
RESEARCH ARTICLE

Rare variants in fox-1 homolog A (RBFOX1) are

associated with lower blood pressure

Karen Y. He1, Heming Wang1, Brian E. Cade2,3, Priyanka Nandakumar4, Ayush Giri5, Erin

B. Ware6,7, Jeffrey Haessler8, Jingjing Liang1, Jennifer A. Smith7, Nora Franceschini9, Thu

H. Le10, Charles Kooperberg8, Todd L. Edwards5, Sharon L. R. Kardia7, Xihong Lin11,

Aravinda Chakravarti4, Susan Redline2,3,12, Xiaofeng Zhu1*

1 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United

States of America, 2 Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston,

Massachusetts, United States of America, 3 Division of Sleep Medicine, Harvard Medical School, Boston,

Massachusetts, United States of America, 4 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins

University School of Medicine, Baltimore, Maryland, United States of America, 5 Division of Epidemiology,

Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt

University, Nashville, Tennessee, United States of America, 6 Biosocial Methods Collaborative, Institute for

Social Research, University of Michigan, Ann Arbor, Michigan, United States of America, 7 Department of

Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of

America, 8 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle,

Washington, United States of America, 9 Department of Epidemiology, UNC Gillings School of Global Public

Health, Chapel Hill, North Carolina, United States of America, 10 Department of Medicine, Division of

Nephrology, University of Virginia, Charlottesville, Virginia, United States of America, 11 Department of

Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America,

12 Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston,

Massachusetts, United States of America

* xiaofeng.zhu@case.edu

Abstract

Many large genome-wide association studies (GWAS) have identified common blood pres-

sure (BP) variants. However, most of the identified BP variants do not overlap with the link-

age evidence observed from family studies. We thus hypothesize that multiple rare variants

contribute to the observed linkage evidence. We performed linkage analysis using 517 indi-

viduals in 130 European families from the Cleveland Family Study (CFS) who have been

genotyped on the Illumina OmniExpress Exome array. The largest linkage peak was

observed on chromosome 16p13 (MLOD = 2.81) for systolic blood pressure (SBP). Follow-

up conditional linkage and association analyses in the linkage region identified multiple rare,

coding variants in RBFOX1 associated with reduced SBP. In a 17-member CFS family, car-

riers of the missense variant rs149974858 are normotensive despite being obese (average

BMI = 60 kg/m2). Gene-based association test of rare variants using SKAT-O showed signif-

icant association with SBP (p-value = 0.00403) and DBP (p-value = 0.0258) in the CFS par-

ticipants and the association was replicated in large independent replication studies (N =

57,234, p-value = 0.013 for SBP, 0.0023 for PP). RBFOX1 is expressed in brain tissues, the

atrial appendage and left ventricle in the heart, and in skeletal muscle tissues, organs/tis-

sues which are potentially related to blood pressure. Our study showed that associations of

rare variants could be efficiently detected using family information.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006678 March 27, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: He KY, Wang H, Cade BE, Nandakumar P,

Giri A, Ware EB, et al. (2017) Rare variants in fox-1

homolog A (RBFOX1) are associated with lower

blood pressure. PLoS Genet 13(3): e1006678.

https://doi.org/10.1371/journal.pgen.1006678

Editor: Wei Chen, University of Pittsburgh, UNITED

STATES

Received: October 10, 2016

Accepted: March 9, 2017

Published: March 27, 2017

Copyright: © 2017 He et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: CFS data are

available at the International Sleep Genetic

Epidemiology Consortium (ISGEC) (http://

sleepgenetics.org/downloads/). The summary

statistics of replication data and all other data are

within the paper and its Supporting Information

files.

Funding: This work was supported by grants

HG003054 from the National Human Genome

Research Institute (to XZ), HL113338 (to SR, XL),

HL098433 (to SR), HL46380 (to SR), HL007567

(to XZ), HL086694 (to AC), HL123677 (to NF) from

https://doi.org/10.1371/journal.pgen.1006678
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006678&domain=pdf&date_stamp=2017-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006678&domain=pdf&date_stamp=2017-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006678&domain=pdf&date_stamp=2017-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006678&domain=pdf&date_stamp=2017-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006678&domain=pdf&date_stamp=2017-04-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006678&domain=pdf&date_stamp=2017-04-10
https://doi.org/10.1371/journal.pgen.1006678
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://sleepgenetics.org/downloads/
http://sleepgenetics.org/downloads/


Author summary

Hypertension is a risk factor for cardiovascular disease and the most important risk factor

for stroke. Family studies suggest that hypertension related traits are heritable. Previous

genome-wide association studies (GWAS) have identified multiple common blood pres-

sure (BP) variants but these variants do not overlap with the linkage evidence observed

from family studies. Rare variants have been suggested to play a substantial role and con-

tribute to missing heritability of BP. In this study, linkage analysis identified 16p13 linked

to SBP in a cohort of 517 white individuals in 130 families from the Cleveland Family

Study (CFS). By combining linkage and association analyses, we searched for rare, coding

variants that can explain the linkage evidence. Rare, coding variants within RBFOX1 were

associated with lower systolic (p-value = 0.00403) and diastolic (p-value = 0.0258) blood

pressures, and explained significant amount of observed linkage evidence. We replicated

the identified variants in four independent cohorts (with total sample size N = 57, 234)

and further observed consistent evidence that rare RBFOX1 variants are protectively asso-

ciated with blood pressure traits. Our study clearly shows that family-based designs are

powerful for identifying rare, coding variants underlying complex diseases.

Introduction

High blood pressure (BP) is a common condition associated with multiple health outcomes,

including heart, brain, and kidney diseases [1, 2]. Previous studies have shown that BP is a

genetically determined trait with estimated heritability of 30% to 60% [3, 4]. Multiple large

genome-wide association studies (GWAS) meta-analysis and admixture mapping studies have

identified over 190 genetic variants that explained only a small variation in BP [5–21].

For complex traits such as BP, rare variants are suggested to play a greater role in heritabil-

ity than anticipated in the common disease-common variant hypothesis [22]. A Framingham

Heart Study reported rare mutations in three renal salt handling genes causing large reduc-

tions in blood pressure and estimated that the overall prevalence of hypertension is reduced by

about 1% because of the effects [23]. Linkage studies of family data can be used to uncover

missing heritability and identify genetic markers linked to BP [24, 25]. However, the identified

linkage regions from well-designed linkage studies such as the US Family Blood Pressure

Program (FBPP) and the UK Medical Research Council British Genetics of Hypertension

(BRIGHT) study [26–29] do not overlap with many BP loci identified by large BP GWAS of

mostly unrelated individuals. In general, GWAS have good power to detect common variants

of modest effect with attainable sample sizes, but less power for detecting rare variants with

intermediate effect. In contrast, linkage analysis can have good power to detect multiple rare

or lower frequency BP variants in a gene or region with relatively larger effect sizes [25]. Thus,

we hypothesize that a linkage region observed in a family study, if not overlapping with the BP

loci in reported GWAS, may harbor multiple rare or lower frequency BP variants.

Recently, many statistical approaches for rare variant association analyses have been devel-

oped for unrelated samples [30–34] and family data [35–38]. It has been suggested that rare or

lower frequency variants can be enriched in families [35, 37], and therefore improving the sta-

tistical power for their identification. However, the existing rare variant association methods

have not incorporated linkage evidence. In this study, we performed variance-component

linkage analysis with BP traits, including systolic blood pressure (SBP), diastolic blood pressure

(DBP), and pulse pressure (PP) in the Cleveland Family Study (CFS). We searched the pub-

lished GWAS to examine whether there are reported BP variants in the linkage regions. Using
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the combined linkage and association analyses, we searched for potential functional variants

that can explain linkage evidence and replicated the variants in independent cohorts.

Results

Table 1 presents the characteristics of white participants in the CFS data. S1 Fig presents the

distributions of the residuals of SBP, DBP, and PP, which are all approximately normally dis-

tributed. Linkage analysis identified a peak (LOD = 2.81) on chromosome 16p13 linked to SBP

(S2 Fig, Materials and Methods). Linkage analysis of further pruned markers using a R2 thresh-

old of 0.1 or modeling marker-marker linkage disequilibrium resulted in a slight decrease of

LOD score in the same region (LOD = 2.30–2.42, S3 Fig). We selected a candidate region of

20cM with 2-LOD score drop for association analysis (Fig 1). This region did not overlap with

published GWAS of BP variants. Therefore, we tested the hypothesis that the observed linkage

evidence for SBP is due to the presence of multiple rare, coding variants in a gene(s) within the

region.

The CFS was genotyped by an exome array, with most of the variants being coding variants.

Within the linkage region, there are 454 exonic variants defined by the Cohorts for Heart and

Aging Research in Genomic Epidemiology (CHARGE) consortium that are genotyped on the

exome array [39]. We identified 13 exonic variants (S1 Table) that satisfy the following filtering

criteria: 1) either have a SBP association p-value� 0.1 or absolute regression coefficient

beta� 5; and 2) present at least twice in at least one family with a family-specific LOD

score� 0.1. A risk score based on the 13 identified SNPs has an effect size of 0.948 ± 0.135 for

association with SBP in CFS. After adding this risk score as a covariate in linkage analysis,

the MLOD score dropped from 2.809 to 1.055, suggesting that these 13 variants were able to

account for most of the observed linkage evidence. To further assess the significance of this

LOD drop, we sampled 1,000 independent SNPs from chromosomes other than chromosome

16. Hence, these SNPs should not contribute to the LOD score observed on chromosome 16.

We performed linkage analysis with each of these 1,000 SNPs as a covariate in the linkage anal-

ysis. We calculated the differences between the original MLOD score and the MLOD scores of

the 1,000 linkage analyses with a SNP as a covariate. The largest LOD score drop in these 1,000

linkage analyses was 0.347, suggesting the observed LOD score drop on the risk scores of 13

selected variants is statistically significant (p-value<0.001). Among these 13 exonic variants,

two variants (rs149974858 and rs145873257) are present in RBFOX1 and the remaining 11

variants are each in separate genes. When adjusting for the risk scores of rs149974858 and

Table 1. Characteristics of white participants in the Cleveland Family Study.

Mean ± SD or N (%)

Individuals 517

Families 130

Male 236 (45.6%)

Age (years) 46.9 ± 16.6

BMI (kg/m2) 31.8 ± 8.55

SBP (mm Hg) 123.7 ± 15.2

SBP (medication adjusted) 125.3 ± 16.6

DBP (mm Hg) 73.4 ± 9.70

DBP (medication adjusted) 74.5 ± 10.6

PP (mm Hg) 50.3 ± 12.2

PP (medication adjusted) 50.8 ± 12.5

https://doi.org/10.1371/journal.pgen.1006678.t001
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rs145873257, we also observed a drop in LOD score (LOD = 1.97), which suggests that

rs149974858 and rs145873257 account for a portion of the observed linkage evidence.

The variant rs149974858 shows association evidence with SBP (p-value = 0.0016) in CFS.

The minor allele frequency of rs149974858 is 0.0036 and only segregates within a 17-member

Fig 1. Linkage region on chromosome 16 of white participants in CFS. Linkage peak on chromosome 16 for SBP. The linkage curves are plotted with

(red curve) and without (blue curve) adjusting for the risk score defined by the 13 coding variants as a covariate. The positions of the 13 coding variants are

listed under the linkage peak and above the genes.

https://doi.org/10.1371/journal.pgen.1006678.g001
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family with family-specific LOD of 0.697 (Fig 2). This missense variant (c.112C>G) results in

a proline to alanine substitution (p.Pro38Ala). Five members from this family carrying this

rare missense mutation had on average lower SBP (carrier average = 117 mmHg, noncarrier

average = 125 mmHg) but higher BMI than other family members (carrier average = 60 kg/

m2, noncarrier average = 31 kg/m2). A single SNP association test revealed that rs149974858 is

also significantly associated with BMI in CFS (beta = -26.8±4.35, asymptotic p-value = 7.28E-

10). The exonic variant rs145873257 segregates within a different family with family-specific

LOD score of 0.215. A c.1072G>A base change resulted in a glycine to serine substitution (p.

Gly358Ser). Six members of this family are heterozygous for the AT genotype. The estimated

effect of this variant is protective in CFS, although it is not statistically significant (S1 Table).

Since both variants rs149974858 and rs148751394 consistently show a protective effect in

two large families, we examined the other coding and rare variants in RBFOX1 genotyped on

the exome array. Two exonic variants, rs151214012 and rs145873257, and one rare, intronic

variant rs2345080 are available in the exome array. These three variants show protective effect

despite not satisfying the filtering criteria (S2 Table). Single SNP associations and annotations

for all exome array variants of RBFOX1 are provided in the S3 Table. Applying either the fam-

ily-based burden or SKAT analysis, these five variants are significantly associated with SBP

and DBP (Table 2).

We next sought the replication of the rare variants in RBFOX1 in four large independent

cohorts (ARIC, WHI, BioUV, and HRS) of whites for the traits SBP, DBP and PP. We specifi-

cally looked at the five rare variants of RBFOX1 found in CFS and their associations with BP

traits. Within the ARIC data, 4 of the 5 variants were present and all the 4 variants showed

a consistent protective effect. For WHI, all 5 variants were present but only 1 variant

(rs145873257) had a protective effect size. BioUV contained 4 out of 5 variants found in CFS; 2

variants were protective for SBP and 3 variants were protective for DBP. HRS contained all 5

variants found in CFS; 4 variants were protective for SBP and 3 variants were protective for

DBP. Among the total 23 tests (CFS: 5, ARIC: 4, BioUV: 4, WHI: 5, HRS: 5) conducted across

all cohorts, 16 of them were protective (p-value = 0.0173 based on binomial distribution), sug-

gesting a consistent protective effect.

We next conducted a gene-based association analyses for RBFOX1 and BP traits using

exome array data from the CFS with weights Beta (1, 25). Burden, SKAT, and SKAT-O tests

were performed using the 5 rare variants of RBFOX1 found in CFS (Table 2). In CFS, the

association between RBFOX1 and SBP was found to be significant by the burden test (p-

value = 0.00214) and SKAT-O (p-value = 0.00403), but not by SKAT (p-value = 0.0702). All

three gene-based tests for DBP were statistically significant (burden test p-value = 0.0148,

SKAT p-value = 0.0494, SKAT-O p-value = 0.0258). When we conducted gene-based analyses

using only the 4 coding variants (rs149974858, rs148751394, rs151214012, rs145873257) iden-

tified in CFS, the associations are also significant for SBP and DBP (p-value<0.037).

The same gene-based analysis for rare variants was done for all four replication cohorts sep-

arately and the results were meta-analyzed (Table 2). Individually, the ARIC cohort had signif-

icant gene-based associations for SBP (burden test p-value = 0.00572, SKAT p-value = 0.00259,

SKAT-O p-value = 0.00356) and PP (burden test p-value = 0.00140, SKAT p-value = 0.000273,

SKAT-O p-value = 0.000392). After meta-analyzing the results for ARIC, WHI, BioVU, and

HRS, we found significant associations for SBP (burden test p-value = 0.0172, SKAT p-

value = 0.00635, SKAT-O p-value = 0.0126) and PP (burden test p-value = 0.00377, SKAT p-

value = 0.00266, SKAT-O p-value = 0.00234).

We observed that the variant rs149974858 co-segregated with BMI in the 17-member CFS

family. Subsequently, we performed linkage analysis for BMI in CFS on chromosome 16, after

adjusting for gender, age, age2, and PC1. We did not observe linkage evidence in this region
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Fig 2. The CFS family carrying the protective rare variant rs149974858. A) The variant rs149974858 segregates with BP in a

17-member CFS family. Squares represent males and circles represent females. Half-filled subjects represent the carriers of the rare

variant rs149974858. Grey subjects represent no information. Age of each subject is presented in parenthesis. B) The distribution of

corresponding residuals of SBP, DBP, PP and BMI are presented.

https://doi.org/10.1371/journal.pgen.1006678.g002
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(LOD = 0.721). The gene-based analysis of BMI using the same set of variants was only signifi-

cant in CFS but not in any of the replication cohorts (Table 2).

Discussion

We performed a linkage analysis of BP traits using the families collected in CFS. The largest

linkage peak identified is on 16p13 linked to SBP. The 16p13 region has been reported of link-

age evidence with BP in two studies: the Victorian Family Heart Study [40], the extreme-sib-

pair study in Chinese adults [41]. In addition, the longitudinal change of BP in Mexican Amer-

icans [42], and the Hypertension Genetic Epidemiology Network Study in whites [43] reported

linkage regions partially overlapped with the current study. The reported linkage evidence

from multiple ethnic populations strongly suggests the linkage evidence on 16p13 is real. Link-

age analysis using microsatellite markers was performed with 363 sib-pairs of CFS whites for a

hypertensive status, adjusted for age, age2, sex, BMI, and BMI2. This analysis did not find link-

age evidence in the 16p13 region. This is unsurprising because the power of using a binary

hypertensive status is lower than that of quantitative phenotypes, such as SBP, DBP, or PP. In

addition, hypertensive status was defined as either SBP� 140, DBP� 90, or taking antihyper-

tensive medications and the sample size in the sib-pair analysis was smaller than the current

study, all of which contribute to the lack of linkage evidence observed. Our study demonstrates

that high-density SNP genotyping arrays are informative for detecting linkage signals.

We searched among published large GWAS studies of BP traits [5, 7–10] and did not iden-

tify any BP variants previously reported on 16p13, suggesting that multiple low frequency or

rare variants with relatively large effect sizes are possibly contributing to the observed linkage

evidence. We further assumed that variants with relatively large effect sizes are more likely to

be coding and rare variants. Thus, we limited our search to only the coding and rare variants

under the linkage peak genotyped on the exome array. By examining the associated variants

that are able to account for the observed linkage evidence on 16p13, we were able to identify

Table 2. Results of gene-based analysis in discovery data and replication cohorts.

Methods CFS ARIC WHI BioVU HRS Meta of replication cohorts a

SBP

Rare variants Burden 2.14E-3 5.72 E-3 6.68E-1 3.44E-1 6.95E-2 1.71E-2

SKAT 7.02E-2 2.59E-3 6.71E-1 1.13E-1 1.19E-1 6.35E-3

SKAT-O 4.03E-3 3.56E-3 8.14E-1 1.79E-1 1.15E-1 1.26E-2

DBP

Rare variants Burden 1.48E-2 3.28E-1 4.08E-1 9.44E-1 1.20E-1 3.98E-1

SKAT 4.94E-2 4.61E-1 7.58E-1 3.98E-2 3.01E-1 2.05E-1

SKAT-O 2.58E-2 4.75E-1 5.71E-1 6.42E-2 2.41E-1 2.05E-1

PP

Rare variants Burden 8.13E-2 1.40E-3 2.31E-1 2.52E-1 1.44E-1 3.77E-3

SKAT 1.27E-1 2.73E-4 5.11E-1 4.23E-1 1.27E-1 2.66E-3

SKAT-O 1.28E-1 3.92E-4 3.45E-1 3.80E-1 1.23E-1 2.34E-3

BMI

Rare variants Burden 4.24E-3 4.35E-1 N/A 6.40E-1 7.26E-1 7.84E-1

SKAT 4.28E-4 6.50E-1 N/A 7.80E-1 7.26E-1 9.20E-1

SKAT-O 7.32E-4 6.04E-1 N/A 8.07E-1 5.07E-1 8.34E-1

Number of rare variants 5 8 11 8 11

a Meta-analysis of ARIC, WHI, BioVU, and HRS

https://doi.org/10.1371/journal.pgen.1006678.t002
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13 exonic variants. Among these 13 variants, 2 of them fall in RBFOX1, which encodes for the

ataxin-2 binding protein 1 (also known as A2BP1), and show a consistent protective effect for

SBP in CFS. Gene-based analysis of the four available exonic variants and one rare intronic

variant in RBFOX1 are significantly associated with SBP and DBP (p-value = 0.00403, 0.0258,

respectively) using SKAT-O. Replication analysis of the rare variants at the gene level (but not

at the variant level) is also significant for SBP and PP in the meta-analysis of four large cohorts

of whites with a total replication sample size N = 57,234.

This study also provides evidence that rare variants within RBFOX1 are protective for BP

traits among obese individuals. Among individuals of European ancestry within the CFS, 5

individuals within the same family carried the minor allele for rs149974858, the variant show-

ing significantly protective effect with SBP by single SNP association test. All of the 5 individu-

als are morbidly obese (with average BMI of 60). However, their SBP (mean = 117) and DBP

(mean = 78) are within the normotensive range. Ma et al. conducted a GWAS of BMI in Pima

Indians using Affymetrix 100K array and identified two common variants in RBFOX1 associ-

ated with BMI [44]. The same two variants could be replicated in non-overlapped Pima

Indians but not in French Caucasians, Amish Caucasians, German Caucasians, or Native

Americans [44]. In our analysis, we identified four exonic and one intronic rare variants in

RBFOX1 that are significantly associated with BMI but the association evidence could not be

replicated (Table 2). Therefore, it is inconclusive whether RBFOX1 is an obesity gene. In all

our analysis, either linkage or association analysis, BMI is included as a covariate. Further-

more, no linkage evidence was found for BMI on chromosome 16, after adjusting for gender,

age, age2, and PC1. Our result indicates the RBFOX1 contributes to BP variation independent

of obesity, although we are unclear whether RBFOX1 has a pleiotropic effect on both BP and

obesity.

We also observed that the effect direction of single variant replication analysis in the four

cohorts is not always consistent with that of CFS. However, 16 of the 23 tests were protective

(p-value = 0.017), suggesting a consistent protective effect. Assuming a causal rare variant with

an effect size equal to one quarter of the BP standard deviation, we estimate the probability of

observing an opposite direction in a study to be 40.1%, which is consistent with 7 opposite

directions among 18 single SNP replication tests in 4 replication cohorts.

It is interesting that all the four exonic variants in RBFOX1 are either monomorphic or

extremely rare in African ancestry populations (S4 Table). Furthermore, the BP admixture

mapping analysis by Zhu et al. also suggest local ancestry in this region is associated with SBP

and DBP; however, the evidence is not genome-wide significant [11]. Thus, our result suggests

that the rare exonic variants in RBFOX1 may contribute to a protective effect for hypertension

and further work will be needed to establish whether the lack of these protective variants con-

tribute to the disparity in hypertension occurrence and early age of onset between African

Americans and whites.

To our knowledge, only one GWAS study so far has reported on the association of RBFOX1
variants with blood pressure using human genotyping data. Wang et al. reported an associa-

tion between rs1507023, a candidate SNP in RBFOX1 involved in vitamin D metabolism and

signaling, and SBP, DBP, and PP. Its association with blood pressure was significant before,

but not after correction for multiple testing [45].

Under the linkage region of 16p13, there are 11 additional variants that either have an asso-

ciation test p-value less than 0.1 or an effect size larger than 5 mmHg in CFS. When we used

the risk scores of these 11 variants as a covariate in linkage analysis, the MLOD dropped to

1.932, suggesting that there may be additional variants that contribute to linkage evidence in

this region. However, the current exome array data is limited for further dissection of genes or

variants contributing the linkage evidence. Whole genome sequencing data, including the

RBFOX1 associated with lower blood pressure
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sequencing data from the Trans-Omics for Precision Medicine (TOPMed) Program (https://

www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed), will be

necessary to identify the genes contributing blood pressure variation in this region.

Gene expression data and previous studies have demonstrated that RNA splicing factor

RBFOX1 is important for heart and skeletal muscle development and function [46–48].

RBFOX1 expression has been associated with cardiac hypertrophy and heart failure in mice

models [49]. Gao et al. found that RBFOX1 expression was significantly diminished in both

mouse and human failing hearts [49]. We searched the GTEx database and RBFOX1 is highly

expressed in multiple human brain tissues, atrial appendage and left ventricle of the heart,

as well as muscle skeletal tissues (Fig 3; http://www.gtexportal.org/home/gene/RBFOX1). Fur-

ther biological studies are needed to establish the direct role of RBFOX1 in regulating blood

pressure.

Our study suggests that family-based linkage evidence can be extremely successful in

searching for rare variants contributing to complex traits. In summary, we identified rare,

exonic variants in RBFOX1 that have a protective effect on BP traits, which can be important

in searching new drugs for cardiovascular disease. However, it should be pointed out that asso-

ciation analysis was performed using variants available in the exome array of this study. The

variants identified in RBFOX1 may still be reflecting in LD with the causal variants to BP.

While RBFOX1 is expressed in multiple tissues that may relate to blood pressure, the mecha-

nism underlying how this gene contributes to BP variation needs to be further studied. The

identification of these rare coding variants will facilitate precision medicine in treating cardio-

vascular disease.

Fig 3. Tissue-specific gene expression of RBFOX1 from GTEx database (http://www.gtexportal.org/home/gene/RBFOX1).

https://doi.org/10.1371/journal.pgen.1006678.g003
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Materials and methods

The CFS is a family-based longitudinal study comprised of patients with laboratory-diagnosed

sleep apnea, their family members, and neighborhood control families, as described before

[50]. The data were analyzed anonymously at Case Western Reserve University. The CFS

study was approved by Partners Human Research Committee with the proposal number

2011D001860. The analytical sample includes 517 white participants in 130 families who were

genotyped with the Illumina OmniExpress Exome array, which includes both GWAS and

exome variants (Table 1). Standard quality controls were performed, including checking

Hardy-Weinberg equilibrium, Mendelian inconsistences, and verifying pedigree structure

using the genetic markers by the software PLINK [51]. BP traits, including SBP and DBP were

each determined following standardized guidelines using a calibrated sphygmomanometer

[52]. Height and weight were directly measured and antihypertensive medications were ascer-

tained by questionnaire. Data for this analysis were from the last available examination for

each participant.

The samples used for replication analysis include five independent cohorts. We included

10,864 unrelated white participants from the Atherosclerosis Risk in Communities (ARIC)

Study. The ARIC study is a prospective epidemiologic study designed to investigate the natural

history and etiology of atherosclerosis (https://www2.cscc.unc.edu/aric/). There were 18,050

unrelated white participants from the Women’s Health Initiative (WHI), a study of postmeno-

pausal women focused on strategies for preventing heart disease, breast and colorectal cancer,

and osteoporotic fractures [53, 54]. From the Vanderbilt University Biobank (BioVU), we

included 18,977 unrelated white individuals. BioVU uses leftover blood samples collected dur-

ing routine clinical care from consented individuals who visit the Vanderbilt University Medi-

cal Center [55]. Lastly, we included 9,343 unrelated white participants from the Health and

Retirement Study (HRS). This is a longitudinal survey of a representative sample of Americans

over the age of 50 [56–58].

SBP and DBP for an individual taking antihypertensive medication were imputed using the

standard approach in literature, by adding 15 mmHg and 10 mmHg, respectively. Pulse pres-

sure (PP) was calculated as the difference between imputed SBP and DBP [5].

Linkage analysis in CFS

We calculated residuals of SBP, DBP, and PP after adjusting for gender, age, age2, body mass

index (BMI; kg/m2) and the first principal component of genotype values in CFS separately.

The residuals of these regressions were used for linkage analysis using the software MERLIN

[59]. The principal components (PCs) were calculated using the software FamCC, which can

be applied to family data [60]. Since the results were essentially the same for including the first

PC or the first 10 PCs, we reported the linkage results including the first PC. We used the pair-

wise linkage disequilibrium (LD) pruning approach with a window size of 50 kb, step size of 5

variants, and R2 threshold of 0.2. We also required a minor allele frequency (MAF)� 0.2. This

resulted in 56,992 autosomal SNPs using PLINK [51]. Because marker-marker LD may result

in biased linkage calculations, we performed linkage analysis by further reducing the R2

threshold to 0.1 and by modeling the marker-marker LD using MERLIN [59]. Linkage analysis

using MERLIN decomposes phenotypic variance into three parts: the variance contributes to

the quantitative trait locus (s2
QTL), the variance contributes to the polygenetic effect (s2

G), and

the variance contributes to the random effect (s2
E). It also tests the null hypothesis of no linkage

H0 : s2
QTL ¼ 0 vs. HA : s2

QTL > 0.
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Identify coding variants accounting for linkage evidence

We examined exonic variants genotyped in the exome array in the region of 2-LOD score

drop from the linkage peak. We performed the family-based association analysis for the exonic

variants only in the 2-LOD drop region using the ASSOC package in S.A.G.E [61]. The family-

based association analysis was conducted using a linear mixed model y = β0 + β1g + δ + ε,

where g is a genotype value vector, β0 is the intercept, β1 is the regression coefficient,

d � Nð0; 2Fs2
GÞ where F is the kinship coefficient matrix and s2

G is the polygenic variance,

and ε � Nð0; Is2
εÞ where s2

ε is the random error. ASSOC applies the likelihood ratio test to

test the null hypothesis of H0: β1 = 0. For each of the variants, we first performed an association

analysis with a BP trait using ASSOC and identified variants with either p-value� 0.1 (mar-

ginal effect) or absolute regression coefficient beta� 5 (large effect). We next estimated fam-

ily-specific LOD scores and identified families with LOD score� 0.1. We kept the variants

with association p-value� 0.1 or absolute regression coefficient� 5, and that were present at

least twice in at least one family with family-specific LOD score� 0.1.

We defined the risk score as ri ¼ xT
i b, where β is the regression coefficients of the SNPs,

and xi is a vector of the number of risk alleles carried by individual i for these SNPs. Linkage

analysis was further performed conditional on the risk scores.

SNP-set burden and SKAT test

We performed family-based burden and SKAT tests for CFS using the software famSKAT

and for the replication cohorts using the R package SKAT [30, 32, 62]. The weight was set to
ffiffiffiffiffiwj
p
¼ BetaðMAFj; 1; 25Þ as suggested to increase the weight of rare variants.

Supporting information

S1 Fig. The distributions of residuals of SBP, DBP, and PP in CFS.

(TIFF)

S2 Fig. Linkage results of SBP, DBP, and PP in CFS.

(TIF)

S3 Fig. Linkage analysis by additional LD-based pruning or modeling marker-marker LD

for chromosome 16. Original (blue): pairwise LD pruning with a window size of 50 kb, step

size of 5 variants, and R2 threshold of 0.2; MAF� 0.2. Further pruning (purple): pairwise

LD pruning with a window size of 50 kb, step size of 5 variants, and R2 threshold of 0.1;

MAF� 0.3. Cluster (red): modeling marker-marker LD using “—cluster” option with R2

threshold of 0.1; all other parameters are the same as the original linkage analysis.

(TIFF)

S1 Table. Single association analysis of 13 exonic variants within the linkage region.
a Include both founders and nonfounders
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S2 Table. Single SNP association effect sizes and p-values for SBP, DBP, PP.
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S3 Table. Single SNP association analysis for exome array variants of RBFOX1 identified

in CFS. a Include both founders and nonfounders
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S4 Table. Minor allele frequencies a of RBFOX1 rare coding variants in white, African-

American, and African populations. a Include both founders and nonfounders.
b Calculated by the weighted average of Cleveland Family Study, Atherosclerosis Risk in Com-

munities, Women’s Health Initiative, Vanderbilt University Biobank, and Health and Retire-

ment Study.
c Calculated by the weighted average of Atherosclerosis Risk in Communities, Family Blood

Pressure Program, Africa America Diabetes Mellitus Study, and Howard University Family

Study (H.W., unpublished data).
d Calculated based on exome array of Nigeria data (H.W., unpublished data).
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