from the meta-analysis. We used a 
stepwise procedure to detect additional independent variants with a European-
ancestry reference panel from the Framingham Heart Study (n = 2,764 unre-
lated individuals).

Functional annotation. Functional element enrichment. Loci were defined 
as regions encompassing variants that were in LD with the query variant  
(r2 > 0.8 in the CEU population) and that were no more than 500 kb from the 
query variant. Loci had to encompass at least 5 kb both upstream and down-
stream of the query variant. Overlapping loci were merged. The GWAS control 
loci were calculated from unique variants from the NHGRI-EBI GWAS catalog 
(as of 31 May 2016) that had P < 5 × 10−8. The 1000 Genomes Project control 
loci were calculated using 24,000 variants matched on the basis of MAF, gene 
density, distance to the nearest gene, and number of nearby variants in LD, 
as determined by the SNPsnap tool25. The SNPsnap matched variants were 
selected using the European population and an r2 cutoff of 0.8, but otherwise 
default parameters. Each locus in each experimental set was intersected with 
various markers for functional elements to determine the median percent over-
lap of each experimental set. The markers included phastCons 46-way primate 
and mammalian conserved elements, Roadmap Epigenomics H3K27ac gapped 
peaks, and ENCODE DNase-hypersensitive sites. Statistical significance was 
calculated by one-tailed bootstrapping for enrichment with 1,000 random 
subsamplings of each control set.

Gene ontology analysis of atrial fibrillation loci. RefSeq genes that overlapped 
atrial fibrillation–associated loci as well as genes that overlapped the GWAS 
catalog control loci and the 1000 Genomes Project matched control loci were 
used for gene ontology enrichment analysis. The genes that overlapped the 
control loci were used as two separate background sets. Enrichment calcula-
tions were provided by the GOrilla tool26.

In silico database interrogation. All statistically significant variants and 
genes from the GWAS and RVAS analyses were selected for in silico assess-
ment through lookups in the following databases: the Gene-Tissue Expression 
database (GTEx)27, RegulomeDB28, HaploReg29, GeneCards (http://www.
genecards.org/), and dbSNP30. From the GTEx search, we report statistically 
significant eQTLs in cardiac and skeletal muscle tissues. The NHGRI-EBI 
GWAS catalog31 was interrogated with the aim of identifying possible pleiot-
ropy with other cardiovascular phenotypes. At each locus, we defined a region 
based on LD span (r2 > 0.2) with the lead SNP. We searched the GWAS catalog 
for all SNPs within these regions and report the LD of proxies with the lead 
SNP when available. LD information was obtained using the SNiPA tool32 
(available at http://www.snipa.org/; accessed 24 June 2016).

Expression quantitative trait locus analyses. eQTL analyses in the Cleveland 
Clinic Atrial Tissue Bank and Arrhythmia Biorepository. We performed analy-
ses of gene expression in human left atrial tissue samples obtained from the 
Cleveland Clinic Atrial Tissue Bank and Arrhythmia Biorepository. Genotypes 
were determined using the Illumina Human Hap550 v3 or Hap610 v1 chip; 
RNA expression levels were determined using the Illumina HumanHT-12 v3 
or v4 chip. The atrial samples were obtained from 289 individuals of European-
American ancestry and 40 individuals of African-American ancestry. Of the 
European-American individuals, 80 were female, 70 had no history of atrial 
fibrillation, and 136 were in atrial fibrillation at the time of tissue acquisition; 
266 samples were from left atrial appendage (LAA) tissue and 23 were from 
left atrial pulmonary vein junction (LA–PV) tissue. Of the African-American 
individuals, 25 were female, 16 had no history of atrial fibrillation, and 12 
were in atrial fibrillation at the time of tissue acquisition; 34 samples were 
from LAA and 6 were from LA–PV tissue. Methods have previously been 
described in depth by Deshmukh et al.33. We performed cis-eQTL analyses 
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for all statistically significant genetic variants identified in GWAS analyses. 
The Benjamini–Hochberg adjustment was applied to the results to control  
the FDR34. P values were adjusted based on the FDR of both genome-wide test-
ing and specific variant sets. Probe–variant pairs with a genome-wide adjusted 
P value less than 0.05 were deemed significant.

Examination of eQTLs in cardiac and skeletal muscle tissues from the GTEx 
database. The GTEx database was interrogated for all genetic loci associated 
with atrial fibrillation in the present meta-analyses. We selected the index 
variants and all proxies at the atrial fibrillation loci and looked for eQTLs in a 
subset of the GTEx database including right atrial, left ventricular, and skeletal 
muscle tissues that are most relevant to atrial fibrillation.

GTEx region-based analyses. Region-based analyses were performed by 
comparing the percentage of atrial fibrillation loci with at least one eQTL 
to the percentage of control loci with at least one eQTL. All tissues in the 
GTEx database were used for this analysis. Atrial fibrillation loci and control 
loci were defined as described in “Functional element enrichment.” Statistical  
significance was calculated by a one-tailed test based on 1,000 bootstrap  
samples from each set of control loci.

Replication of genetic variants specific to African-American-ancestry 
GWAS meta-analysis. We sought to replicate variants specific to the African-
American-ancestry GWAS meta-analysis in 447 atrial fibrillation cases and 
442 referents of African-American ancestry. Custom TaqMan genotyping 
probes for rs115339321 and rs79433233 were obtained from Life Technologies. 
Genotyping was performed on 5 ng of DNA input using the TaqMan genotyping 
master mix on a Bio-Rad CFX384 real-time PCR instrument. Genotyping was 
performed in 447 atrial fibrillation cases and 442 referents obtained from four 
studies (BioVU, Duke Biobank, MGH, and Penn Biobank), with genotype calls 
performed by end-state fluorescence after 40 cycles. See the Supplementary 
Note and Supplementary Tables 25 and 26 for further details.

In silico replication in the BioBank Japan study. The variant with the low-
est P value at each independent new atrial fibrillation locus was selected for  
in silico replication in the results from GWAS analysis in 8,180 individuals 
with atrial fibrillation and 28,612 referents from the BioBank Japan study. 
The cases were selected from BioBank Japan, which contains DNA and 
serum samples collected throughout Japan, and atrial fibrillation was defined 
as persistent or paroxysmal atrial fibrillation diagnosed by a physician. The 
referents were selected from the Tohoku Medical Megabank organization35, 
the Japan Public Health Centre–based Prospective study, and the Japan 
Multi-institutional Collaborative Cohort (J-MICC) Study. Samples were 
genotyped using the Illumina Human OmniExpress BeadChip kit and the 
Infinium OmniExpressExome BeadChip kit. Only autosomal variants were 
included in the GWAS. Variants with call rate <99%, variants that deviated 
from Hardy–Weinberg equilibrium among control samples (<1 × 10−6), and 
non-polymorphic variants were excluded.

In silico replication in the UK Biobank study. Replication was performed 
using 143,218 unrelated adults of primarily European ancestry (>80%), aged 
40–69 years between 2006 and 2010, from the UK Biobank interim data set 
released in May 2015. We defined atrial fibrillation as reported during a base-
line interview; presence of a procedure code for cardioversion, atrial flut-
ter or fibrillation ablation, or atrioventricular node ablation; presence of a 
billing code for atrial fibrillation; or atrial fibrillation reported on a death 
record (the specific codes used in the definition are available upon request). 
Of the 143,218 individuals in the replication data set, we identified 3,366 
with atrial fibrillation, according to the criteria above. Details on genotyp-
ing, imputation, and calculation of the principal components of ancestry in 
the UK Biobank interim data set can be found on the UK Biobank website 
(http://www.ukbiobank.ac.uk/). Briefly, samples were genotyped either by UK 
BiLEVE Axiom array (UKBL) or UK Biobank Axiom array (UKBB). Both 
arrays include ~800,000 SNPs, and more than 95% of common marker con-
tents are similar. Samples were phased with a modified version of SHAPEIT2 
and imputed with IMPUTE2, using a combined panel of UK10K haplotype and 
1000 Genomes Project phase 3 samples as the reference panel. All significant 
variants detected in the discovery study passed quality control filters in the 
UK Biobank data (imputation quality info ≥0.4, variant missing rate <5%, 

individual missing rate <10%, and variant genotype probability >0.9 in >90% 
of the individuals). Variants were then transformed to hard-called genotypes 
(probability threshold ≥0.9, MAF ≥0.01, and missing rate per variant <5%). 
We used logistic regression to test the association between each hard-called 
variant and risk of atrial fibrillation using an additive genetic model, adjusting 
for baseline age, sex, array, and the first 15 principal components of ancestry. 
Quality control, transformation, and analyses were performed with QCTOOL 
and PLINK v1.90b. Because we performed an in silico replication of 31 vari-
ants, we set a conservative significance threshold of 1.6 × 10−3 (0.05/31).

Pathway analyses. Pathway analyses provide a potential route to investi-
gate the collective effects of multiple genetic variants on biological systems 
(Supplementary Note and Supplementary Tables 27–29). We used two dif-
ferent methods for pathway analysis.

DEPICT. We ran the analysis DEPICT36, which integrates multiple layers 
of evidence to identify causal genes at GWAS loci. From meta-analysis results, 
we first performed clumping to identify independent loci using PLINK37. We 
then performed analysis using DEPICT with the default settings.

Ingenuity Pathway Analysis. Data were analyzed through the use of Qiagen’s 
Ingenuity Pathway Analysis (IPA; http://www.qiagen.com/ingenuity). For each 
of the tested genetic variants, we mapped the variant back to the reference 
human genome (NCBI Build 37, 2009) and examined its location relative to 
RefSeq genes (15 May 2016). The gene score was defined as the most signifi-
cant variants that were located within 110 kb upstream and 40 kb downstream 
of the gene’s most extreme transcript boundaries. Of the 27,011 genes evalu-
ated, 338 reached a score less than 5 × 10−6. These genes were then imported 
into IPA. Fisher’s exact test was used to justify the enrichment of each of the 
canonical pathways.

Assessment of pleiotropy with the ischemic stroke phenotype. To evaluate 
pleiotropy with the ischemic stroke phenotype, we selected the variant with 
the lowest P value at each independent new atrial fibrillation locus and per-
formed a lookup in the results from 1000 Genomes Project–imputed GWAS 
meta-analyses from the Neurology Working Group of the Cohorts for Heart 
and Aging Research in Genomic Epidemiology (CHARGE) Consortium 
(4,348 stroke cases and 80,613 referents)38 and the METASTROKE consor-
tium (10,307 ischemic stroke cases and 19,326 referents) of the International 
Stroke Genetics Consortium (ISGC)39.

Code availability. The computer code that supports the results of the present 
study is available from the corresponding author upon request.

Data availability. The data sets generated during and/or analyzed during  
the current study are available from the corresponding author upon reasonable 
request. Summary-level data for the association studies will be made available 
at the database of Genotypes and Phenotypes (dbGaP).
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