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Abstract Most body mass index (BMI) genetic loci have
been identified in studies of primarily European ancestries.
The effect of these loci in other racial/ethnic groups is less
clear. Thus, we aimed to characterize the generalizability of

170 established BMI variants, or their proxies, to diverse
US populations and trans-ethnically fine-map 36 BMI loci
using a sample of >102,000 adults of African, Hispanic/
Latino, Asian, European and American Indian/Alaskan
Native descent from the Population Architecture using
Genomics and Epidemiology Study. We performed linear
regression of the natural log of BMI (18.5-70 kg/m?) on the
additive single nucleotide polymorphisms (SNPs) at BMI
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loci on the MetaboChip (Illumina, Inc.), adjusting for age,
sex, population stratification, study site, or relatedness. We
then performed fixed-effect meta-analyses and a Bayesian
trans-ethnic meta-analysis to empirically cluster by allele
frequency differences. Finally, we approximated condi-
tional and joint associations to test for the presence of sec-
ondary signals. We noted directional consistency with the
previously reported risk alleles beyond what would have
been expected by chance (binomial p < 0.05). Nearly, a
quarter of the previously described BMI index SNPs and 29
of 36 densely-genotyped BMI loci on the MetaboChip rep-
licated/generalized in trans-ethnic analyses. We observed
multiple signals at nine loci, including the description of
seven loci with novel multiple signals. This study supports
the generalization of most common genetic loci to diverse
ancestral populations and emphasizes the importance of
dense multiethnic genomic data in refining the functional
variation at genetic loci of interest and describing several
loci with multiple underlying genetic variants.

Introduction

Obesity is a global epidemic and has become a top public
health concern given its downstream effects on cardiovas-
cular disease, diabetes, cancer, and other diseases (Popkin
2009). In the United States (US), there are marked racial/
ethnic differences in obesity prevalence among adults (Fle-
gal et al. 2012). For example, the US National Health and
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Nutrition Examination Survey estimated that in 2009-2010,
non-Hispanic/Latino African descent (50%) and Hispanic/
Latino (39%) adults had the highest burden of obesity,
whereas adults of non-Hispanic/Latino European descent
had the lowest (34%). Studies of Asian descent subpopula-
tions indicate that they may have an even lower prevalence
of obesity between 4 and 10% (Oza-Frank et al. 2009).
Given that non-European ancestries and Hispanic/Latinos
collectively make up more than one-third of the US popu-
lation and are experiencing some of the fastest population
growth (Humes et al. 2011), future public health research
on the determinants of obesity in US must be relevant to
these racial/ethnic minorities.

Body mass index (BMI, kg/m?) is commonly used to
classify obesity in epidemiologic studies and is a polygenic
trait with heritability estimates ranging between 40 and
70% (Hjelmborg et al. 2008; Maes et al. 1997). As numer-
ous genome-wide association studies (GWAS) of pre-
dominantly European descent populations have identified
more than 100 BMI loci (Berndt et al. 2013; Locke et al.
2015; Okada et al. 2012; Speliotes et al. 2010; Wen et al.
2012, 2014; Willer et al. 2009; Winkler et al. 2015), little
is known about the effect of these loci in non-European
ancestries. Therefore, the study of diverse populations can
inform the generalizability and diversity of alleles at estab-
lished loci and aid the identification of underlying causal
variants through trans-ethnic fine-mapping.

To this aim the Population Architecture using Genomics
and Epidemiology (PAGE) Study was designed to extend
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the current body of knowledge on the genetic determi-
nants of complex chronic diseases from studies of primar-
ily European descent populations to African, Hispanic/
Latino, Asian and American Indian/Alaskan Native ances-
tries (Matise et al. 2011), which within the US are differen-
tially affected by the obesity epidemic (Flegal and Troiano
2000; Oza-Frank et al. 2009). In this study of approxi-
mately 102,000 adults from diverse ancestries, we aimed to
generalize a total of 170 previously described BMI index
single nucleotide polymorphisms (SNPs), or their avail-
able proxies, located within 166 loci and to fine-map 36 of
these BMI loci with dense genotyping on the MetaboChip
(Illumina, Inc.) using trans-ethnic meta-analytic methods to
narrow the putative interval for future biologic study.

Methods
Study population

The Population Architecture using Genomics and Epide-
miology (PAGE) Study is comprised of several large study
sites/consortia and a coordinating center bringing together
samples of diverse populations including those included
in this analysis: the Atherosclerosis Risk in Communities
(ARIC) Study, the Epidemiologic Architecture for Genes
Linked to Environment study accessing BioVU (EAGLE
BioVU), Coronary Artery Risk Development in Young
Adults (CARDIA), Cardiovascular Health Study (CHS),
the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL), Multiethnic Cohort (MEC), the Women’s
Health Initiative (WHI) (Matise et al. 2011). Additional
studies collaborating in this analysis also included: the
GenNet Network (GenNet), the Hypertension Genetic Epi-
demiology Network (HyperGEN) Study, the MEC-Slim
Initiative in Genomic Medicine for the Americas Type 2
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Diabetes Consortium (MEC-SIGMA), the Mount Sinai
School of Medicine BioBank (BioME), and the Taiwan-
MetaboChip Study for Cardiovascular Disease (TaiChi)
study. A detailed description of each study can be found in
our Supplemental Materials.

Racial/ethnicity was self-reported in most studies except
for EAGLE BioVU, where racial/ethnicity is observer-
reported (Dumitrescu et al. 2010; Hall et al. 2014). MEC-
SIGMA sample included Type 2 Diabetes cases and con-
trols from Los Angeles, CA (Consortium et al. 2014). The
TaiChi Consortium substudies were conducted in Taiwan,
the San Francisco Bay Area, and Hawaii and represent East
Asian ancestry (Assimes et al. 2016). The PAGE MEC and
WHI Hispanic/Latino samples predominantly represent
individuals of Mexican origin (Carty et al. 2013), whereas
the HCHS/SOL (Daviglus et al. 2012) and BioME His-
panic/Latino samples were more diverse with respect to
Hispanic/Latino backgrounds and admixture (e.g., African,
European, and American Indian) (Tayo et al. 2011). The
majority of WHI Asian American samples were of Chinese
and Japanese descent, but also included smaller samples of
other backgrounds (e.g., Hawaiian, Filipino, Korean, and
Vietnamese). MEC represents both Japanese and Hawai-
ian ancestries, which were analyzed separately based on
their self-reported Asian background. Only WHI recruited
American Indians/Alaskan Natives.

The PAGE data sets generated during and/or analyzed
during the current study are available in the dbGaP reposi-
tory (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000356.v1.pl). These non-PAGE
data sets are either available on dbGaP or if not funded by
the National Institutes of Health are available from the cor-
responding author by request. Each study obtained approval
from their Institutional Review Boards and written consent
from all participants with the exception of EAGLE BioVU,
which followed an opt-out program (Pulley et al. 2010;
Roden et al. 2008).

Genotyping and imputation

The MetaboChip was a custom Illumina iSELECT array
that contained approximately 195,000 SNPs and was
designed to support large-scale follow-up of putative asso-
ciations for cardiovascular and metabolic traits, includ-
ing BMI (Voight et al. 2012). Approximately 33% of the
MetaboChip SNPs were included as replication targets and
62% were included for fine-mapping within 257 targeted
densely-genotyped loci, which included 21 loci associated
with BMI as of 2009 (Voight et al. 2012) and 15 additional
loci (i.e., originally included on the MetaboChip for other
cardiometabolic traits) associated with BMI since 2009
(Locke et al. 2015; Okada et al. 2012; Speliotes et al. 2010;
Wen et al. 2012, 2014; Winkler et al. 2015). Collectively,
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these 36 densely-genotyped BMI MetaboChip loci include
37,900 SNPs (Supplemental Table 1) and represent 20% of
all BMI loci identified as of June 2016. Across the entire
MetaboChip more than a third of all BMI loci are repre-
sented by either at least one index SNPs, or at leats one
proxy SNP. We define a locus as was done as part of the
design of the MetaboChip (Voight et al. 2012). Therefore,
as shown in Supplemental Table 1, the number of SNPs per
locus is varied widely as a function of the base pair range
of the putative region of interest (133-3494 SNPs across
38 kb—1.9 Mb, respectively) and the tiered-prioritization
of 11 dense genotyping for cardiometabolic phenotypes of
interest (e.g., BMI) (Voight et al. 2012).

As part of the PAGE Study, the genotyping of the
MetaboChip was performed at research genomics labo-
ratories: the Human Genetics Center of the University of
Texas-Houston (Houston, TX, USA), the Vanderbilt Uni-
versity Center for Human Genetics Research (CHGR)
DNA Resources Core (Nashville, TN, USA), University
of Southern California Genomics Core (Los Angeles, CA,
USA), and the Translational Genomics Research Institute
(Phoenix, AZ, USA) (Buyske et al. 2012). Each genotyp-
ing center genotyped the same 90 HapMap YRI (Yoruba in
Ibadan, Nigeria) samples and 2-3% study-specific blinded
replicates to facilitate genotyping quality control. The
study-specific SNP- and person-level quality control meas-
ures are summarized in Supplemental Table 2.

Imputation of MetaboChip SNPs was conducted in
MEC-SIGMA (Hispanic/Latinos only), BioME (African
and Hispanic/Latino ancestries), and WHI (representing
54% of WHI African descent women, and all of the WHI
European descent women) using 1000 Genomes phase 1
reference populations, or in the case of WHI using study-
specific reference samples (Liu et al. 2012), and then fil-
tered on imputation quality (Supplemental Table 2). Less
than a third of the final analytic sample genotypes were
imputed.

In family- and household-based studies, the family
structure was either accounted for using a linear mixed
models (GenNet, HyperGen) or a generalized estimat-
ing equation incorporating clusters of first-degree relative
pairs/household members (HCHS/SOL) (Lin et al. 2014).
Within each racial/ethnic group, related participants within
the remaining studies and across the PAGE studies were
identified using PLINK (Purcell et al. 2007). When appar-
ent first-degree relative pairs or individuals with high
inbreeding coefficients (F > 0.15) (Weale 2010) were iden-
tified by non-PAGE study investigators or by the PAGE
Coordinating Center, these individuals or the member
from each pair with the lower call rate was excluded from
further analysis. Principal components of ancestry were
calculated using the Eigensoft software (Patterson et al.
2006; Price et al. 2006) and determined either among the
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unrelated subset, or in the 1000 Genomes reference popu-
lations, and then projected to the study and racial/ethnic
sample (Lin et al. 2014). Within each race/ethnic group
in each study, ancestral outliers of the resulting principal
components were excluded by each study’s investigators
or the PAGE Coordinating Center from further analysis
(Buyske et al. 2012).

Ascertainment of BMI

Weight and height were measured by trained clinic staff in
the ARIC, CARDIA, CHS, GenNet, HCHS/SOL, Hyper-
Gen, WHI, and TaiChi studies. In EAGLE BioVU, weight
and height were calculated across the complete medical
histories (Crawford et al. 2015) following a published pro-
tocol (Goodloe et al. 2017). For BioMe, height and weight
measures were obtained from participants’ medical records
at the time of enrollment (Locke et al. 2015; Monda et al.
2013). In MEC, weight and height were self-reported by
questionnaire with good validity (Lim et al. 2011, 2012).

Body mass index was then calculated as the ratio of
weight-to-height squared. Following previous PAGE study
recommendations to remove extreme outliers (Fesinmeyer
et al. 2012; Gong et al. 2013), BMI values <18.5 or >70 kg/
m? are excluded due to the potential for these extremes to
be coding errors, and reflect underlying illnesses or rare
genetic mutations. However, due to the young average
age of CARDIA participants, additional data cleaning was
performed in CARDIA and individuals <18.5 kg/m* were
retained in the final analytic sample. To reduce the influ-
ence of variation in growth and development on quantita-
tive variation in BMI, we limited our analytic samples to
adults >19 years of age in EAGLE BioVU, CARDIA, and
BioME, and >20 years of age in HCHS/SOL. Across the
PAGE studies (Supplemental Table 3), we had genotype
and BMI information available on a resulting analytic
sample of 35,606 African, 26,048 Hispanic/Latino, 22,466
Asian, and 535 American Indian/Alaskan Native descent
adults.

Statistical analysis

As described previously (Fesinmeyer et al. 2012; Gong
et al. 2013), the distribution of BMI was naturally log
(In) transformed to minimize the influence of outliers. All
regression models were adjusted for age, sex, the top 2-to-
top 10 principal components, and study site, as appropri-
ate for the racial/ethnic group and study (Supplemental
Table 2). Study- and racial/ethnic-specific linear regression
models were implemented in PLINK (Purcell et al. 2007),
R (WHI, https://cran.r-project.org), SNPTEST (BioME),
GWAF (GenNet, HyperGen) (Chen and Yang 2010), or a
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weighted version of a generalized estimating equation in
SUGEN (HCHS/SOL) (Lin et al. 2014).

Generalization of established SNP-associations
with BMI in diverse populations

We created a Bonferroni corrected threshold of signifi-
cance for the 170 index SNPs (or if unavailable on the
MetaboChip, their highest LD proxy, r* > 0.8 in the dis-
covery population 1000 Genomes pilot CEU, YRI, or
CHB + JPT) from previous GWAS or MetaboChip-wide
studies (Supplemental Table 4) after accounting for the
four loci with more than one racial/ethnic-specific find-
ing in strong linkage disequilibrium (LD, r* > 0.8 in
CEU, YRI and CHB + JPT). Replication (i.e. in the same
population of discovery) or generalization (i.e. to another
racial/ethnic group) was declared if an index SNP was:
(1) Bonferroni significant for 166 independent tests (p
value <3.0 x 10™*) and (2) had a consistent direction of
effect as the previous report. These same criteria were
applied to any index SNP within the 36 densely-geno-
typed BMI loci. Strong evidence of effect heterogene-
ity was defined as less than a Bonferroni p value (i.e.,
0.05/166 for index SNPs, or a locus-specific threshold
described in the following). Using a binomial distri-
bution, we tested if the number of observed SNPs with
directional consistency between the risk allele observed
in this study and prior studies was greater than would be
expected by chance (50% expected allele consistency by
chance, p < 0.05 significant).

Replication/generalization of 36 densely-genotyped
BMI loci in diverse populations

To identify independent signals in the fine-mapped
regions, we generated a locus-specific Bonferroni cor-
rection for multiple comparisons based on the number of
independent SNPs (2 < 0.2, pruned in PLINK using a
50-SNP window that was shifted by five SNPs each itera-
tion) in the African descent samples with MetaboChip
data from the ARIC Study (n = 3399). This served as
a worst-case scenario of the maximum number of inde-
pendent tests in the present study’s populations with the
least LD. The resulting p value thresholds for statistical
significance ranged from 6.31 x 107> to 1.39 x 107°
(Supplemental Table 1).

Among the subset of the 28,573 SNPs passing quality
control and located in the 36 densely-genotyped loci (range
per locus: 110-2785; Supplemental Table 1), we conducted
inverse variance fixed-effect meta-analysis across studies
(>100 observations each) in METAL (version 2011-03-
25) (Willer et al. 2010) when the SNP was >0.1% minor

allele frequency (MAF) in the racial/ethnic group and was
informed by more than half of the maximum racial/ethnic-
specific sample size.

Trans-ethnic meta-analyses to narrow the putative
interval

Similarly, we generated trans-ethnic meta-analyses
for SNPs >0.1% MATF in each racial/ethnic group and
informed by at least two populations and more than half
of the maximum trans-ethnic sample size (n = 101,979).
We excluded American Indians/Alaskan Natives from our
trans-ethnic fixed-effect estimates due to their small sam-
ple size and possible within group heterogeneity due to
their recruitment across all nation-wide WHI recruitment
centers (n = 535).

Linkage disequilibrium The fine-mapping of causal
variants was informed by estimates of population-spe-
cific allele frequencies and LD correlation (rz, 500 Kb
sliding windows) in PLINK (Purcell et al. 2007) using
genotypes from the ARIC (African descent), HCHS/SOL
(Hispanic/Latino), and WHI studies (Asian, European,
and American Indian/Alaskan Native ancestries). As done
in a previous large meta-analysis of BMI (Justice et al.
2017), trans-ethnic LD estimates were generated from a
sample of 17,437 individuals from 1000 Genomes YRI
(pilot), ARIC, MEC, HCHS/SOL, and WHI, which was
both closely proportionate to the racial/ethnic groups of
our trans-ethnic meta-analysis (37% African, 26% His-
panic/Latino, 20% Asian, and 17% FEuropean descent;
compared to 35, 26, 22, and 18%, respectively, in the full
trans-ethnic sample) and also representative of the PAGE
studies with the greatest amount of within racial/ethnic
group diversity (e.g., HCHS/SOL for Hispanic/Latinos,
WHI for Asian Americans; see section on “Study Popu-
lation” for more information). Regional plots were gen-
erated using LocusZoom to visualize trans-ethnic asso-
ciation differences as well as across the LD of various
racial/ethnic groups (Pruim et al. 2010).

Bayesian trans-ethnic  meta-analysis Finally, the
assumption of fixed-effects across racial/ethnic groups was
relaxed in a Bayesian trans-ethnic meta-analysis in MAN-
TRA, which allows for the empirical estimation of mean
allele frequency differences between racial/ethnic groups
as prior information in the clustering of the observed
genetic effects across defined racial/ethnic groups (Morris
2011)—in our case African, Hispanic/Latino, Asian and
European ancestries. We adjusted for multiple comparisons
in this Bayesian analysis by defining very strong evidence
in favor of association as having a Bayes factor (BF) >5,
or strong evidence in favor for effect heterogeneity after
applying MANTRA as having a posterior probability of
effect heterogeneity above a Bonferroni correction for the
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number of independent index tests (e.g., posterior probabil-
ity > 1—-0.05/166) or above the Bonferroni correction for
the number of independents tests per locus, both described
above. Furthermore, we also calculated the posterior prob-
ability ¢; that the jth SNP in the kth independent signal is
causal as

_ _BE

Zk BF;’

We then ranked all SNPs by their BFs and summed
their cumulative posterior probabilities until it exceeded
99%. The resulting set of SNPs constitutes the 99% cred-
ible set and defines a genomic region where there is a 99%
probability of containing the causal SNP if the assumption
holds that each region of interest contained only one causal
variant.

Established and novel secondary signals at known
loci We further investigated our trans-ethnic fixed-effect
meta-analysis results at the 36 densely-genotyped loci for
second independent signals using Genome-wide Com-
plex Trait Analysis (GCTA, version 64) (Yang et al. 2012;
Yang et al. 2011). To inform our approximations, we used
the same trans-ethnic genotypes of 17,437 individuals
from 1000 Genomes YRI (pilot), ARIC, MEC, HCHS/
SOL, and WHI, which were used to calculate trans-eth-
nic LD above and were proportionate to the racial/ethnic
groups of our trans-ethnic meta-analysis. We first filtered
out SNPs with high trans-ethnic heterogeneity (heteroge-
neity p value < 1.66 x 107%) and then adjusted for the
‘lead SNPs’ (i.e., the marker with the smallest p value
within each region) of the densely-genotyped regions
in an approximate conditional model. We contrasted the
conditional effect estimates and p values of the surround-
ing SNPs with their unconditional estimates to ascertain
if any additional SNPs that were associated uncondition-
ally with BMI at p value <0.1 then arose as significantly
‘independent’ after we adjusted for the lead SNPs of these
regions and took the number of independent tests in the
region into account (see locus-specific threshold above).
We repeated this approach to ensure that no additional
significant lead conditional SNPs arose in subsequent
rounds of adjustments.

Then, we entered these potentially independent SNP
markers into an approximate joint model in GCTA, which
included all of the lead SNPs in the 36 densely-genotyped
loci as well as the 170 index SNPs for BMI outside of
these regions to account for any potential long-range LD
with BMI loci not densely-mapped on the MetaboChip.
Joint analyses were repeated dropping out the SNPs with
non-significant joint p values (p value <0.05/166 for index
SNPs; or p value less than the locus-specific threshold for
lead or secondary SNPs in densely-genotyped regions),
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until a final joint model included only significant joint
SNP associations. As a sensitivity analysis of a subset of
six loci with evidence of independent signals from the
approximate GCTA analyses, we performed a single round
of exact conditional analyses using the same statistical
analysis and meta-analysis software as described above
for the unconditional analyses. In this round, we adjusted
for the lead fixed-effect trans-ethnic SNP and queried the
significance of the remaining SNPs within the densely-
genotyped region. We also ran the approximate conditional
analyses within each race/ethnic group, meta-analyzing
conditional results across race/ethnic groups, and compared
this approach to the exact and approximate conditional
approaches, described above. In addition, these jointly
significant SNPs were queried for functional annotation
in HaploReg (version 4.1) (Ward and Kellis 2012). Both
GERP and SiPhy conservation as well as GENCODE and
RefSeq genetic annotations were queried on each lead SNP.

Statistical power

To aid with the interpretation of null study findings, post
hoc we calculated statistical power in Quanto version
1.2.4 (Gauderman and Morrison 2006) to detect BMI
genetic effects. Previous PAGE meta-analyses using this
transformation have estimated that genetic effects for risk
variants at FTO could be as much as 1% change in BMI
per risk allele (or 0.0119 on the natural In scale) (Gong
et al. 2013). Using information available on the worst-case
locus-specific Bonferroni correction from Supplemen-
tal Table 1 (6.31 x 1075), the varying BMI distributions
and sample sizes of the race/ethnic-specific and trans-eth-
nic meta-analyses (Supplemental Table 3) we calculated
power to detect effects up to as large as 1% change in BMI
per risk allele.

As shown in Supplemental Fig. 1, power was expected
to be greatest in the trans-ethnic meta-analysis, which
would allow for the identification of moderate genetic
effects (>0.6% change per risk allele) at >80% power for
low-frequency variants (>1%). Despite the smaller size of
the Asian descent sample, we estimated that we generally
would have better power in the analysis than in the African
and Hispanic/Latino (>13,000 and >3,000 samples larger,
respectively) descent analyses, which would allow us to
describe large genetic effects at >80% for both low-fre-
quency and common variants (>1%). In contrast, the Afri-
can, Hispanic/Latino, and European descent analyses were
expected not have sufficient power (<80%) to describe
low-frequency variants (e.g., <1%), and only had sufficient
power (>80%) to describe moderate effects (>0.6% change
per risk allele) that were common (>5%) in that specific
race/ethnic group.
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Results

Our study was comprised of 102,514 individuals from
five racial/ethnic groups, with a mean age spanning from
27 years (range 20-37 years) in CARDIA to 73 years (65—
93 years) in CHS (Supplemental Table 3). The biobank
studies (EAGLE BioVU, BioME), as well as HCHS/SOL,
HyperGen, and TaiChi represented ages across more than
five decades of the life course. Women comprised the
majority (or entirety, as in the WHI) of all studies, except
for the TaiChi sample, which was only 39% female. Within
sex obesity prevalence varied substantially across studies
(26—64% of females and 19-46% of males were obese at
the time of assessment). Yet, obesity prevalence appeared
to be generally higher in women and men of African, His-
panic/Latino, and American Indian/Alaskan Native ances-
try compared to women and men of Asian and European
ancestry.

Generalization of established SNP associations
with BMI in diverse populations

Overall, 135 of 165 SNPs, or their proxies (72 > 0.8), were
previously shown to associate with BMI, passed qual-
ity control filters in at least two racial/ethnic groups, and
displayed consistent directions of effect in the trans-ethnic
fixed-effect meta-analysis (Supplemental Table 4). This is
more concordant than would be expected by chance (bino-
mial p, p;, = 1.63 x 10717). Of all 170 index SNPs, or their
proxies, that passed quality control filters in at least one
racial/ethnic group, 42 were significantly associated with
BMI in either the trans-ethnic analyses or in at least one
racial/ethnic group. For example, we replicated two Afri-
can descent-specific associations at GALNT10 [rs4569924
p = 479 x 1075 (Monda et al. 2013)] and DHX34
[rs4802349, p = 3.79 x 1078 (Gong et al. 2013)], and dem-
onstrated generalization of associations from previous stud-
ies of European descent populations for two SNPs at 8p12
[rs7844647, * = 0.96 in CEU, p = 2.03 x 10~* (Winkler
et al. 2015)] at AGBLA4 [rs657452, p = 5.52 x 10~° (Locke
et al. 2015)] to African and Hispanic/Latino descent indi-
viduals, respectively.

Eighteen of the 42 significant index SNP associations
were only significant in the trans-ethnic sample, perhaps
due to its larger sample size (Supplemental Table 4). Three
SNPs exhibited significant heterogeneity across the racial/
ethnic groups in the trans-ethnic fixed-effect meta-analy-
sis, yet only one of these SNPs (rs116612809, the index
SNP at BRE and the most significant (‘top’) SNP in the
African descent and trans-ethnic fixed-effect analyses)
persisted to have evidence in favor of association after

accounting for the ancestral heterogeneity in a Bayes-
ian meta-analysis. One index SNP at TRAF3 [rs7143963;
(Winkler et al. 2015)] was nominally significant and direc-
tionally consistent in both the African descent and trans-
ethnic analyses, but only exhibited significant heteroge-
neity across the studies of African descent individuals
(Supplemental Fig. 2), wherein the effect estimates from
two studies with <1200 individuals were the most extreme
(HyperGen n = 1171, Risk allele frequency = 66.9; MEC
pilot n = 433, 59.2%).

Replication/generalization of 36 densely-genotyped
BMI loci in diverse populations

In 35,606 African descent individuals, 31 of 35 index SNPs
(or their proxies) that passed quality controls and were
located within one of the 36 densely-genotyped BMI loci
showed an association that was directionally consistent with
the previously reported risk allele (p,,, = 1.52 x 107°).
We observed no significant effect heterogeneity within
the studies contributing samples of African descent indi-
viduals at either the index or lead SNPs (Supplemental
Table 5). Our analysis of the dense genotypes of African
descent individuals led to the generalization of 14 BMI loci
(Table 1), including six loci (COBLLI, POC5, SLC22A3,
TCF7L2, MAP2KS, and ATP2A1) not previously associated
in African descent populations, and eight loci that were pre-
viously generalized to African descent individuals (Gong
et al. 2013): SECI16B, ETVS5, TFAP2B, FTO, and MC4R
with the same lead SNP and TMEMI18, GNPDA2, and
BDNF-AS1/BDNF with a different lead marker (r2 of 0.86,
0.98, 0.11, respectively). In addition, as described previ-
ously (Gong et al. 2013), rs116612809 at BRE replicated as
the most significant SNP for BMI in our expanded African
descent sample (Table 1). Thus, our findings resulted in a
total of 15 BMI loci with significant evidence of associa-
tion in African descent individuals, six of which were best
represented by the index SNP from GWAS of European
(Locke et al. 2015; Speliotes et al. 2010) and non-European
populations (Gong et al. 2013; Monda et al. 2013; Pei et al.
2014).

In a sample of 26,048 Hispanic/Latinos, 32 of 36 index
SNPs in the densely-genotyped BMI loci had associations
that were directionally consistent with previous reports
(Ppin = 857 x 1077). We also observed no significant het-
erogeneity within the Hispanic/Latinos studies at either
the index or lead SNPs (Supplemental Table 6). Using the
dense genotyping at 36 BMI loci, we were able to gener-
alize 13 BMI loci to Hispanic/Latinos (Table 2), includ-
ing 8 loci that were generalized to African descent indi-
viduals (SEC16B TMEM 18, COBLLI, GNPDA2, TCF7L2,
MAP2KS5, FTO, and MC4R) plus an additional 5 loci

@ Springer
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(LYPLALI, IGF2BP2, SLC39A8, KCNQI1, MTCH?2) that
only generalized to Hispanic/Latinos.

In the entire Asian descent sample (n = 22,466), 29
of 34 available index SNPs were directionally consist-
ent (Supplemental Table 7; p,,, = 4.76 x 107%). At
MAP2KS5, we did observe evidence of heterogeneity
across the Asian descent studies at one nominally signifi-
cant SNP (rs182297248) (Supplemental Fig. 3). Exclud-
ing the Hawaiian sample from the MEC (n = 2586) did
diminish the effect heterogeneity and decreased the p
value, but not enough to become Bonferroni significant
(Supplemental Table 7). When we included the Hawai-
ian samples from the MEC, we were able to generalize to
Asian descent adults at eight BMI loci, including loci that
were previously generalized to African descent individu-
als (POCS5, TFAP2B, and BDNF-AS1/BDNF), Hispanic/
Latinos (MTCH?2), or both racial/ethnic groups (GNPDA2,
TCF7L2, FTO, and MC4R) (Table 3). The lead SNP at
MC4R was the index SNP from GWAS of European/trans-
ethnic populations (Pei et al. 2014; Speliotes et al. 2010).
In addition, we replicated three loci (CDKALI, KCNQI,
and GIPR) that were previously described in only Asian
populations using lead SNPs that were in strong LD
(r* > 0.8) with the previously reported index SNPs (Wen
et al. 2012, 2014), or were the Asian index SNP itself
(Okada et al. 2012; Wen et al. 2012, 2014). In summary, a
total of 11 BMI loci replicated or generalized to our sam-
ple of Asian Americans. We noted that MTCH2 and MC4R
were no longer Bonferroni significant when we excluded
the Hawaiian samples from the MEC in our exploratory
analyses (Supplemental Table 7). Thus, we carried forward
the full Asian American sample in our trans-ethnic meta-
analyses, below.

In the European descent sample (n = 17,859), 30 of
35 available index SNPs were directionally consistent
Py = 945 x 107%). We observed no significant het-
erogeneity across studies at either the index or lead SNPs
(Supplemental Table 8). In addition, we replicated associa-
tions at nine BMI loci, including five loci that previously
had not been associated with any other racial/ethnic group
(NEGRI1, LINGO2, PRKD1, KCNJ2, and KCTDI5).

Finally, in the small sample of 535 American Indian/
Alaskan Native women 22 of 35 available BMI index,
SNPs were directionally consistent (Supplemental Table 9;
Poin = 4.30 x 107%). We were able to generalize the lead
SNP (rs73012297) at SLC22A3 to American Indian/Alas-
kan Native women, at a different lead SNP than had gen-
eralized to African descent individuals (rs116859471, in
ARIC 7* < 0.01 with top American Indian/Alaskan Native
SNP).

@ Springer

Trans-ethnic meta-analyses to narrow the putative
interval

Across the ancestries carried forward to trans-ethnic
analyses (African, Hispanic/Latino, Asian and European
descent), we saw greater variability in risk allele frequen-
cies than effect sizes at index BMI SNPs of the densely-
genotyped BMI regions on the MetaboChip (Fig. 1).
Trans-ethnic fixed-effect meta-analysis in up to 101,979
individuals generalized 29 of 36 BMI loci (Table 4). Most
of these loci were already replicated/generalized to at least
one racial/ethnic group (Fig. 2).

The Bayesian trans-ethnic meta-analysis did not reveal
additional loci strongly associated with BMI, as defined as
log10 Bayes factor >5 (Table 4). However, after account-
ing for ancestral heterogeneity, 22 loci had strong evidence
in favor of association and only three of these were noted
to have a different lead SNP than seen in the fixed-effect
analysis. For example, at BRE, the Bayesian approach
resulted in a top/index SNP, which had significant hetero-
geneity across the African descent studies (Table 1) and
across the racial/ethnic groups (Table 4). Whereas, the
fixed-effect meta-analysis resulted in a lead SNP that was
located ~300 kb towards FOSL2 (Supplemental Fig. 4).
The other two loci (IGF2BP2, GIPR) with top significant
SNPs that differed between the two trans-ethnic approaches
appeared to be capturing the same signal across the range
of LD (e.g., African-to-European descent) represented in
our trans-ethnic meta-analysis.

Using the physical location of the top fixed-effect racial/
ethnic-specific results, we compared our results to the base
pair range defined by the bounds of each MetaboChip
densely-genotyped region (Supplemental Table 1) and cal-
culated a percentage reduction of our putative interval of
interest (Table 5). Across the 29 loci with significant trans-
ethnic fixed-effect estimates, the reduction in base pairs and
percentage narrowed ranged from 14,099 (37% of region)
to 930,200 (72%).

Then using a Bayesian approach to account for ances-
tral heterogeneity, we used the physical bounds of the
99% credible set to reduce the putative interval by 52,690
base pairs (bp) at ETV5 (46% of region) to 764,979 bp at
CDKALI (96% of region; Table 5). Figures 3, 4 illustrate
the trans-ethnic fixed-effect estimates of 12 loci, where the
Bayesian approach narrowed the putative interval to <12
SNPs. The remaining 24 fine-mapped regions are plotted in
the Supplement (Supplemental Figs. 4-7). At three of these
loci (SEC16B, TFAP2B, and MC4R), the 99% credible set
reduced the interval of interest by between from 182,749 to
566,266 bp to a single SNP (Fig. 3).
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Lead Fixed Effect SNPs Across Racial Ethnic Groups
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Fig. 1 Comparison of the statistical significance (—logl0 of the p
value), effect size (% change in BMI per risk allele), and coded allele
frequencies (oriented to the risk allele in the trans-ethnic meta-analy-
sis) across African, Hispanic/Latino, Asian, and European ancestries

Established and novel secondary signals at known loci

We first performed conditional analyses of the trans-ethnic
fixed-effect estimates in the 36 densely-genotyped BMI
loci after adjusting for the top trans-ethnic fixed-effect
SNP. Then, we entered these potential independent sig-
nals and index SNPs outside of the densely-mapped BMI
regions into an approximate joint analysis, keeping only
the significant associations in the final joint model. As
previously noted in European descent populations (Locke
et al. 2015), we observed that the SBK1 association (index
SNP 152650492, p, = 3.5 x 107%) was dependent on our
lead trans-ethnic SNP at ATP2A1 (rs8061590) and the
presence of Bonferroni-significant secondary signals at
BDNF-ASI and MC4R (Table 6) in weak LD with our top

@ Springer

for the lead SNPs (position noted for build 36) within the 36 densely-
genotyped BMI regions on the MetaboChip with either locus-specific
Bonferroni-significant associations (rsid in black) or non-significant
(rsid in gray)

trans-ethnic findings (+* < 0.3). Interestingly, we noted that
152331841 at MC4R, originally reported in Asian popula-
tions (Okada et al. 2012), was also nominally independ-
ent of our top finding in the region (p, = 4.10 x 1072). In
addition, we confirmed the observation that our associa-
tion signal located between GPRC5B and GPRI39 (lead
SNP, rs67501351; joint p, p; = 7.70 x 107'%) was inde-
pendent of the signal at GP2 (index SNP, rs11074446;
pj=1.69 x 107).

We also noted a secondary signal at F7TO in our trans-
ethnic sample with BMI in joint analyses (Table 6), which
was in moderate LD in our trans-ethnic sample with our
lead SNP (#2 = 0.41). We also observed evidence for 6
additional novel secondary signals at LYPLALI, COBLLI,
IRS1, SLC39A8, TFAP2B, and STK33/TRIM66 (Table 6).
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GIPR*
BRAP

CADM2

Fig. 2 Venn diagram of overlap in significant lead SNP findings at
each of 36 densely-genotyped BMI loci across the racial/ethnic popu-
lations [African (AfA), Hispanic/Latino (HA), Asian (AsA), Euro-
pean (EA), American Indian/Alaskan Native descent (NA, in paren-
theses)] and in the trans-ethnic fixed-effect meta-analysis of African,
Hispanic/Latino, Asian, and European descent adults (noted with
asterisk)

Incidentally, most of the 99% credible intervals for the nine
loci with evidence of secondary signals not well refined and
included >15 SNPs (Table 5); however, TFAP2B and FTO
had 99% credible intervals that included 1-6 SNPs (Figs. 1,
2). Collectively 10 of 18 SNPs representing multiple sig-
nals (6 for primary and 4 for secondary signals) within 9
densely-genotyped regions varied in risk allele frequencies
by more than 20% across the racial/ethnic groups (Supple-
mental Fig. 8).

Interestingly, the top/index SNP at BRE was significant
in the single-variant model, but was not significant in the
joint model of the most significant SNPs representing each
signal, which included a variant >3 Mb upstream at ADCY3
(rs10182181, p; = 2.42 x 107'%). Conditional analyses
adjusting for rs10182181 at ADCY3 confirmed that the
top fixed-effect and Bayesian SNPs in the region were
no longer Bonferroni significant (p, = 2.02 x 107 and
9.94 x 1073, respectively), suggesting that this association
may in part be related to long-range LD patterns.

We also conducted a trans-ethnic exact conditional sen-
sitivity analysis of African, Hispanic, Asian and European
descent populations in a subset of densely-genotyped BMI
loci, which had evidence of two independent signals in the
conditional and joint GCTA analyses. At three of the six
loci included in the sensitivity analysis, we noted Bonfer-
roni-significant evidence for secondary signals (COBLLI,
BDNF-AS1/BDNF, and MC4R; p, oot < 95 x 107°) and
at three loci, nominally significant evidence for secondary

@ Springer

signals (LYPLALI, SLC39A8, TFAP2B; 4.5 x 1070 < Pe
eact < 1.4 x 107% Supplemental Table 10). In addition,
we ran a race/ethnic group-stratified approximate condi-
tional analysis. Although this approach had greater miss-
ingness in the meta-analyzed trans-ethnic results, it did
confirm the Bonferroni significant exact conditional find-
ings at COBLLI, BDNF-AS1/BDNF, and MC4R, and also
yielded significant evidence of a secondary signal at /RS].
Although all secondary signals were supported at nomi-
nally significance by all methods, Bonferroni significance
was only seen at LYPLALI, SLC39A8, TFAP2B, STK33/
TRIMG66, and FTO in the approximate conditional (Supple-
mental Table 10) and joint analyses (Table 6) using a mixed
reference population.

Discussion

Trans-ethnic fine-mapping has been called for as an
important next step in describing the genetic architecture
of BMI (Locke et al. 2015). This work expands on previ-
ous fine-mapping efforts conducted by the PAGE Study,
which generalized 8 of 21 then known BMI loci to Afri-
can American individuals (Gong et al. 2013), by includ-
ing several under-studied populations in genetic epidemi-
ology (Bustamante et al. 2011) with distinct burdens of
obesity (Flegal et al. 2012; Oza-Frank et al. 2009). We
also incorporate BMI index SNPs from African, Asian,
and trans-ethnic GWAS (Monda et al. 2013; Okada et al.
2012; Pei et al. 2014; Wen et al. 2012, 2014), and har-
ness the dense genotypes at 36 BMI loci in a trans-ethnic
sample to generalize, or fine-map, more than a third of
currently known BMI loci to diverse populations.

The trans-ethnic meta-analyses are better powered than
racial/ethnic-specific analyses (Supplemental Fig. 1) for
genetic loci that are shared across ancestral groups (Wang
et al. 2013). We find that nearly, a quarter of the previ-
ously described BMI index SNPs and even more (81%) of
the densely-genotyped BMI loci available on the Metabo-
Chip met our definition for generalization in a trans-ethnic
sample of 101,979 adults. These results help demonstrate
the transferability of common genetic loci to diverse pop-
ulations and how effect dilution can be avoided using fine-
mapping techniques (Carlson et al. 2013).

However, some of the BMI loci assessed in this study
(7 of 36) were not significant in our trans-ethnic fixed-
effect meta-analysis. Three of these loci replicated
in European Americans only (NEGRI, PRKDI, and
KCNJ2). One locus (SLC22A3) generalized to individuals
of African and American Indian/Alaskan Native descent.
Two more loci were significant in at least one subgroup,
but the risk alleles were directionally inconsistent at the
index SNPs and the lead trans-ethnic SNPs in the regions
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Table 5 continued
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(Bp37)

Bp37

(Bp37)

100

367,489

0

38,223
21,988

1
70
3

57,829,135

16567160
rs368794

57,829,135

156567160
rs368794

80
37

293,976
14,099
73,189

73,513
24,124
197,022

MC4R

34,320,452
46,180,184

34,320,452
46,181,392

KCTDI5

92

rs11672660

rs1800437

27

GIPR*

248,223

Bp37 base pair Build 37, Chr chromosome, FE fixed-effect, MANTRA Meta-ANalysis of Trans-Ethnic Association studies, SNPs single nucleotide polymorphisms

* Starred genes represent fine-mapped loci, which were associated with BMI after the design of the Metabochip in 2009

** Genome-wide significant findings under review (Gong et al., under review at Nature Comm)

were in weak LD in WHI European women (KCNJ11 and
BRAPITRAFDI, r* < 0.01; Supplemental Tables 6 and 7),
suggesting that there may be distinct ancestral haplotypes
at these loci. Our results are consistent with the hypoth-
esis that the majority of common genetic loci for com-
plex traits like BMI will generalize to diverse populations
given sufficient statistical power (a function of allele fre-
quency, effect size and sample size, etc.) (Carlson et al.
2013), and the importance of considering directional con-
sistency and LD when multiple underlying causal vari-
ants may be present across populations.

At six loci (e.g., SECI6B, IRSI, SLC39A8, FAIM?2,
TCF7L2, and MC4R), we noted the same lead SNP using
a Bayesian trans-ethnic fine-mapping approach (Morris
2011) as previously reported in European descent indi-
viduals using an approximate Bayesian fine-mapping
approach (Locke et al. 2015; Wakefield 2007). Of note,
the lead SNP at one of these loci, SLC39A8, was a non-
synonymous SNP that was conserved across species
(Supplemental Table 11). We were also able to narrow the
putative regions of interest (in base pairs) at 9 of the 20
loci assessed either at least as well or better than in previ-
ous studies (SECI16B, TMEM1S8, IRS1, TFAP2B, NT5C2,
TCF7L2, BDNF-AS1/BDNF, MC4R, and GIPR).

The assumption of one underlying signal appeared to
hold for five of these fine-mapped loci (e.g., SECI6B,
TMEMI8, NT5C2, TCF7L2, and GIPR), which gives us
further confidence to interpret the credible intervals of these
five loci as representing the interval where there is a 99%
probability of capturing the underlying functional variant.
Among these loci, there were several interesting functional
consequences (Supplemental Table 11) of our lead SNPs.
For example, the lead/index SNP, 8.8 kb 3’ of SECI6B and
3.6 kb 3/ of RP4-798P15.2, was the only SNP in our Bayes-
ian 99% credible set and was conserved across species and
from histone modification assessment was predicted to be
an enhancer in muscle tissue (rs543874). The lead SNP
(rs6731872), 43 kb 3’ of TMEM 18, was predicted to change
BCL and TR4 motifs, and was identified as an eQTL for
C100rf32-AS3MT. The lead/index SNP within TCF7L2
(rs7903146) was found to be a promoter in pancreas; an
enhancer in fat, muscle, and five other tissues; and changed
several binding motifs. Interestingly, a non-synonymous
lead SNP at GIPR (rs1800437) lies within a CMYC bind-
ing motif, and was predicted to be an enhancer, promoter,
and an eQTL with FBX046/VASP in whole blood; a DNAse
sensitive region in several tissues including fat, muscle, and
pancreas; and found to change a CTCF binding motif.

Due to allelic diversity of our sample, we were able to
describe secondary signals for BMI at nine loci, seven of
which for the first time with BMI (LYPLALI, COBLLI,
IRS1, SLC39A8, TRAP2B, STK33/TRIM66, and FTO).
SNPs representing four of these seven new BMI secondary
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signals had larger risk-allele frequencies (>20%) across
the African, Hispanic/Latino, Asian, and European ances-
tries of our trans-ethnic sample (Supplemental Fig. 8), fur-
ther indicating the potential for remarkable variability in
the frequency of underlying causal variants at established
BMI loci across diverse populations. A sensitivity analy-
sis comparing exact and approximate conditional p values
supported our approximate conditional findings at nomi-
nal significance, or in the case of COBLLI, IRS1, BDNF-
AS1/BDNF, and MC4R, at Bonferroni significance.

Using our approximate conditional approach, we rep-
licated previously-reported independent BMI signals at
BDNF-AS1/BDNF, MC4R, and GPRC5B/GP2 (Locke et al.
2015). Both the independent lead SNPs for the BDNF-ASI
(rs1519480) and BDNF (rs190666912) signals were con-
served across species, predicted to be enhancer in brain and
other tissues, and lied in DNAse sensitive regions (Sup-
plemental Table 11). The primary signal (rs1519480) was
intronic to BDNF-ASI and an eQTL for BDNF antisense
RNA, which binds to GATA2 and YY1. The SNP for the
primary signal (rs6567160, located 209 kb 3’ of MC4R and
1.7 kb 5’ of U4, a small nucleor RNA) was both conserved
across species and in a DNAse sensitive region in mus-
cle. In contrast, the SNP representing the secondary signal
(rs77901086) was 44 kb 5’ of MC4R and was in high LD
(* > 0.8 in 1000 Genomes AFR) with a highly conserved
non-synonymous SNP (1s2229616) 44 kb upstream within
MC4R, which alters a GATA binding motif and has histone
marks consistent with being a promoter and enhancer in
brain. However, only rs6567160 remained in our 99% cred-
ible set.

Moreover, our observation of novel secondary signals is
supported in the literature at three loci. First, with waist-hip
ratio, COBLLI has been described to have as many as five
independent signals (Shungin et al. 2015). Interestingly,
we observe stronger LD patterns between our primary
BMI signal (rs10184004) and their primary—quaternary
waist—hip ratio signals (#* = 0.30-0.97 in 1000 Genomes
pilot CEU), and stronger LD between our secondary sig-
nal (rs17244444) and their quinary signal (P = 0.44).
Whereas the SNP representing the primary signal at 1.7 kb
3’ of COBLLI (rs10184004) alters several binding sites
including Nrf-2 and Maf for MAFK, is DNAase sensitive
in skin, and is an eQTL with SLC38A11 in muscle, the
SNP for the secondary signal (rs17244444) was intronic to
COBLLI and also alters a Nrf-2 binding site (Supplemen-
tal Table 11). Second, we have previously noted a possible
secondary signal at TRAP2B in the Hispanic/Latino women
from WHI (Graff et al. 2013). The SNPs representing two
signals at the TFAP2B region were located on either side
of this gene and predicted to modify several binding motifs
including TATA and GAGA (rs2744475, rs2397016), but
only rs2744475 was retained in our 99% credible set.

Third, even though previous studies of BMI have not
previously observed strong evidence for an F7O second-
ary signals (Akiyama et al. 2014; Gong et al. 2013; Locke
et al. 2015; Peters et al. 2013; Yang et al. 2012), one study
of Type 2 Diabetes has noted a secondary signal at FTO
in European descent individuals (Maller et al. 2012).
The independent signals seen in our study (rs3751812;
9936385, which is » = 1.0 with rs9939609 in 1000
Genomes YRI pilot) lie in two distinct clusters of SNPs that
define two African ancestral haplotypes (Akiyama et al.
2014). Both our FTO signals (rs3751812, rs9936385) lie
within the physical bounds of the putative interval of inter-
est from our earlier PAGE fine-mapping work with African
Americans only (Peters et al. 2013). Finally, both signals at
FTO were intronic and predicted to be enhancers in muscle
as well as either fat or brain and DNAse sensitive in brain
and several other tissues (rs3751812, rs9936385; Supple-
mental Table 11). The SNP representing the primary sig-
nal at FTO (rs3751812) was conserved across species, but
interestingly, the SNP for the secondary signal (rs9936385)
was associated with Type 2 Diabetes in a trans-ethnic sam-
ple (Mahajan et al. 2014).

At four loci with novel multiple signals for BMI and
no president in the literature, we noted interesting func-
tional consequences of the implicated SNPs (Supple-
mental Table 11). For example, both independent SNPs
(rs2820436, 254 kb 3’ of LYPLALI; and rs4445477, 287 kb
5" of RNUSF) were predicted to be enhancers in fat and
a number of other tissues, as well as modify motifs of a
number of binding factors. At the /RS locus, both SNPs
(rs2176040, rs2673147) were both located between
AC068138.1 (>40 kb 5') and IRS1 (>400 kb 3’), predicted
to alter binding motifs and be eQTLs with /RS and RP11-
395N3.2 in adipose tissue, but only the SNP for the second-
ary signal (rs2673147) was predicted to be an enhancer in
brain tissue. In contrast to the non-synonymous SNP for the
primary signal at SLC39A8 (rs13107325), the secondary
signal (rs28392891) was located 38 kb 3’ of SLC39A8 and
predicted to alter a number of binding motifs. The SNPs
representing the region’s secondary signal (rs76633799) at
STK33 and the primary signals (rs76876925) at TRIM66
were predicted to change several binding motifs including
HDAC?2 sites. The variant at STK33 (rs76633799) was also
conserved across species and an enhancer in fat and skin.
Yet a key limitation of this work is that independent effect
estimation and replication using exact conditional meth-
ods are needed to accurately pinpoint the exact underly-
ing genetic variants and describe the variance explained by
them in similarly diverse populations.

Although our study does allow for interesting insights
on the genetic architecture of BMI across diverse samples,
several additional limitations should be noted. First, fine-
mapping resolutions depend on many factors, such as the
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Fig. 4 Regional plots of trans-ethnic fixed-effect estimates (I, index
SNPs in black; FE, top finding) and Bayesian fine-mapping of six sig-
nificant BMI loci to select the SNP with the highest posterior prob-
ability (M, shown in purple and reference for trans-ethnic linkage dis-
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equilibrium) and narrow the putative interval of interest to 4—12 SNPs
(SNPs in 99% credible interval shown in diamonds) in a sample of up
to 101,979 individuals
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extent of LD within the locus, allele frequencies, and sam-
ple sizes of populations. Therefore, not surprisingly in this
study, the narrowing of the interval in trans-ethnic meta-
analyses varied from one locus to another (Table 5). Sec-
ond, to relax the strong assumption of fixed genetic effects
in all of the racial/ethnic groups, we have also performed
a trans-ethnic Bayesian analysis to apply empirical esti-
mates of the mean allele frequency differences, appropri-
ately cluster the racial/ethnic groups and construct credible
intervals of confidence that the causal SNP lies within its
bounds. Yet, the relative improvement in fine-mapping res-
olution offered by this Bayesian trans-ethnic meta-analysis
related to the ancestral heterogeneity at a given locus, the
extent to which the estimated allele frequency differences
across populations captured this heterogeneity, the number
of independent signals, and their allele frequencies, and it
comes at the cost of assuming one underlying signals. Even
though approximate conditional and joint analyses helped
us rule out the presence of statistically significant second-
ary signals at 27 densely-genotyped loci, future methodo-
logic work should describe the impact of multiple signals
on trans-ethnic fine-mapping techniques.

This study represents another step towards prioritizing
candidates for future etiologic study and targeted func-
tional follow-up. The genetic architecture of a complex trait
like BMI and disparities in obesity emphasize the need for
future obesity interventions to consider both determinants
of individual and population-level variation. This study
expands our understanding of allele frequency heterogene-
ity in the genetic architecture of BMI while emphasizing
the importance of diverse ancestral populations and high-
dimensional genetic data in the fine-mapping of complex
traits.
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