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Abstract When considering low-dimensional gene–treatment or gene–environment
interactions, we might suspect groups of genes to interact with treatment or environ-
ment in a similar way. For example, genes associated with related biological processes
might interact with an environmental factor or a clinical treatment in its effect on a
phenotype correspondingly. We use the idea of a structured interaction model together
with penalized regression to limit themodel complexity in amodel inwhichwe believe
the interactions might behave in a similar way.We propose the directed lasso, a regres-
sion modeling strategy using a pairwise fused lasso penalty to encourage interaction
model simplicity through fusion of effect size. We compare the performance of the
directed lasso to the lasso and other methods in a simulation study and on data sampled
from a breast cancer clinical trial.
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1 Introduction

A common aspect of studying complex genetic associations, and specifically inter-
actions, is that the power to detect them is usually limited. Being able to use the
knowledge (or suspicion) about the form of the interactions can put a structure on
the type of models that are considered and thereby significantly increase the power
to identify such interactions. This idea has been used in other situations, for example,
it was used in Tukey’s one-degree-of-freedom interaction model for gene–gene and
gene–environment interactions [7] and extended, for example, in [18].

The idea that multiple genes may interact with a treatment or environmental factor
in a similar manner can be used to create a structure on the model that improves
efficiency in identifying gene–environment interactions. For instance, there may be
a linear combination of genetic or environmental variables that modify the risk in a
similar fashion compared to the main effects. Penalized regression methods have been
shown to be an effective tool to enforce such a structure (e.g., [8]).

Most methods for identification of interactions deal with both main effects and
interactions in the same (symmetric) way. Instead, we propose to enforce a structure
on the model by “fusing” the main effects with the interactions. The idea is to express
the regression equation in the form of basis functions and to use a particular form of
the basis functions which restrict the form of the interaction to be based on the form
of the main effects. In particular, for a single treatment T and multiple genetic effects
X , and a continuous outcome Y , we could choose to fit the model

Y = β0 + γ T + f1(X) + h f1(X) × T + ε, (1)

where f1(X) is modeled by a set of basis functions that depend on X and that could
be (but does not need to be) as simple as a linear combination

∑
βi Xi . If one of

the Xi is selected to be in the model for f1(X) then both the main effect and the
interaction are included in the model for Y . A second parameter, h, identifies the
strength and direction of the interactions compared to the main effects. Enforcing
this structure on the interaction reduces the variance of the model and potentially
simplifies its interpretation. We note here that instead of a treatment or environmen-
tal factor that interacts with multiple genes, we could have a treatment or a single
gene interacting with multiple environmental factors. Therefore, in this paper, we will
use T and X rather than G and E in our equations. We focus on a restricted set of
predictors as confirmation studies of already preselected groups of gene expression
variables.

The simplest model (1) involves a single h parameter, while the most flexi-
ble extension of the model could have a separate h for each interaction term and
would in fact be equivalent to a full “saturated” model. Grouping the h’s may
increase the interpretability of the results, and in particular force different X ’s to
interact with T on Y in a similar manner. To achieve grouping, we develop a
version of the fused lasso [22] in problem (1) which is a generalization of the
lasso (least absolute shrinkage and classification), initially proposed by Tibshirani
[21].
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Over the last 20 years, many adaptive regression methods have been developed that
are specifically designed to identify interactions (e.g., [5,11,12,20]). These methods,
however, typically do not make use of the type of information about the form of the
interaction as is available in the situation above. During the last few years, regression
penalization methods have been developed that are well suited to incorporate such
types of information into the modeling [6,21,22]. These methods, however, have not
been widely applied to the estimation of interactions.

1.1 Existing Techniques for Detecting Interactions

Our idea builds on the strong heredity interaction model (SHIM) [8] of Choi et al.,
which is a penalized regression method, that is specifically designed to identify inter-
actions and enforce the strong heredity constraint. For instance, an interaction Xi X j

can only be in the model if both Xi and X j are in the model. Choi et al. develop an
iterative procedure which uses the lasso at each step to fit a model of the form

g(X) = β0 +
∑

i

βi Xi +
∑

i

∑

j

γi jβiβ j (Xi X j ).

SHIM does not distinguish between types of predictors so we identify them all as X .
Note that if γi j = γ for all i and j , this would be analogous to the Tukey one-degree-
of-freedom model considered by Chatterjee et al. [7].

The SHIM method minimizes the penalized objective function

||Y − g(X)||2 + λβ

∑
|β j | + λγ

∑
|γi j |,

with respect to (β, γ ). The interaction terms are based on the main effects forcing the
interactions to be zero when either main effect is zero. Choi et al. showed that the
SHIM model has an asymptotic oracle property as n goes to infinity. As the sample
size increases and the number of predictors remains fixed, under regularity conditions,
the model performs as well as if the true model is known [8].

Under additional conditions (primarily that the number of predictors grows slow
enough relative to the sample size), the same can be shown for the case when both
the sample size and the number of predictors tend to infinity. Our approach builds on
SHIM; we also force a strong heredity constraint. However, the difference between
our proposal and SHIM is that we further enforce a structure on the γi j that relates the
interaction to the main effects and leads to grouping of interaction effects.

An alternative penalized regression approach to identify interactions was proposed
by Bien et al. [3]. They propose a lasso-like procedure that produces sparse estimates
for the main effects and all two-way interactions, while satisfying heredity constraints.
Instead of employing group lasso penalties, they add a set of convex constraints to
the lasso model. A related idea is presented by Yuan et al., who propose non-negative
garrote methods that can naturally incorporate hierarchical structural relationships
between variables [23]. They incorporate the structural relationships as linear con-
straints on the corresponding penalties. This approach allows them to incorporate a
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variety of such structural relationships between predictors. Haris et al. develop the
method FAMILY, a generalization to Bien et al., for a large set of predictors, enforc-
ing strong heredity [14]. They employ the alternating direction method of multipliers
algorithm to efficiently solve the problem. The method explores all possible interac-
tion combinations and deals with large predictor space. Yet a different approach is
taken by Lim and Hastie who first screen for candidate main effects and interactions
and then do variable selection on the candidate set using a group lasso [16]. While
these approaches all use penalized regression to identify interactions, none of them
are focused on the more structured gene–treatment or gene–environment interaction
problem that we try to solve.

Liu et al. propose the Bayesian mixture model [17] for binary disease status to
simultaneously model gene–gene and gene–environment interactions following either
strong or weak hierarchical interaction structure. They work with a limited number of
main effects by first reducing the predictor space through other methods.

2 Directed Lasso: Lasso with Structured Interactions

We propose the directed lasso, a regression modeling strategy using a fused set of
basis functions. Let T be a single treatment or environmental variable (which for
convenience we will further refer to as “treatment”) and let X1, . . . , XK be K genetic
(or environmental) factorswhichwe refer to as genetic below.Themethod is applicable
to both classes of problems (treatment-gene and gene–environment interactions), the
key statistical attribute is that the T variable is the univariate measure the multiple Xk

are the higher dimensional features. We fuse each main effect Xk and the interaction
term T Xk of this effect with a specific effect modifier into a single basis function.
The least restrictive case is effectively a reparameterization of the full (saturated)
interaction model

Y = β0 + γ T +
K∑

k=1

βk(1 + hkT )Xk . (2)

In terms of the traditional multiplicative interaction model, the parameter hk estimates
the strength and direction of the interaction T Xk in the model relative to the main
effects Xk . (We assume that if T is not binary that it is normalized to facilitate inter-
pretation of the hk .) This model is in the same form as the SHIM model, except that
not all pairwise interactions are considered. (We note that extensions to non-linear
combinations of the Xk are immediate when we replace the Xk in (2) by a set of
non-linear basis functions Bk(X), e.g., splines.)

If we believe that some of the genetic terms interact with T in the same way, we
can “fuse” the interaction basis functions T Xk for those Xk by letting the relevant hk
be equal to each other. Using such fused basis functions decreases the dimensionality
of the model. In the extreme case, where we assume that all Xk interact with T in the
same way, we obtain model (1) with f1(X) = ∑

k βk Xk . In this initial formulation,
h is global for all the interactions estimated in the model. This is a rather restrictive
model formulation.
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If we knew a priori how the genetic factors Xk were grouped, we could fit these
models using a slight variation of SHIM. In practice, however, we may assume that
there is some grouping, but wemay not know exactly which hk are equal.We therefore
are proposing a penalized regression method that encourages flexible grouping. In
particular, to utilize the abovemodel in our structured interactions scheme,we consider
the pairwise fused lasso penalty for the difference between hk’s [19]. This particular
regularization penalty will control variance by penalizing the size of the interaction
and control the number of groups of interactions. We estimate the hk’s together with
the estimation (and selection) of main effects. This way we are able to avoid having
to pre-specify the number of groups or group membership in the model. Instead, the
penalty we add controls the differences between hk’s and thus naturally encourages the
formation of groups of interactions. This is reflected as the second to last term in the
objective function below. The last term corresponds to individual predictor selection
and shrinkage.

Set β = (β1, . . . , βK ) and h = (h1, . . . , hK ). Let φ = (γ, β, h) and φ̂ be the
minimizer of

φ̂ = argminγ,β,h

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Y − γ T −

K∑

k=1

βk Xk −
K∑

k=1

hkβkT Xk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

+λh

⎛

⎝α

K∑

k=1

K∑

j=1

|hk − h j | +
K∑

k=1

|hk |
⎞

⎠ + λβ

K∑

k=1

|βk |. (3)

Here α, λh , and λβ are pre-specified constants.

2.1 Fitting Directed Lasso Models

To find φ̂ in (3), we can split theminimization problem in two parts and iterate between
minimizing each until a solution is reached. In particular, our algorithm is

1. Initialize β̂
(0)
k , γ̂ (0), and ĥ(0)

k . Typically we initialize using (unpenalized) least
squares estimates for all parameters.

2. Iterate between the following two steps:
(a) Fix the β̂

(i)
k ’s and γ̂ (i) and estimate the ĥ(i+1)

k ’s by solving

ĥ(i+1) = argminh

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Y − γ̂ (i)T −

K∑

k=1

β̂
(i)
k Xk −

K∑

k=1

hk(β̂
(i)
k T Xk)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

+ λh

⎛

⎝α

K∑

k=1

K∑

j=1

|hk − h j | +
K∑

k=1

|hk |
⎞

⎠. (4)
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(b) Estimate the β̂
(i+1)
k ’s and the γ̂ (i+1) for fixed ĥ(i+1)

k ’s by solving

(
β̂(i+1), γ̂ (i+1)

)
= argminγ,β

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Y − γ T −

K∑

k=1

βk(Xk + ĥ(i+1)
k T Xk)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

+ λβ

K∑

k=1

|βk |.

3. Stop when

diff = |M(φ̂(i)) − M(φ̂(i+1))|
|M(φ̂(i))|

is less then a set small number, where

M(φ) =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Y − γ̂ T −

K∑

k=1

β̂k Xk −
K∑

k=1

ĥk β̂kT Xk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

+ λh

⎛

⎝α

K∑

k=1

K∑

j=1

|ĥk − ĥ j | +
K∑

k=1

|ĥk |
⎞

⎠ + λβ

K∑

k=1

|β̂k |

is the fitted model for φ̂ = (γ̂ , β̂1, . . . , β̂K , ĥ1, . . . , ĥK ).

In step 2(a), the response is Y − γ̂ T −∑K
k=1 β̂k Xk , and the predictors are β̂kT Xk , k =

1, . . . , K . Because of the extra penalty on differences between the h parameters, this
is not a standard lasso problem; we discuss a fitting algorithm in the next section. Step
2(b) is a standard lasso problem with predictors T , and Xk + ĥkT Xk , k = 1, . . . , K .

We minimize the objective function with respect to either the set of γ and the
β’s or the h’s and hence the objective function decreases at each step. The value
of the objective function is then guaranteed to converge to a local minimum since
it is bounded from below. However, similar to many penalized regression problems,
convergence to the global optimum is not guaranteed (though in our computations
presence of local minima never appeared to be a problem). In addition, we note that
the rate of convergence is linear because of the alternating fashion of the minimization
problem, so a large number of iterations may be needed, but this is not a practical
limitation, as described in Sect. 2.3. The algorithm can be sped up by adding a step (c)
where we find a parameter ρ to minimize our objective as a one-dimensional function
of (β̂(i), γ̂ (i), ĥ(i)) + ρ((β̂(i+1), γ̂ (i+1), ĥ(i+1)) − (β̂(i), γ̂ (i), ĥ(i))).

2.2 Alternating Direction Method of Multipliers (ADMM)

As mentioned before, the difficult part of solving (3) is the minimization in step 2(a)
(Eq. 4). To solve Eq. (4), we use the Alternating Directions Method of Multipliers
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algorithm (ADMM) [4]. ADMMwas developed in the 1970’s and is closely related to
dual decomposition [10] and the method of multipliers [15]. In recent years, ADMM
has been used for some other complicated penalized regression problems (e.g., [9]).
The computation of one step of ADMM is on the order of O([Kn + K 3]), where n is
the sample size and K the number of basis functions.

The ADMM algorithm solves problems of the form

minimizex ( f (x) + g(z))

subject to Ax + Bz = c, where x ∈ Rn and z ∈ Rm with A ∈ Rp×n and B ∈ Rp×m .
It is assumed that both f and g are convex. The augmented Lagrangian is formed as

Lρ(x, z, y) = f (x) + g(z) + yT (Ax + Bz − c) + (ρ/2)||Ax + BZ − c||22.
Then the algorithm consists of iterating between the following three steps: until con-
vergence,

xk+1 := argminx Lρ

(
x, zk, yk

)
,

zk+1 := argminz Lρ

(
xk+1, z, yk

)
,

yk+1 := yk + ρ
(
Axk+1 + Bzk+1 − c

)
,

with ρ > 0, a constant chosen a priori. Here xk , zk , and yk are the solutions at the k-th
iteration.

To apply ADMM to the pairwise fused lasso [22], we consider the problem

minimizeh

⎛

⎝1

2
||U − Lh||22 + λh

⎛

⎝
∑

k

|hk | + α
∑

1≤k< j≤K

|hk − h j |
⎞

⎠

⎞

⎠ , (5)

where U = Y − γ T − ∑K
k=1 βk Xk , and Lk = βkT Xk . Above, we omit the hat (“̂”)

to simplify notation. Let F be a p + (p
2

) × p matrix the first p row of which is an
identity matrix and the latter part is a representation of all the pairwise differences
between the elements of h. It is multiplied by a vector containing p 1’s and

(p
2

)
α’s.

Therefore

F = [1 . . . 1α . . . α]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
...

...

0 . . . 0 0 0 1
−1 1 0 0 0 . . . 0
−1 0 1 0 . . . 0
...

...

0 . . . 0 −1 0 1
0 . . . 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Thus, we minimize

minimizeh

(
1

2
||U − Lh||22 + λh ||Fh||

)

,

which in ADMM form looks like

minimizeh,z

(
1

2
||U − Lh||22 + λh ||z||

)

,

subject to Fh − z = 0.
The three steps in the algorithm which we iterate between are then

hk+1 :=
(
LT L + ρFT F

)−1 (
LTU + ρFT (zk − uk)

)
,

zk+1 := Sλ/ρ

(
Fhk+1 + uk

)
,

uk+1 := uk + Fhk+1 − zk+1,

where S is a smooth shrinkage function, such as the soft thresholding function
Sλ/ρ(a) = (a − λ/ρ)+ − (−a − λ/ρ)+ is interpreted element-wise and uk is a
scaled version of the dual variable. In our simulations, we fixed ρ = 1 which gave us
a good performance.

2.3 Tuning Parameter Selection

The directed lasso model has three tuning parameters (λh, λβ, α) in Eq. (4). While
convergence of the directed lasso problem is linear, as indicted above, the algorithm
quite rapidly reaches a region “close” to the optimal solution, which in our experience,
it is good enough for cross-validation of the tuning parameters. The tuning parameter
α tunes the relative penalty for the h coefficients. If α = 1 the h are grouped as much
as possible, but are not shrunk to 0; if α = 0 the h are not grouped but shrunk to 0. In
some situations, it may make sense to set α a priori (see also our real data example); in
other situations, it is reasonable to only consider a small number of possible values for
α in a three-dimensional grid search. In our simulations, we treat α as a user-chosen
constant, as it is primarily a scaling parameter of how much more penalization is
applied to the differences between parameters than to the parameters themselves, and
as such is mostly application dependent. We explore set values between 0.001 and 10.
For each α, a two-dimensional grid search on (λh, λβ) is performed.

3 Breast Cancer Data

The data are generated from a phase III clinical trial for postmenopausal women
with node-positive, ER-positive breast cancer and showed that chemo- therapy prior
to tamoxifen added survival benefit to tamoxifen alone [1]. Optional tumor banking
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yielded specimens for gene expression determination by RT-PCR. Data are available
on 367 individuals with tumor DNA. The outcome is disease-free survival. As part
of follow-up studies, gene expression of a panel of 21 genes that are part a strong
predictive factor of chemotherapy benefit compared to the tamoxifen DFS panel were
measured. The genes of this panel are thought to be both prognostic and predictive of
chemotherapy benefit [2]. Approximately half of the subjects were treated with each
of the two treatment options. The goal of our analysis is to see whether some or all of
the genes interact with the treatment in influencing the survival time of breast cancer
patients. Because of the way the gene expression predictor panel is selected, it is quite
conceivable that some genes interact with the treatment in a similar way influencing
the outcome.

As our dataset has survival data, a formal analysis would be using either a Cox
proportional hazards model, or some other (parametric) survival model. Rather than
modifying the ADMM approach, we choose to use a martingale transformation of the
survival outcomes that allow us to apply linear regression. For instance, in survival
analysis, it is known that regressing martingale residuals from the null Cox model can
be used to approximate the functional form of the regression function of the left out
covariates (e.g., [13]). So we use the linear regression model to approximate the log
hazard models. The martingale residual for the null model is δi − 
̂(Ti ) where δi is
the failure indicator; Ti is follow-up time; and 
̂(·) is the Nelson cumulative hazard
estimator. We focus on events within the first 5 years so the maximum follow-up Ti
was set at 5 years; 80 out of the 367 subjects are known to have died within five
years.

Initial analysis of the dataset suggested that while there were a few suggestive
interactions, none of those would be identified (with any flexible variable selection
approachwe considered).Given thatwe are analyzing survival data,with notorious low
signal-to-noise ratios, and that we are searching for interactions, this is not surprising
with a sample size of only 367. To “boost the signal,” we decided to double the
sample size using resampling. That is, we generate a dataset of size 734 by randomly
resampling with replacement 734 observations from the original data. So in this way,
this example should be viewed as a realistic but empirically justified simulation study.
We note, an additional advantage of this approach is that we can resample multiple
times, which allows us to assess the variability. Given we use a bootstrap simulated
dataset, results are not expected to replicate prior published results on the 367 cases.
To further avoid confusion with respect to the primary paper analysis, we have also
chosen not to use the real gene label the individual gene components in this analysis.

With this augmented sample, we apply the directed lasso algorithm in search of
groups of interactions. Table 1 gives estimated effects from the directed lasso. We
chose the model parameters by fivefold cross-validation and the results are based on
the augmented dataset of 734 observations. We also include standard errors for the
coefficients, based on 25 bootstrap resamples of the augmented sample. For compari-
son, we present the lassomodel selected by cross-validation and the full model with all
main effects and all interactions. We note that the model is attempting to merge some
of the interaction terms together, specifically several h’s around−28 and 6 h’s between
−1 and −2, suggesting that the corresponding genes may interact with treatment in a
similar manner.
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Table 1 Model selection for the directed lasso and the augmented breast cancer data, for tuning parameters
selected using cross-validation

Gene Main effect Interaction effect h Lasso Full
SE SE

Chemo 0.145 0.181

p1 0.038 0.007 −0.062 0.010 −1.614 −0.080 −0.117

p2 −0.002 0.008 0.136 0.014 −63.340 0.145 0.198

p3 −0.002 0.005 −0.013 0.008 5.733 0.000 −0.010

p4 −0.002 0.006 0.085 0.012 −39.758 0.099 0.133

p5 0.047 0.006 −0.062 0.008 −1.319 −0.065 −0.089

b1 – 0.003 0.005 – – – −0.003

g1 0.002 0.004 −0.011 0.006 −7.368 −0.010 −0.020

c1 −0.001 0.003 0.020 0.009 −13.447 0.012 0.028

e1 −0.048 0.004 0.053 0.004 −1.105 0.051 0.061

e2 −0.008 0.002 0.010 0.003 −1.306 0.009 0.018

e3 0.002 0.004 −0.041 0.007 −23.170 −0.029 −0.064

e4 0.002 0.002 −0.043 0.004 −28.087 −0.038 −0.046

i1 −0.009 0.003 0.054 0.005 −5.736 0.053 0.057

i2 0.044 0.007 −0.079 0.009 −1.798 −0.090 −0.102

h1 0.001 0.004 −0.039 0.006 −29.473 −0.037 −0.041

h2 0.058 0.005 −0.067 0.009 −1.152 −0.061 −0.082

Standard errors (SE) are based on 25 random bootstrap resamples of the dataset

4 Simulations

In this section, we present results from our simulation studies. For each of the set-ups,
we simulate 100 observations from model

y = ρT + βT X + γ T XT + ε, (6)

where X are standard normal uncorrelated continuous predictors, T ∼ Bin(0.6) and
ε ∼ N (0, 1) with ρ = 1. The model coefficients as presented in Table 2 and sim-
ulations are run 500 times. The models represent a range of potential interaction
scenarios. For example, Model 1 has an interaction effect associated each non-zero
main effect, while Models 3 and 4 have interactions effects associated with only a
subset of the non-zero main effects. Model 5 is a null model with no interaction
effects.

For Models 1, 2, and 3, we also examined sample sizes of 75 and 500. For the
sample size of 500, we included a situation where all pairwise correlations between
predictors, whichwere normally distributed, were 0.3. All simulationswere performed
100 times. We added 15 unrelated predictors and 15 unrelated interactions to Model
1 to explore the performance of the directed lasso with a larger number of predictors.
The results are recorded under Model 8.
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Table 2 Simulation models:
coefficients for interaction
models

β1 β6 β11 γ1 γ6 γ11
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

β5 β10 β15 γ5 γ10 γ15

Model 1 2 2 2 1 1 1

Model 2 2 2 2 1 0 0

Model 3 2 2 0 1 0 0

Model 4 2 2 0 0.25 0 0

Model 5 2 0 0 0 0 0

Model 6 2 1 1 1 0 0

Model 7 2 1 1 0.25 0 0

We report mean squared error (MSE) and the number of true positive (TP) and
false positive (FP) interaction terms selected by the model based on averages of the
simulations for each model set-up. The model is tuned on a training set, and optimal
parameters are chosen based on performance on a validation set. A third sample, which
is used to measure performance and is not otherwise used, had sample size equal to
the training set.

We compare the performance of the directed lasso to the SHIM model, the lasso,
and a full unpenalized model (e.g., the directed lasso model with λβ = λh = 0). The
lasso model was fit in two different ways. First we fit the lasso without any restrictions
allowing all main effects and interactions to be included. This often results in fitted
models that do not satisfy the heredity constraints; we refer to this approach as “lasso.”
We also fit the lasso model, with the restriction that no penalty is applied to the main
effects, forcing all of them in the model and automatically satisfying the heredity
constraint; we refer to this approach as the “Restricted lasso.”

Table 3 presents the MSE from the seven simulated scenarios. When there is a big
discrepancy in the size of main effects and interactions, the directed lasso outperforms
SHIM, but the lasso models perform very similarly. When the interactions are half
as big as the main effects, the directed lasso performs best. It also performs best
when there are no interactions effects, though SHIM and the lasso have similarly
good fits. Presumably the additional structured constraints of the directed lasso and
SHIM are helpful in this setting, the simple lasso does well due to its good variable
selection properties with only a small number of main effects present in the underlying
model.

We note that in all but one of the examples with n = 100, the directed lasso has
the smallest MSE, and in that one scenario, it is close to the lasso. The directed lasso
performs much better than SHIM for Models 1, 3, and 6. In Model 3, SHIM has much
lower false positive rates but ends up with higher MSE due to setting too often the set
of all interactions to 0. The lasso and restricted lasso perform much worse than the
directed lasso for Models 2 and 7, where they have much higher false positive rates.
The restricted lasso (which includes heredity constraints) always does a little better
than the full lasso and does much better when there are main effects that are zero. The
full model is never competitive.
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Table 3 Simulation results: MSE (SE)

Dir. lasso SHIM Lasso Res. lasso Full

n = 100, cor = 0

Model 1 0.229 0.509 0.502 0.506 0.511

0.004 0.008 0.008 0.009 0.009

Model 2 0.352 0.366 0.435 0.508 0.527

0.006 0.006 0.008 0.010 0.010

Model 3 0.380 0.475 0.357 0.458 0.527

0.007 0.009 0.007 0.008 0.009

Model 4 0.245 0.296 0.315 0.368 0.513

0.004 0.005 0.005 0.005 0.008

Model 5 0.166 0.219 0.197 0.308 0.517

0.004 0.005 0.004 0.006 0.008

Model 6 0.322 0.475 0.428 0.514 0.524

0.005 0.008 0.007 0.009 0.009

Model 7 0.252 0.306 0.405 0.481 0.525

0.004 0.005 0.007 0.008 0.009

Model 8 0.491 0.713 0.932 1.840 2.590

0.008 0.028 0.015 0.075 0.127

n = 75, cor = 0

Model 1 0.325 0.793 0.815 0.826 0.901

0.006 0.015 0.017 0.019 0.038

Model 2 0.516 0.528 0.680 0.771 0.888

0.012 0.011 0.017 0.023 0.027

Model 3 0.562 0.667 0.492 0.655 0.856

0.009 0.011 0.008 0.011 0.018

n = 500, cor = 0

Model 1 0.044 0.071 0.071 0.071 0.071

0.001 0.001 0.001 0.001 0.001

Model 2 0.051 0.060 0.065 0.069 0.072

0.001 0.001 0.001 0.001 0.001

Model 3 0.052 0.059 0.055 0.065 0.071

0.001 0.001 0.001 0.001 0.001

Model 8 0.065 0.086 0.102 0.131 0.138

0.001 0.001 0.001 0.001 0.001

When the sample size is further restricted to n = 75, a similar performance is
achieved. When the sample size is augmented to n = 500, the directed lasso performs
best; however, the performance of all other models is improved as well. When some
correlation is introduced between the predictors, the performance of the directed lasso
is best in Models 1 and 2 and the regular lasso is best for Model 3. Model 8 performs
similarly to Model 1. Thus, within the range that we explored, the relative perfor-
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Table 3 continued

Dir. lasso SHIM Lasso Res. lasso Full

n = 500, cor = 0.3

Model 1 0.042 0.075 0.072 0.072 0.072

0.001 0.001 0.001 0.001 0.001

Model 2 0.055 0.058 0.060 0.068 0.071

0.001 0.001 0.001 0.001 0.001

Model 3 0.055 0.057 0.049 0.063 0.069

0.001 0.001 0.001 0.001 0.001

Uncorrelated predictors “Full” is the full regression model that includes all predictors and interactions.
“lasso” is the lasso model without any constraints. “Res. lasso” is the lasso model where the main effects
are not penalized. “Dir. lasso” is the directed lasso. The boldfaced results are the best for a particular model

Table 4 MSE for the interactions only

Dir. lasso SHIM Lasso Res. lasso Full

n = 100, cor = 0

Model 1 0.005 0.061 0.066 0.066 0.067

Model 2 0.032 0.035 0.047 0.067 0.071

Model 3 0.039 0.058 0.034 0.061 0.070

Model 4 0.014 0.018 0.025 0.043 0.067

Model 5 0.003 0.002 0.009 0.028 0.067

Model 6 0.025 0.062 0.046 0.069 0.070

Model 7 0.011 0.023 0.038 0.062 0.070

Model 8 0.006 0.032 0.046 0.126 0.188

n = 75, cor = 0

Model 1 0.007 0.095 0.109 0.112 0.121

Model 2 0.052 0.051 0.073 0.098 0.117

Model 3 0.069 0.082 0.046 0.089 0.119

n = 500, cor = 0

Model 1 0.002 0.009 0.009 0.009 0.009

Model 2 0.004 0.006 0.006 0.008 0.009

Model 3 0.005 0.006 0.005 0.008 0.009

Model 8 0.001 0.004 0.005 0.009 0.009

n = 100, cor = 0.3

Model 1 0.002 0.011 0.012 0.012 0.012

Model 2 0.007 0.008 0.008 0.012 0.013

Model 3 0.007 0.008 0.005 0.010 0.012

mance of the methods does not seem to depend much on sample size or correlation
structure.

In Table 4, we show the mean squared error for the coefficients of the interactions.
Since in all our scenarios we group interactions, it is not surprising that the directed
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Table 5 Simulation results: average true positive and false positive coefficients for uncorrelated models

Dir. lasso SHIM Lasso Res. lasso Full

n = 100, cor = 0

Model 1 TP 1.00 1.00 1.00 1.00 1.00

Model 2 TP 1.00 1.00 1.00 1.00 1.00

FP 0.25 0.55 0.71 0.98 1.00

Model 3 TP 1.00 1.00 1.00 1.00 1.00

FP 0.98 0.54 0.59 0.99 1.00

Model 4 TP 0.84 0.48 0.83 0.49 1.00

FP 0.55 0.16 0.55 0.98 1.00

Model 5 FP 0.36 0.04 0.38 0.73 1.00

Model 6 TP 1.00 1.00 1.00 1.00 1.00

FP 0.27 0.68 0.71 0.99 1.00

Model 7 TP 0.86 0.30 0.86 0.85 1.00

FP 0.65 0.15 0.67 0.97 1.00

Model 8 TP 1.00 1.00 1.00 0.99 1.00

FP 0.84 0.01 0.54 0.95 1.00

n = 74, cor = 0

Model 1 TP 1.00 1.00 1.00 1.00 1.00

Model 2 TP 0.99 1.00 1.00 1.00 1.00

FP 0.27 0.54 0.71 0.88 1.00

Model 3 TP 1.00 0.99 1.00 0.99 1.00

FP 0.64 0.41 0.56 0.90 1.00

n = 500, cor = 0

Model 1 TP 1.00 1.00 1.00 1.00 1.00

Model 2 TP 1.00 1.00 1.00 1.00 1.00

FP 0.09 0.51 0.72 0.90 1.00

Model 3 TP 1.00 1.00 1.00 1.00 1.00

FP 0.24 0.51 0.58 0.87 0.99

Model 8 TP 1.00 1.00 1.00 1.00 1.00

FP 0.83 0.00 0.49 0.91 0.99

n = 500, cor = 0.3

Model 1 TP 1.00 1.00 1.00 1.00 1.00

Model 2 TP 1.00 1.00 1.00 1.00 1.00

FP 0.20 0.53 0.59 0.90 0.99

Model 3 TP 1.00 1.00 1.00 1.00 1.00

FP 0.38 0.50 0.44 0.83 0.99

“Dir. lasso” is the directed lasso

lasso, which groups interactions, is the best model, often by a substantial amount. The
one exception is Model 5, in which there actually are no interactions at all.

To estimate the true positive (TP) (Table 5) coefficients each model selects, we
average the number of true non-zero interaction coefficients that are estimated to be
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larger than 0.001 and average this over all simulations. This threshold was chosen to
be small relative to the true underlying effects in the simulation study. Similarly, false
positives (FP) are the average of the zero interaction coefficientswhich are estimated to
be larger than 0.001 by themodel, averaged over all simulation runs for each simulated
scenario.

Interestingly, when the interaction coefficients are much smaller than the main
effects, as is the case with Model 7, directed lasso outperforms the other methods
in terms of RSS, but it has similar performance in terms of TP and FP. When the
interaction terms are larger, as is the case in Model 6, then the directed lasso also has
the best FP rate and best RSS.

As we expect, the Lasso model does not necessarily satisfy hereditary constrains in
Models 3, 4, and 5, where some of the main effects are set exactly to 0. In only 28, 7,
and 22% of the fitted Lasso models, for simulations of Model 3, 4, and 5, respectively,
the models ended up satisfying heredity constraints. Within the fitted models that did
not satisfy hereditary constrains, on average 1.7 interactions were fitted without main
effects in Models 3 and 4 and 2.5 for Model 5.

5 Discussion

The directed lasso is a flexible interaction regression method, which utilizes model
structure assumptions when appropriate to increase the power of identifying interac-
tions. The directed lasso is designed for instances where we want to link the main
effects and the interactions effects. We can impose constraints on how the interaction
effects are associated with the main effects and control that relationship via one or
more penalty parameters. In addition, we anticipate, there will advantages with respect
to estimating interactions using this modeling strategy over unconstrained methods
are when there are groups of interactions that modify the main effects in a similar
fashion. We have shown that this is indeed the case in some simulated examples. In
the context of biomedical studies, this is a plausible scenario when, for example, we
have a treatment effect and we are investigating the interactions between the treatment
and a group of genetic attributes. SNPs that are located on the same gene or genes
that are associated with a similar process are likely to modify the treatment effect in
a similar way. We found that the biggest gains for our modeling strategy are found
when there is a group of factors with medium to large interaction effects.
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