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Multi-ancestry genome-wide gene–smoking 
interaction study of 387,272 individuals identifies 
new loci associated with serum lipids
The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is 
unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide 
gene–smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-
analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smok-
ing status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions 
with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.

Levels of serum lipids, such as triglycerides and high- and low-
density-lipoprotein cholesterol (HDL and LDL), are influenced 
by both genetic and lifestyle factors. Over 250 lipid-associated 

loci have been identified1–6, yet it is unclear to what extent lifestyle 
factors modify the effects of these variants or those of variants yet  
to be identified. Smoking is associated with an unfavorable lipid  
profile7,8, warranting its investigation as a lifestyle factor that 
potentially modifies genetic associations with lipids. Identifying 
interactions through traditional 1-degree-of-freedom (1df) tests 
of SNP × smoking terms may have low power, except in very large 
sample sizes. To enhance power, a 2-degree-of-freedom (2df) test 
that jointly evaluates interaction and main effects was developed9.

The Gene–Lifestyle Interactions Working Group, under the 
aegis of the Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) Consortium10, was formed to conduct 
analyses of lifestyle interactions in the genetic basis of cardiovascu-
lar traits. As both genetic and lifestyle factors differ across popula-
tions of different ancestry, and to address the under-representation 
of non-European populations in genomic research, great effort went 
into creating a large multi-ancestry resource for these investiga-
tions11. Here we report a genome-wide interaction study that uses 
both the 1df test of interaction and the 2df joint test of main and 
interaction effects to examine the hypothesis that genetic associa-
tions with serum lipids differ by smoking status.

Results
New loci. We conducted genome-wide interaction meta-analyses 
for current and ever-smoking status in up to 133,805 individuals 
of European (EUR), African (AFR), Asian (ASN), and Hispanic 
(HISP) ancestry (stage 1; Supplementary Tables 1–3), with follow-
up of 17,921 variants associated at P ≤ 1 × 10−6 (not pruned for 
linkage disequilibrium, LD) in an additional 253,467 individuals 
of EUR, AFR, ASN, HISP, and Brazilian (BR) ancestry (stage 2; 
Supplementary Tables 4–6), as detailed in Fig. 1. Of the 17,921 vari-
ants associated in stage 1, 16,389 (in 487 loci, defined as the region 
located ±1 Mb with respect to the variant) passed filters and were 
included in stage 2 analyses. Ninety percent of variants (14,733) and 
22% of loci (109) replicated in stage 2 (variants, P < 0.05/16,389; 
loci, P < 0.05/487). We conducted meta-analyses of stage 1 and 2 
results (Manhattan plots, Supplementary Fig. 1; quantile–quantile 
plots, Supplementary Fig. 2) and identified 13 new loci associated at 
P < 5 × 10−8 that were at least 1 Mb away from previously reported 

lipid-associated loci (Table 1; results by stage, Supplementary Table 7;  
forest plots, Supplementary Figs. 3 and 4; regional association plots, 
Supplementary Fig. 5). These loci had low false-discovery rate 
(FDR) q values (all q < 3 × 10−4; Supplementary Table 8). We report 
the new loci associated at P < 5 × 10−8 as well as those among these 
passing a more stringent significance threshold (P < 6.25 × 10−9), 
adjusted for two smoking exposures, two interaction tests, and 
ancestry-specific and trans-ancestry tests. The patterns observed 
in these results are described below and illustrated with output 
from stage 1 meta-analyses, where results from a main-effect model  
(in all individuals and with stratification by smoking exposure) and 
a smoking-adjusted main-effect model were also available (Fig. 1 
and Supplementary Table 9).

Notably, many of the new loci were statistically significant only 
in AFR meta-analyses. For 7 of the 13 new loci, the minor allele 
frequency (MAF) of the index variant was highest in AFR popu-
lations, and inter-ancestry differences in MAF and/or LD may 
explain the inability to detect similar associations in the other 
ancestry groups. However, some AFR-only associations were 
unlikely to be due to diminished power in non-AFR meta-analyses.  
For instance, the effect of rs12740061 (NC_000001.10:g.694078
10C>T; LOC105378783) on HDL was significantly modified by  
current smoking status among AFR individuals (P1df = 7.4 × 10−9; 
Fig. 2 and Table 1), such that the genetic effect was stronger among 
current smokers than among nonsmokers (Supplementary Table 9).  
In contrast, there was virtually no evidence for association in any 
other ancestry group, despite these groups having higher MAF 
values for the variant (Fig. 2). The potential influence of under-
adjustment for principal components on these results was evalu-
ated by excluding the six studies that adjusted for only 1 principal 
component (the average number of principal components adjusted 
for among AFR studies was 4.2); in this analysis, effect estimates 
were similar and P values were increased or similar in comparison 
to the original analysis, in line with the ~20% reduction in sample 
size (Supplementary Table 10).

We observed interactions where notable associations were  
only found among current or ever-smokers, with effect sizes close  
to zero among non- or never-smokers, including a statistically  
significant association in the 2df joint test of main and inter-
action effects of rs7364132 (NC_000022.10:g.20096172G>A; 
DGCR8) × ever smoking with triglycerides (P2df = 2.5 × 10−8; Table 1).  
Main-effect models stratified by smoking status showed a strong 
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genetic association with triglycerides among ever-smokers 
(difference in mean ln(triglycerides) per A allele (β) = −0.05, 
P = 7.9 × 10−8), with a negligible association among never-smokers 
(β = 0.01, P = 0.19; Fig. 3). This association was not significant in 
the non-stratified main-effect model (Table 1 and Supplementary 
Table 9) and was only detectable when modeling permitted different 
associations across smoking strata. Similar results were observed 
for rs79950627 (NC_000011.9:g.2233790G>A; MIR4686) × current  
smoking with LDL and rs56167574 (NC_000007.13:g.15124597
5G>A; PRKAG2) × ever smoking with LDL (Fig. 3 and Supple-
mentary Table 9).

We also observed interactions where effects were in opposite 
directions in the exposed and unexposed strata, with a larger effect 
and more statistically significant association among smokers. For 
instance, current smoking status modified the association between 
rs73453125 (NC_000007.13:g.146084573G>A; CNTNAP2) and 
LDL (Table 1). In stratified main-effect models, the A allele was 
associated with lower LDL among current smokers (β = −8.1 mg/
dl, P = 2.2 × 10−7) but was associated with higher LDL among 
nonsmokers (β = 2.18 mg/dl, P = 0.01; Fig. 4a and Supplementary 
Table 9). In a non-stratified smoking-adjusted main-effect model, 
no association between rs73453125 and LDL was detected (β = 0.3 
mg/dl, P = 0.98). Similar results were observed for rs12740061 
(LOC105378783) (Supplementary Table 9).

Although many interactions manifested as associations that 
were only significant or were stronger in smokers, for rs10937241 
(NC_000003.11:g.185822774A>G; ETV5), rs34311866 (NC_0000
04.11:g.951947T>C; TMEM175), rs10101067 (NC_000008.10:g.72
407374G>C; EYA1), and rs77810251 (NC_000007.13:g.121504149

G>A; PTPRZ1), the associations observed among non- or never-
smokers were more statistically significant. Notably, in stratified 
main-effect models, rs77810251 was associated with increased HDL 
among never-smokers (β = 0.05 ln(HDL), P = 6.3 × 10−11) with no 
significant association among ever-smokers (β = −0.005 ln(HDL), 
P = 0.56; Fig. 3 and Supplementary Table 9). In a smoking-adjusted 
main-effect model of never- and ever-smokers together, the associa-
tion was markedly reduced (β = 0.02 ln(HDL), P = 1.6 × 10−4).

The 2df joint test simultaneously evaluates main effects and 
smoking interaction effects; some of our results seem to capture a 
main effect of the variant. For instance, the 2df test for rs12144063 
(EYA3) detected an association (P = 1.3 × 10−10), whereas the 1df  
test of interaction did not (P = 0.75). The minor alleles for this and 
three other variants (rs10937241 (ETV5), rs34311866 (TMEM175), 
and rs10101067 (EYA1)) were common across populations and 
reached genome-wide statistical significance despite effects being 
small in magnitude (rs10101067 (EYA1); Fig. 4b), in agreement with 
expectations for new main-effect loci in well-studied populations. 
There were two findings, however, for which the relatively large 
sample size in the AFR meta-analyses seemed to facilitate detection. 
For rs73729083 (NC_000007.13:g.137559799T>C; CREB3L2), the 
MAF was much greater in AFR than in HISP or ASN populations 
(not present in EUR populations) and variant effect estimates were 
large and consistent across ancestry groups, whereas interaction 
effect estimates were inconsistent, with wide confidence intervals 
(Supplementary Fig. 3f). At rs4758675 (NC_000012.11:g.12269173
8C>A; B3GNT4), the minor allele was only present in AFR popu-
lations (Supplementary Fig. 3k), but variant effect estimates were 
consistent across AFR studies, with interaction effect estimates 
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Fig. 1 | study overview. Summary of data included in this study. Of the 17,921 associated variants from stage 1, 16,389 passed filtering criteria and were 
included in stage 2 analyses. Trans-ancestry combined stage 1 and 2 meta-analyses were performed on stage 1 trans-ancestry and stage 2 trans-ancestry 
meta-analyses and not on combined ancestry-specific analyses from stage 1 and stage 2. In models, 1df terms are in bold and 2df terms are underlined. 
TRANS, trans-ancestry. Model descriptions include terms for the outcome (γ), intercept (β0), covariates (βCC), the variant (βGSNP), smoking status (βEE), 
and interaction of the variant and smoking status (βGEE × SNP).
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approaching the null (Supplementary Fig. 4e). In total, 6 of the  
13 new loci that we identified seem to be driven by main effects of 
the variant while the remainder show some evidence of interaction 
with smoking.

There were 16 additional new loci identified in stage 1 meta-
analyses (P1df or P2df < 5 × 10−8) for which the variants were unavail-
able for analysis in stage 2 cohorts. These loci were identified only 
in AFR meta-analyses (many were AFR-specific variants; Table 2). 
Because of the relatively small number and size of the available AFR 
cohorts in stage 2 (total n = 7,217 individuals; n < 2,000 per cohort), 
these relatively low-frequency variants did not pass filters for minor 
allele count within exposure groups. Nevertheless, associations for 
these variants had low FDR q values (all q < 2.4 × 10−4) in stage 1, 
and some seem worthy of further investigation. One particularly 
interesting example is the association of rs17150980 (NC_00000
7.13:g.78173734T>C; MAGI2) × ever smoking with triglycerides 
(P2df = 1.4 × 10−9), in which consistent effects were observed for  
both the variant and the interaction across AFR studies but not in 
other ancestry groups (Supplementary Fig. 6).

As we ran analyses for both current and ever-smoking status, 
we evaluated new associations across smoking exposures to further 
characterize these loci (Supplementary Table 11). For the six prob-
able main-effect loci (EYA3, ETV5, TMEM175, CREB3L2, EYA1, 
and B3GNT4), an association of similar statistical significance 
was observed across smoking status definitions for the 2df joint 
test with a similar lack of effect for the 1df test of interaction, in 
agreement with the interpretation that smoking status was unim-
portant and only the main effect drove association. For the locus 
in which a stronger association was observed among nonsmokers 
(PTPRZ1), the 1df interaction P value was dramatically reduced 
from 9.5 × 10−7 for ever smoking to 0.011 for current smoking, in 
line with any smoke exposure altering the association between this 
variant and HDL and the notion that including former smokers 
with never-smokers (as in the analysis of current smoking) dilutes 
the observed association among never-smokers. For the reported 
interactions with current smoking, all effect estimates were greatly 
reduced in the ever-smoking analysis, suggesting that active smok-
ing is the relevant exposure. For the reported interactions with ever 
smoking, markedly reduced statistical significance was observed in 
the analysis of current smoking, likely reflecting a drop in power 
from excluding former smokers from the exposed group.

We conducted a secondary analysis of smoking dose in two of 
our AFR cohorts with measured cigarettes per day for four inter-
action loci (see the Methods for selection criteria): rs12740061 
(LOC105378783), rs73453125 (CNTNAP2), rs79950627 (MIR4686), 
and rs7364132 (DGCR8). For each of these variants, a stronger asso-
ciation was observed with increasing smoking dose (Supplementary 
Table 12), and the interaction was statistically significant for all vari-
ants but rs7364132, for which the P value was just over our thresh-
old for statistical significance (P = 0.0035 versus P < 0.0021).

Conditional analysis showed no evidence that the new asso-
ciations were driven by variants at known lipid-associated loci 
(Supplementary Table 13). Imputation quality for the new variants 
was high (minimum of 0.75), with sample-size-weighted average 
imputation quality of 0.90, and MAFs match those in publicly avail-
able datasets (Supplementary Table 14).

Interactions at known loci. We examined interactions with 
smoking at known lipid-associated loci. Because results for the 
2df test at known loci are expected to predominantly reflect pre-
viously identified main effects, we exclusively evaluated results 
from the 1df test of interaction. No interactions within known 
loci were statistically significant (P1df < 0.05/269 known loci in  
our data). To evaluate whether the proportion of known variants 
with P1df < 0.05 was higher than would be expected by chance (5%), 
we conducted binomial tests for each trait–exposure combination  

(P values were Bonferroni corrected for multiple tests). There was 
significant enrichment for known variants with interaction in  
the 1df test reaching P < 0.05, including for the HDL–current smok-
ing (P = 9.6 × 10−12), HDL–ever smoking (P = 5.9 × 10−7), LDL–cur-
rent smoking (P = 8.4 × 10−15), LDL–ever smoking (P = 3.1 × 10−5), 
triglycerides–current smoking (P = 4.0 × 10−3), and triglycerides–
ever smoking (P = 3.1 × 10−4) combinations. We conducted power 
calculations under different interaction scenarios to determine  
the conditions under which an interaction analysis and a main-
effect analysis would both be sufficiently powered to detect the 
same locus (that is, when an interaction could be detected in a  
locus previously identified in a main-effect analysis; Supplementary 
Table 15). At current trans-ancestry meta-analysis sample sizes and 
when assuming a large effect size, there was limited power to detect 
either a main effect or an interaction when an association was of 
larger effect or only present among smokers (main effect, <1%; 
interaction, 77%) or when associations differed in magnitude but 
not direction (main effect, >99%; interaction, <1%), thus making 
it unlikely that an interaction at a known locus would be detected. 
We were well powered for both interaction and main-effect analyses  
to detect smoking interactions in which smoking eliminated or 
drastically reduced an association with a large effect size among 
non- or never-smokers. We identified one such interaction in our 
data, for PTPRZ1 in AFR studies only, which may not have previ-
ously been identified in a main-effect analysis because of the limited 
power of AFR main-effect analyses thus far.

Proportion of variance explained by the identified loci. Ten 
studies from four ancestry groups were used to calculate the pro-
portion of the variance in lipid traits explained by the new genome-
wide-significant loci, including 13 loci from combined stage 1 and 
2 meta-analyses (Table 1) and 16 loci from stage 1 that were not 
available in stage 2 analyses (Table 2). Two different methods were 
used (Methods), and the range of findings across these methods is 
presented (Supplementary Table 16). In the AFR ancestry group, the 
new variants and their interactions explained 1.0–2.7% of variance 
in HDL, 0.7–2.6% of variance in LDL, and 1.3–3.2% of variance in 
triglycerides. The proportion explained was smaller among EUR 
(0.06–0.14% for HDL, 0.01–0.07% for LDL, and 0.10–0.19% for tri-
glycerides), ASN (0.27–0.86% for HDL, 0.09–0.82% for LDL, and 
0.8–1.5% for triglycerides), and HISP (0.2–0.4% for HDL, 0.2–0.5% 
for LDL, and 0.2–0.4% for triglycerides) ancestry groups. These 
results should be considered in the context of the differences in 
MAF between the ancestry groups: the proportion of new variants 
that could be evaluated varied by ancestry group, with 94–97% of 
variants available for analysis in the AFR cohorts, but only 32–39% 
of variants available in the EUR and ASN cohorts and 55% of  
variants available in the HISP cohort. In contrast, each of the 
cohorts investigated had a similar proportion of the known variants 
considered (83–96%).

Reproducing known lipid associations. We evaluated the degree  
to which our data reproduce previously reported lipid-associated 
loci. Given that approximately 81% of the cohorts in stage 1 were  
also included in previous efforts, this analysis is not a formal  
replication. For comparability with traditional genome-wide asso-
ciation studies (GWAS), we evaluated results from stage 1 main-
effect models. Of the 356 previously reported associations for 279 
variants (compiled from refs. 1–6,12), there were 236 associations 
for 189 variants that were confirmed in our data (with consistent 
direction of effect and P < 0.05/356), for a 66.3% concordance rate 
(Supplementary Table 17).

Bioinformatics. To characterize the potential impact of our new 
associations on chronic disease risk and to investigate biological  
mechanisms, we conducted a series of follow-up analyses and 
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annotations. We performed extensive bioinformatics annota-
tion of variants within the 29 new loci (Tables 1 and 2). These loci 
included 78 associated variants that were in or near 33 unique genes 
(Supplementary Table 18). We performed lookup of these variants 
in previously conducted GWAS for related traits (Supplementary 
Tables 19–24), the Genotype-Tissue Expression (GTEx) portal 
(v7.0) and RegulomeDB (Supplementary Table 25), HaploReg 
v4.1 (Supplementary Table 26), and an analysis of cis and trans 
expression quantitative trait loci (eQTLs) in whole blood from 
Framingham Heart Study participants (Supplementary Table 27). 
Additionally, for each trait, we performed DEPICT gene prioritiza-
tion (Supplementary Tables 28–30), gene set enrichment analysis 
(Supplementary Tables 31–33), and tissue or cell type enrichment 
analysis13 (Supplementary Tables 34–37), in which we used both 
new and known loci. Notable findings from these follow-up analy-
ses are summarized below by locus.

In line with our observations of an association of the C allele 
at rs10101067 (EYA1) with higher triglyceride levels, this allele was 
associated with increased risk of coronary artery disease (β = 0.036, 
P = 0.03; Supplementary Table 19), ischemic stroke (β = 0.11, 
P = 0.04; Supplementary Table 20), and higher waist-to-hip ratio 
adjusted for body mass index (BMI) (β = 0.029 units, P = 6.5 × 10−4; 
similar results were observed for waist circumference adjusted for 
BMI; Supplementary Table 21).

We found an association of the T allele at rs12144063 (NC_000
001.10:g.28406047G>T; EYA3) with lower HDL levels. This allele 
was associated with increased risk of all stroke types (β = 0.05, 
P = 0.04), as well as stroke subtypes (Supplementary Table 20). 
rs7529792 (NC_000001.10:g.28306250C>T), a variant in LD with 

rs12144063 (r2 = 0.97), regulates gene expression of EYA3 and has 
a high RegulomeDB score (1b; Supplementary Table 25). HaploReg 
also showed regulatory features for rs12144063, identifying it as 
being in a promoter region expressed in liver and brain, in enhancer 
histone marks, and in DNase marks for EYA3 (Supplementary 
Table 26). DEPICT predicted a role for these variants in regulat-
ing expression of EYA3 and XKR8 (Supplementary Table 28), the  
latter of which encodes a phospholipid scramblase important in 
apoptotic signaling14.

We report an interaction between smoking and rs77810251 
(PTPRZ1), in which the minor allele is associated with higher 
HDL levels only among never-smokers. Although this variant was 
not available for lookup in data from the Genetic Investigation of 
Anthropometric Traits (GIANT) consortium, a variant in this locus 
with a similar association, rs740965 (NC_000007.13:g.1215135
61T>G), was associated with lower BMI among EUR individuals 
(β = −0.01 kg/m2, P = 0.01; similar results were observed for trans-
ancestry analysis). This variant was also associated with lower waist 
circumference adjusted for BMI among EUR women (β = −0.016, 
P = 0.04; Supplementary Table 21). PTPRZ1 was shown to be down-
regulated in cells treated with an acute dose of nicotine15, which 
supports our observation of a lack of association of PTPRZ1 vari-
ants among ever-smokers.
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Interaction of rs12740061 and current smoking (1df)
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Fig. 2 | interaction of rs12740061 (LOC105378783) and current smoking 
status (1df). Forest plots show β values (95% confidence intervals) and P 
values (1df) for the rs12740061 × current smoking interaction term in linear 
regression models of HDL adjusted for age, sex, study-specific covariates 
(if applicable), smoking status, and principal components. Results for each 
AFR study are shown, as well as the ancestry-specific combined stage 1 
and 2 meta-analysis results.
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Fig. 3 | associations observed primarily in one smoking stratum. 
For select variants for which an association was primarily observed in 
only one smoking stratum, we compare the P values for stage 1 linear 
association models, including a main-effect model adjusted for age, sex, 
principal components, and study-specific covariates (as appropriate) 
in all individuals and with stratification by smoking exposure; a model 
additionally adjusted for smoking exposure; and a model that also 
included a smoking exposure × SNP interaction term, from which a 1df 
test of interaction and a 2df joint test of main effect and interaction were 
calculated. Associations are shown, from left to right, for rs7364132 
(DGCR8) × ever smoking and triglycerides (n = 21,834; 11,113 never-
smokers, 10,725 ever-smokers), rs79950627 (MIR4686) × current smoking 
and LDL (n = 23,348; 18,384 nonsmokers, 4,973 current smokers), 
rs56167574 (PRKAG2) × ever smoking and LDL (n = 23,353; 11,700 never-
smokers, 11,649 ever-smokers), and rs77810251 (PTPRZ1) × ever smoking 
and HDL (n = 23,146; 11,560 never-smokers, 11,592 ever-smokers).
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We report a main effect for rs34311866 on HDL and triglyceride 
levels. rs34311866 encodes a missense variant in TMEM175, which 
has been associated with Parkinson’s disease16 and type 2 diabetes17. 
This variant contributes to regulation of DGKQ (P = 5.3 × 10−21) and 
is an eQTL for DGKQ in adipose, artery, lung, nerve, and thyroid 
tissues (Supplementary Table 25). Expression of DGKQ is more 
strongly regulated by another significantly associated variant in this 
locus, rs4690220 (NC_000004.11:g.980464A>G), which is located 
upstream of IDUA and in an intron of SLC26A1. This variant had a 
high score in RegulomeDB (1f), supporting the idea that it poten-
tially has a functional effect (Supplementary Table 25). Notably, 
DGKQ has been implicated in studies of cholesterol metabolism18, 
bile acid signaling, glucose homoeostasis in hepatocytes19, primary 
biliary cirrhosis20, and Parkinson’s disease21–24. The DGKQ pro-
tein interacts with the key lipid enzymes LPL, LIPG, and PNPLA3 
(Supplementary Fig. 7). These results suggest that the observed 
association with HDL and triglycerides could act on cholesterol 
metabolism through regulation of DGKQ. Also, rs34311866 is a 
trans eQTL for GNPDA1 (Supplementary Table 27); expression  
of this gene has been associated with a set of traits, including  
hyperlipidemia25.

In our data, there was a significant interaction between 
rs12740061 (LOC105378783) and smoking, such that the minor 
allele was associated with decreased HDL levels only among current 
smokers. This variant is a trans eQTL for TAS1R1 (Supplementary 
Table 27). Variants in this gene have been found to influence taste 
receptors, notably affecting cigarette smoking habits26.

Discussion
In this study, we evaluated gene–smoking interactions in large, 
multi-ancestry meta-analyses of serum lipids, while using varying 
associations among smoking subgroups to improve the ability to 
detect new lipid-associated loci. We report 13 new loci for serum 
lipids from stage 1 and 2 meta-analyses. Sixteen additional statisti-
cally significant new loci were found in stage 1 but were unavailable 
for analysis in stage 2. All 29 new associations had a low q value 
(P < 3 × 10−4). Using both the 1df test of interaction and the 2df 
joint test of main and interaction effects in this study allowed us to 

improve our inferences on the basis of the results: the 2df test bol-
stered the power to detect interactions, while the 1df test could dis-
criminate between associations that predominantly reflected main 
effects versus interactions.

Our results provide support for future efforts to evaluate lifestyle 
interactions with complex traits. We identified loci for which an 
association with serum lipids was only observed in one smoking 
stratum. In main-effect models of these loci, the signal from one 
subgroup was not detected when all individuals were evaluated 
together (regardless of adjustment for smoking). These loci could 
only be observed through analysis that was stratified by smoking 
status or contained an interaction term, highlighting the impor-
tance of considering potential effect modification in association 
studies. Additionally, through use of the joint 2df test, we identi-
fied six loci that seem to represent new main effects. In agreement 
with this characterization, five of these loci were within 500 kb of 
variants identified in recent large-scale association studies that used 
main-effect models: ETV27–29, TMEM175 (ref. 28), EYA1 (ref. 28), 
EYA3 (ref. 28), and B3GNT4 (ref. 28).

With 23,753 AFR individuals in the stage 1 analyses and 30,970 
AFR individuals overall, this work represents one of the largest 
studies of serum lipids in AFR cohorts. It is therefore not surprising 
that two of our new lipid-associated loci (CREB3L2 and B3GNT4) 
seem to be driven primarily by genetic main effects. Notably, these 
associations could not have been detected in EUR individuals, as 
the tested allele for both rs4758675 (B3GNT4) and rs73729083 
(CREB3L2) is absent in EUR populations.

In addition to these probable main-effect loci, the prominence 
of the new loci that were statistically significant only in AFR meta-
analyses deserves further discussion. Some findings could not  
be effectively evaluated in other ancestry groups because of  
differences in MAF between the ancestry groups, with the minor 
alleles for half of the variants much more frequent in AFR popu-
lations. More puzzling, however, is the discovery of loci with  
evidence of strong interactions in the AFR ancestry group but not 
in meta-analyses in other ancestry groups, despite comparable or 
higher allele frequencies in these groups, such as were observed 
for rs12740061 (LOC105378783; Fig. 2) or rs17150980 (MAGI2; 
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Fig. 4 | Forest plots of select associations. a, Plots showing association between rs73453125 and LDL among AFR individuals in stage 1 (where a series 
of models was available). Variant β values (95% confidence intervals) and P values are drawn from main-effect linear regression models for nonsmokers, 
smokers, all individuals, and all individuals with adjustment for smoking status. b, Plots showing association between rs10101067 (EYA1) and triglycerides 
in ancestry-specific and combined analyses from stages 1 and 2. Variant main and interaction β values (95% confidence intervals) are drawn from linear 
regression models that included a current smoking × SNP term and P values are for the 2df joint test of main effect and interaction.
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Supplementary Fig. 6). This phenomenon suggests inter-ancestry 
differences in genomic or environmental context. There are variants 
in LD (r2 > 0.2) with rs12740061 (LOC105378783) and rs17150980 
(MAGI2) in AFR populations that are not in LD with these variants 
in other ancestry groups30, but these variants were directly tested 
in our study with no evidence of association in non-AFR analyses. 
Thus, it is unlikely that inter-ancestry differences in LD explain these 
results, although unmeasured causal variants are a possibility. Inter-
ancestry differences in smoking are also a potential explanation. In 
addition to known differences in smoking patterns31, there are pro-
nounced differences between ancestry groups in preferred cigarette 
type, with over 85% of AFR smokers using menthol cigarettes as 
compared to 29% of EUR smokers (in the United States)32. Menthol 
cigarettes are thought to facilitate greater absorption of harmful 
chemicals because of deeper inhalation31,33, through desensitization 
of the nicotinic acetylcholine receptors that cause nicotine-induced 

irritation34. Evidence for an excess risk of cardiovascular disease 
associated with mentholated cigarettes, however, is equivocal35–39. 
Ancestry differences in smoking-related metabolites and carcino-
gens have been reported40–43, and differential metabolism of key 
compounds may underlie observed differences by ancestry group. 
Some behaviors or conditions that co-occur with smoking may also 
differ by ancestry, and this additional factor may modify observed 
genetic associations with serum lipids.

The biological mechanisms through which smoking influences 
observed genetic associations will require further investigation, as 
the myriad components of cigarette smoke and their downstream 
consequences (including oxidative stress and inflammation) affect 
pathways throughout the body44. However, there is evidence for 
differential expression of PTPRZ1 (ref. 15), LPL15, and LDLR45 in 
cells exposed to an acute dose of nicotine. Also, concentrations of 
CETP46, ApoB47, and LPL48 are associated with smoking status.

Table 2 | statistically significant (P < 5 × 10−8) loci in stage 1 meta-analysis unavailable in stage 2

index variant  
(nearest gene)a

Build 37 
chr:position

1000 Genomes 
freq.b aFR/
aMR/asN/
euR

tested 
allele: 
freq.

ancestry trait/
exposure

stage 1

n effect se int. 
effect

se 1df 
interaction 
P valueb

2df joint  
P value

adj. main-
effect  
P valuec

rs140602625  
(EXOC6B)

2:72,849,325 0.01/0/0/0 C: 0.02 AFR LDL/CS 7,755 −3.4 3.1 −35 7.1 1.0 × 10–6 1.5 × 10–8 0.018

rs114138886  
(LOC107985905)

2:84,428,024 0.02/0/0/0 T: 0.02 AFR LDL/CS 7,755 2.4 2.9 −29 5.4 9.3 × 10–8 4.4 × 10–8 0.47

rs149776574  
(REEP1)

2:86,472,455 0.01/0.08/ 
0/0.06

G: 0.02 AFR TRIG/CS 7,756 −0.048 0.033 0.40 0.069 4.2 × 10–10 d 5.1 × 10–10 d 0.88

rs143396479  
(LOC105374426/ 
TMEM33)

4:41,911,366 0.02/0/0/0 A: 0.01 AFR LDL/ES 10,912 −16.0 2.6 15 4.5 0.022 6.8 × 10–9 0.0094

rs148187465 
(MARCH1)

4:164,639,694 0.01/0/0/0 C: 0.01 AFR LDL/CS 7,755 −2.1 3.0 −32 6.2 3.7 × 10–7 4.9 × 10–9 d 0.032

rs76687692  
(G3BP1)

5:151,189,283 0.03/0/0/0 A: 0.01 AFR LDL/CS 9,418 2.7 3.2 25 5.5 0.0013 4.8 × 10–9 d 0.0016

rs73339842 
(LINC01938)

5:164,967,406 0.02/0.01/0/0 G: 0.02 AFR TRIG/CS 7,756 0.046 0.033 −0.41 0.071 8.5 × 10–9 3.3 × 10–8 0.96

rs115580718  
(BMP6)

6:7,880,037 0.02/0/0/0 G: 0.01 AFR TRIG/CS 7,756 −0.12 0.036 −0.29 0.082 0.00045 1.2 × 10–9 d 1.6 × 10–6

rs17150980  
(MAGI2)

7:78,173,734 0/0.12/ 
0.45/0.01

C: 0.03 AFR TRIG/ES 12,972 −0.17 0.028 0.24 0.044 7.5 × 10–8 1.4 × 10–9 d 0.085

rs116592443  
(LYZL2)

10:30,884,890 0.02/0/0/0 A: 0.01 AFR TRIG/CS 7,756 0.073 0.038 −0.46 0.081 1.8 × 10–8 1.2 × 10–7 0.76

rs115628664 
(UNC5B)

10:2,899,880 0.03/0/0/0 G: 0.01 AFR TRIG/CS 7,756 0.027 0.040 −0.39 0.071 4.7 × 10–8 6.7 × 10–9 d 0.44

rs183911507 
(TP53I11)

11:44,978,366 0.01/0/0/0 G: 0.02 AFR TRIG/CS 10,287 −0.043 0.029 0.33 0.059 1.7 × 10–8 6.5 × 10–8 0.82

rs199771018 
(STOML3)

13:39,507,838 0.02/0/0/0 T: 0.02 AFR HDL/CS 7,756 −0.019 0.019 0.23 0.037 1.2 × 10–9 d 6.3 × 10–10 d 0.55

rs190976513  
(LOC105370255)

13:71,114,207 0.02/0.01/ 
0/0

A: 0.02 AFR LDL/CS 10,234 −5.1 2.6 −20 5.2 9.3 × 10–5 3.2 × 10–8 1.1 × 10–4

rs182600360  
(LOC105370531)

14:63,607,120 0.02/0/0/0 A: 0.02 AFR LDL/CS 7,755 6.6 3.3 −39 7.1 4.4 × 10–8 3.3 × 10–7 0.56

rs62064821  
(CCT6B)

17:33,280,904 0.01/0.04/ 
0/0.06

T: 0.01 AFR LDL/CS 10,234 8.5 3.3 −30 5.5 3.1 × 10–8 6.0 × 10–7 0.17

All loci shown in the table have some evidence of interaction (P < 0.05 in 1df test of interaction); thus, results are not categorized into ‘loci with evidence for interaction’ and ‘probable main-effect loci (no 
evidence for interaction)’ as in Table 1. Bolding indicates genome-wide statistical significance. AFR, African; CS, current smoking; ES, ever smoking; SE, standard error; TRIG, triglycerides. aListed variants 
represent the lead association within the 1-Mb region for the 2df and 1df tests of variant × smoking interaction after excluding variants within 1 Mb of known lipid-associated loci. If the variant was in or 
within 2 kb of a gene, the name of that gene is listed. bFrequency of the tested allele in 1000 Genomes data by ancestry: Asian (ASN), Americas (AMR), African (AFR), and European (EUR). cP values from 
a smoking-adjusted main-effect model (available in stage 1 cohorts only; Fig. 1). dStatistically significant when using a stricter P-value threshold, after Bonferroni correction for two smoking traits, two 
interaction tests, and ancestry and trans-ancestry testing (5 × 10−8/8 = 6.25 × 10−9).
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The sample size attained for diverse ancestry groups is a key 
strength of our study, particularly among AFR studies. As a result, 
we were able to identify loci that had not been previously detected 
in meta-analyses of ancestry groups that are better represented in 
genomic research. Additionally, the use of nested models in our 
stage 1 analyses allowed us to more fully characterize loci. Despite 
these strengths, however, a smaller number of AFR studies were 
available for stage 2, resulting in an inability to follow up on some of 
our low-frequency findings from stage 1.

In conclusion, this large, multi-ancestry genome-wide study of 
the effects of gene–smoking interactions on serum lipids identi-
fied 13 new loci on the basis of combined analyses of stages 1 and 
2 as well as 16 additional new loci on the basis of stage 1 that were 
unavailable in stage 2. Associations for some loci were detected only 
in analyses stratified by smoking status or with a smoking inter-
action term, thus motivating further study of gene × environment 
interactions for other lifestyle factors to identify new loci associated 
with lipids and other complex traits. We demonstrate the impor-
tance of including diverse populations, attaining a sample size in 
these analyses sufficient for discovery of new main-effect lipid-asso-
ciated loci in AFR populations. Careful consideration of ancestry 
may be of particular importance for gene × environment interac-
tions, as ancestry may be a proxy for both genomic and environ-
mental context.

URLs. 1000 Genomes Project, http://www.internationalgenome.
org/; dbGaP, https://www.ncbi.nlm.nih.gov/gap; dbSNP, http://ncbi. 
nlm.nih.gov/snp/; DEPICT, http://data.broadinstitute.org/mpg/ 
depict/; EasyQC, http://www.genepi-regensburg.de/easyqc; EasyStrata, 
http://www.genepi-regensburg.de/easystrata; ENCODE, https://
www.encodeproject.org/; forestplot, http://cran.r-project.org/web/ 
packages/forestplot/; GCTA, http://cnsgenomics.com/software/gcta;  
geepack, http://cran.r-project.org/web/packages/geepack/; GenABEL,  
https://github.com/cran/GenABEL; Gene Ontology, http://www.
geneontology.org/; GTEx, https://gtexportal.org/home/; HaploReg,  
http://pubs.broadinstitute.org/mammals/haploreg/haploreg.
php; KEGG, http://www.genome.jp/kegg/; LocusZoom, http://
locuszoom.sph.umich.edu/; METAL, http://genome.sph.umich.
edu/wiki/METAL; NCBI Entrez gene, https://www.ncbi.nlm.nih.
gov/gene/; ProbABEL, https://github.com/GenABEL-Project/
ProbABEL; Reactome, http://bioconductor.org/packages/release/
data/annotation/html/reactome.db.html; RegulomeDB, http://
www.regulomedb.org/; Roadmap Epignomics, http://www.roadma-
pepigenomics.org/; sandwich, http://cran.r-project.org/web/pack-
ages/sandwich/index.html; STRING database, http://string-db.org/.
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Methods
Details regarding the motivation for and methodology of this and other projects 
of the CHARGE Gene–Lifestyle Interactions Working Group are available in our 
recently published methods paper11, and detailed information on study design can 
be found in the Reporting Summary.

Participants. Analyses included men and women between 18 and 80 years of  
age of EUR, AFR, ASN, HISP, and (in stage 2 only) BR ancestry. Participating 
studies are described in the Supplementary Information, with further details on 
sample sizes, trait distribution, and data preparation available in Supplementary 
Tables 1–6. Considerable effort was expended to engage as many studies of diverse 
ancestry as possible. This work was approved by the Washington University in  
St. Louis Institutional Review Board and complies with all relevant ethical 
regulations. Each study obtained informed consent from participants and received 
approval from the appropriate institutional review boards.

Phenotypes. Analyses evaluated the concentrations of HDL, LDL, and 
triglycerides. LDL could be either directly assayed or derived by using the 
Friedewald equation (if triglyceride concentration was ≤400 mg/dl and individuals 
were fasting for at least 8 h). Lipid-lowering drug use was defined as any use of 
a statin drug or any unspecified lipid-lowering drug after 1994 (when statin use 
became common). If LDL was directly assayed, adjustment for lipid-lowering drug 
use was performed by dividing the LDL value by 0.7. If LDL was derived with the 
Friedewald equation, total cholesterol was first adjusted for lipid-lowering drug use 
(total cholesterol/0.8) before calculation of LDL by the Friedewald equation. No 
adjustments were made for any other lipid medication, nor were adjustments made 
to HDL or triglycerides for medication use. If samples were from individuals who 
were not fasting (fasting ≤8 h), neither triglycerides nor calculated LDL was used. 
Both HDL and triglycerides were natural log transformed, while LDL was  
not transformed. In the event that multiple measurements of lipids were available 
(in a longitudinal study), analysts selected the visit for which data were available 
for the largest number of participants and the measurement from that visit was 
included in analyses.

Environmental exposure status. The smoking variables evaluated were current 
smoking status (yes/no) and ever-smoking status (yes/no). Current smokers were 
included in the exposed group for both of these variables, and never-smokers were 
included in the unexposed group for both of these variables. Former smokers were 
included in the unexposed group for the current smoking variable and the exposed 
group for the ever-smoking variable. Smoking variables were coded as 0 and 1 for 
the unexposed and exposed groups, respectively.

Genotype data. Genotyping was performed by each participating study by using 
genotyping arrays from either Illumina or Affymetrix. Each study conducted 
imputation with various software. The cosmopolitan reference panel from 1000 
Genomes Project Phase I Integrated Release Version 3 Haplotypes (2010-11 data 
freeze, 2012-03-14 haplotypes) was specified for imputation and used by most 
studies, with some using the HapMap Phase 2 reference panel instead. Only 
variants on the autosome and with MAF of at least 0.01 were considered. Specific 
details of each participating study’s genotyping platform and imputation software 
are described in Supplementary Tables 3 and 6. Genotype was represented as the 
dosage of the imputed genetic variant, coded additively (0, 1, or 2).

Stage 1 analysis. Stage 1 genome-wide interaction analyses included 29 cohorts 
contributing data from 51 study/ancestry groups and up to 133,805 individuals of 
EUR, AFR, ASN, and HISP ancestry (Supplementary Tables 1–3). All cohorts ran 
three models in all individuals: a main-effect model, a model adjusted for smoking, 
and an interaction model that included a multiplicative interaction term between 
the variant and smoking status (Fig. 1). Additionally, the main-effect model was 
run with stratification by smoking exposure. All models were run for 3 lipid traits 
(HDL, LDL, and triglycerides) and 2 smoking exposures (current smoking and 
ever smoking). Thus, each study/ancestry group completed 30 GWAS (using five 
models × three traits × two exposures).

All models were adjusted for age, sex, and field center (as appropriate). 
Principal components derived from genotyped SNPs were included at the study 
analyst’s discretion. All AFR cohorts were requested to include at least the first 
principal component, and 71% of AFR cohorts used multiple principal components 
(with 25% using ten). The average number of principal components used was 4.2. 
Additional cohort-specific covariates could be included if necessary to control for 
other potential confounding factors. Studies including participants from multiple 
ancestry groups conducted and reported the results of analyses separately by 
ancestry group. Participating studies provided the estimated genetic main effects 
and robust estimates of standard error for all requested models. In addition, for 
models with an interaction term, studies also reported the interaction effects 
and robust estimates of their standard errors, as well as a robust estimate of the 
corresponding covariance matrix between the main and interaction effects. To 
obtain robust estimates of covariance matrices and robust standard errors, studies 
with only unrelated participants used either the sandwich or ProbABEL R package. 
If a study included related individuals, either generalized estimating equations 

(R package geepack) or linear mixed models (GenABEL, MMAP, or R) were 
used. Sample code provided to studies to generate these data has previously been 
published (see the supplementary materials in ref. 11).

Extensive quality control was performed with EasyQC49 on the study level 
(examining the results of each study individually) and then on the ancestry 
level (examining all studies within each ancestry group together). Study-level 
quality control consisted of exclusion of all variants with MAF < 0.01, extensive 
harmonization of alleles, and comparison of allele frequencies with ancestry-
appropriate 1000 Genomes reference data. Ancestry-level quality control included 
compilation of summary statistics on all effect estimates, standard errors, and  
P values across studies to identify potential outliers and production of SE-N and 
quantile–quantile plots to identify analytical problems (such as improper trait 
transformations)50. Variants were excluded from ancestry-specific meta-analyses 
for imputation score < 0.5; the same threshold was implemented regardless of the 
imputation software used, as imputation quality measures have been shown to be 
similar across software51. Additionally, variants were excluded if the minimum of 
the minor allele count in the exposed or unexposed group × imputation score was 
less than 20. To be included in meta-analyses, each variant had to be available from 
at least three studies or 5,000 individuals contributing data.

Meta-analyses were conducted for all models with the inverse-variance-
weighted fixed-effects method as implemented in METAL. We evaluated both a 
1df test of interaction effect and a 2df joint test of main and interaction effects, 
following previously published methods9. A 1df Wald test was used to evaluate the 
1df interaction, as well as the main effect and the smoking-adjusted main effect in 
models without an interaction term. A 2df Wald test was used to jointly test the 
effects of both the variant and the variant × smoking interaction52. Meta-analyses 
were conducted within each ancestry group separately, and trans-ancestry meta-
analyses were then conducted on all ancestry-specific meta-analyses. Genomic 
control correction was applied before all meta-analyses.

Variants that were associated in any analysis at P ≤ 1 × 10−6 were carried 
forward for analysis in stage 2. A total of 17,921 variants from 519 loci (defined by 
physical distance of ±1 Mb) were selected for stage 2 analyses.

Stage 2 analysis. Variants selected for stage 2 were evaluated in 50 cohorts, with 
data from 75 separate ancestry/study groups in a total of 253,467 individuals 
(Supplementary Tables 4–6). In addition to the four ancestry groups listed above, 
stage 2 analyses also included studies of BR individuals. BR individuals were 
considered only in the trans-ancestry meta-analyses, as there were no stage 1 BR 
results for meta-analysis. In stage 2, variants were evaluated only in the model with 
an interaction term (Fig. 1).

Study- and ancestry-level quality control were carried out as in stage 1. In 
contrast to stage 1, no additional filters were included for the number of studies 
or individuals contributing data to stage 2 meta-analyses, as these filters were 
implemented to reduce the probability of false positives and were less relevant in 
stage 2. Stage 2 variants were evaluated in all ancestry groups and for all traits, 
regardless of which meta-analysis met the P-value threshold in stage 1 analysis. 
Genomic control was not applied to stage 2 meta-analyses, given the expectation of 
association. To ensure the quality of analyses, all quality control and meta-analyses 
of replication data were completed independently by analysts at two different 
institutions (A.R.B. and J.L.B. at the NIH and E.L., X.D., and C.T.L. at Boston 
University), with differences resolved through consultation.

Meta-analyses of stages 1 and 2. Given the increased power of combined meta-
analyses of stages 1 and 2 in comparison with a discovery and replication strategy53, 
combined stage 1 and 2 meta-analyses were carried out for all selected variants . We 
report variants significant at 5 × 10−8 as well as those significant after Bonferroni 
correction for two smoking traits, two interaction tests, and ancestry-specific and 
trans-ancestry testing, with a P value of 6.25 × 10−9 (5 × 10−8/8). Loci that were 
significant at the stricter P-value threshold are indicated in the main tables. Loci 
were defined on the basis of physical distance (±1 Mb) and are described by the 
index variant (the most statistically significant variant within each locus). Novelty 
was determined by physical distance (±1 Mb) from known lipid-associated loci 
compiled from large meta-analyses1–5,12. FDR q values were determined with 
EasyStrata to implement the Benjamini–Hochberg method of calculation. Results 
were visualized by using R 3.1.0, including the package forestplot (Supplementary 
Figs. 3 and 4), and with LocusZoom v1.4 (Supplementary Fig. 5) for regional 
association plots.

Smoking dose analysis. To further characterize associations, we evaluated an 
interaction between smoking dose and a few of the new loci. Although data on 
smoking dose were not available for many of the included studies, we conducted 
secondary analysis on smoking dose interaction in a subset of loci in our two 
largest AFR studies: WHI-SHARE and ARIC. We identified four loci from our 
main results (LOC105378783, CNTNAP2, MIR4686, and DGCR8) for follow-
up on the basis of the following criteria: an interaction locus (as opposed to a 
probable main effect), stronger association observed among smokers than among 
non- or never-smokers, and presence of contributing cohort(s) with smoking dose 
variables available and with P < 0.05 for the reported result (to ensure sufficient 
power for analysis). We investigated these four loci by using three methods of 
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characterizing cigarettes per day: a quantitative variable, a categorical variable 
based on meaningful dose levels (less than half a pack, between half a pack and  
a pack, and more than a pack per day), and a binary variable defined by the  
median number of cigarettes per day in a cohort. Dose variables were defined 
separately by smoking status, such that cigarettes per day for former smokers 
were set to 0 for variables defined for current smokers, while cigarettes per day for 
both current and former smokers were quantified when defined for ever-smokers. 
Statistical significance was set at P < 0.0021; Bonferroni correction was performed 
to account for investigation of four loci, three smoking dose variables, and two 
smoking exposures.

Conditional analyses. To assess the independence of new loci from established 
lipid-associated loci, we conducted conditional analyses with GCTA. GCTA’s 
conditional and joint analysis option (COJO) calculates approximate conditional 
and joint association analyses on the basis of summary statistics from a GWAS 
meta-analysis and individual genotype data from an ancestry-appropriate reference 
sample (for LD estimation). For new loci from predominantly AFR meta-analyses, 
the LD reference set included unrelated AFR participants from HUFS, CFS, JHS, 
ARIC, and MESA (total n = 8,425). For new loci from predominantly EUR meta-
analyses, the LD reference set included unrelated EUR participants from ARIC 
(total n = 9,770). With the exception of HUFS, these data were accessed through 
dbGaP (ARIC, phs000280.v2.p1 and phs000090.v2.p1; CFS, phs000284.v1.p1; JHS, 
phs000286.v4.p1 and phs000499.v2.p1; MESA, phs000209.v13.p1 and phs000420.
v6.p3) and imputed to 1000 Genomes Phase 1 v.3 with the Michigan Imputation 
Server54. For loci with P < 5 × 10−8 for the 1df test of interaction, results from stage 
1 and 2 meta-analyses were adjusted for all known lipid-associated loci. A method 
for running conditional analyses for 2df tests has not been implemented within 
GCTA; therefore, we evaluated loci with P < 5 × 10−8 for the 2df joint test of  
main and interaction effects by conditioning stage 1 stratified analyses on known 
lipid-associated loci (stratified analyses were not conducted in stage 2 studies).  
The conditioned 2df joint test of main and interaction effects was then calculated 
with EasyStrata50 on the conditioned stratified results.

Power calculations for detecting interactions at known lipid-associated loci. To 
better contextualize our lack of detection of an interaction at a known locus, we 
conducted power calculations under a variety of scenarios. We explored the power 
to detect both an interaction and a main effect, making assumptions on the basis 
of our data, as the sample sizes achieved in this project are comparable to those in 
the largest main-effect GWAS for lipids1,5. By using previously developed analytical 
power formulas55, we evaluated three interaction scenarios: a pure interaction 
effect (no effect in nonsmokers and a positive effect in current smokers), a 
quantitative interaction (effects in the same direction across strata but of different 
magnitude), and a qualitative interaction (effects in opposite directions and of 
different magnitude). We assumed stage 1 and 2 sample sizes and 19% prevalence 
for smoking (as in our data). For the purpose of illustration, we assumed relatively 
large effects explaining 0.06% of variance in the lipid trait; the median variance 
explained from known lipid-associated loci, as estimated in a previous publication 
(see Supplementary Table 1 in ref. 2), is 0.04%.

Proportion of variance explained. To evaluate the proportion of variance 
explained by our new associations, we conducted additional analyses of our 
variants of interest in cohorts of diverse ancestry (Supplementary Table 16).  
In each of ten studies from four ancestry groups (EUR, AFR, ASN, and HISP),  
we ran a series of nested regression models to determine the relative contribution  
of each set of additional variables. The first model included only standard 
covariates (age, sex, center, principal components, etc.). The second model 
additionally included smoking status (both current and ever smoking). The third 
model added known variants1–5,12. The fourth model added all new variants and  
the last model also included interaction terms for new variants. For the purpose 
of this analysis, new variants included the lead variant for each genome-wide-
significant locus in the meta-analyses of stages 1 and 2 (Table 1) and variants 
that were significant but only available in stage 1 meta-analyses (Table 2). By 
subtracting r2 values from each of these nested regression models, the proportion 
of variance explained by the additional set of variables was determined. We 
conducted these analyses by using two approaches. In approach 1, all variants 
with MAF ≥ 0.01 and imputation quality ≥ 0.3 were included in regression models. 
Although the imputation quality threshold used for the main analyses (≥0.5) was 
higher to reduce the risk of spurious associations, we selected a lower threshold  
for this secondary analysis to maximize the number of variants of interest included. 
In approach 2, to avoid possible overfitting, stepwise regression was used for 
variant selection, such that only variants that were associated (P < 0.05) were 
retained in the model. All variants were considered in models for each trait and 
ancestry group, regardless of the trait or ancestry group in which the association 
was identified.

Reproducing previously reported lipid associations. To evaluate the degree 
to which our data confirmed previous associations, we evaluated statistically 
significant associations reported from recent large meta-analyses1–5,12. In the 
event of overlap between reports, the most statistically significant variant–trait 

association was considered, for a total of 356 unique associations for 279 variants. 
Output from our main-effect models (stage 1) was extracted for all ancestry groups 
for each previously reported variant–trait combination. Reproducibility was 
determined by P < 0.05/356 in any ancestry group and a consistent direction of 
effect (Supplementary Table 17).

Functional inference. To evaluate the degree to which our new variants might 
influence other cardiometabolic traits, we extracted our new variants (Tables 1  
and 2) from previous studies. Supplementary Tables 19–24 present the association 
of these variants with coronary artery disease and myocardial infarction (data from 
the CARDIoGRAM Consortium56), neurological traits (data from the Neurology 
Working Group of the CHARGE Consortium), anthropometric traits (data from 
the GIANT Consortium57–59), adiposity × smoking interaction (data from the 
GIANT Consortium60), diabetes and related traits (data from MAGIC61, AAGILE62, 
and DIAGRAM63,64), and kidney outcomes (data from the COGENT-Kidney 
Consortium65).

To conduct functional annotation of our new variants (Supplementary Tables 
18 and 25–27), we used NCBI Entrez gene (see URLs) for gene information, 
dbSNP to translate positions to human genome build 38, HaploReg (v4.1) and 
RegulomeDB for gene expression and regulation data from the ENCODE and 
Roadmap projects, and GTEx v7.0 for additional gene expression information. We 
also investigated our new variants in cis- and trans-eQTL data based on analysis of 
the whole blood of Framingham Heart Study participants66.

Pathway and gene set enrichment analyses. We conducted DEPICT analyses13 
on the basis of genome-wide-significant (P < 5 × 10−8) variants separately for the 
three traits HDL, LDL, and triglycerides (Supplementary Tables 28–37). To obtain 
input for prioritization and enrichment analyses, DEPICT first created a list of 
non-overlapping loci by applying a combined distance- and LD-based threshold 
(500-kb flanking regions and LD r² > 0.1) between the associated variants and 
1000 Genomes reference data. DEPICT then obtained lists of overlapping  
genes by applying an LD-based threshold (r2 > 0.5) between the non-overlapping 
variants and known functional coding or cis-acting regulatory variants for 
the respective genes. Finally, the major histocompatibility complex region on 
chromosome 6 (base positions 25,000,000–35,000,000) was removed from  
further analyses. DEPICT prioritized genes at associated regions by comparing 
functional similarity of genes across associated loci via a gene score that was 
adjusted for several confounders such as gene length. While using lead variants 
from 500 precompiled null GWAS, the scoring step was repeated 50 times 
to obtain an experiment-wide FDR for gene prioritization. Second, DEPICT 
conducted gene set enrichment analyses on the basis of a total of 14,461 
precompiled reconstituted gene sets. The reconstituted gene sets involve 737 
Reactome database pathways, 2,473 phenotypic gene sets (derived from the  
Mouse Genetics Initiative)67, 184 Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database pathways, 5,083 Gene Ontology database terms, and 5,984 
protein molecular pathways (derived from protein–protein interactions68).  
Third, DEPICT conducted tissue and cell type enrichment analyses on the  
basis of expression data from any of the 209 MeSH annotations for 37,427 
microarrays of the Affymetrix U133 Plus 2.0 array platform. In addition,  
we used the STRING database to identify protein–protein interactions.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All summary results will be made available in dbGaP (phs000930.v7.p1).
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No software was used.

Data analysis Code for the standardized running of study-specific analyses was provided to study analysts and has been previously published (see 
Supplemental Materials for Rao DC, Circulation: Genomic and Precision Medicine, 2017). Contributing studies used the following 
software for association analyses: ProbAbel  0.4.3-4; R sandwich 2.3-4; R geepack 1.2.0-1; Quicktest 0.95,0.99; SNPTEST/SNPTEST2;  
GWAF 2.2; PLINK 1.9; STATA; GENESIS; R 3.2.0-4; MMAP (https://mmap.github.io/); SAS 9.2 PROC REG; and STATA (with specific software 
used for each study described in Supplementary Tables 3 and 6). For QC and meta-analysis, we used EasyQC 9.2, EasyStrata 16.0, METAL, 
and R 3.1.0.  Visualization of results was conducted using R 3.1.0, including the package forestplot 1.7, and LocusZoom 1.4.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Upon formal acceptance, the meta-analysis summary results will be made available for download on the CHARGE dbGaP website under accession phs000930. These 
results will include output visualized in Supplemental Tables 1 and 2. 
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For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size As the degree to which gene x smoking interactions might influence lipids was unknown, but interactions are known to be challenging to 
detect because of statistical power limitations, we endeavored to aggregate as many samples as possible to improve our chances of discovery. 
We felt sufficiently confident in the sufficiency of our sample sizes because they exceeded those of previous efforts which detected gene x 
lifestyle interactions (for example: Manning AK, Nat Genet, 2012) and main effects of serum lipids (for example: Teslovich TM, Nature, 2010).

Data exclusions According to pre-established guidelines, individuals who were younger than 18 or older than 80 were excluded as the distribution of lipid 
values at these extremes of the aging spectrum, creating noisy data.

Replication The promising associations in stage 1 analyses were evaluated in stage 2 analyses, comprised of independent samples.  The main findings 
presented are of results of the meta-analyses of these two stages, however, the number of associations that replicated are given and further 
described in Supplemental Table 7.

Randomization This is an observational association study; exposures of interest were determined by random biological processes (genetic variants) or 
participant's lifestyle choice.

Blinding These meta-analyses were conducted on summary data provided by epidemiological studies of genome-wide association data; blinding was 
not relevant to this project.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics These analyses include participants from a wide variety of studies, each with distinct participant populations in terms of 
demography, recruitment strategies, and study design.  Key characteristics with regard to this project have been described in 
Supplemental Tables 2 and 5, with further details available in the study descriptions provided in the Supplemental Materials. 
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Briefly, participants were limited to age 18-80 years, with mean age 56.2 yrs in stage 1 and 49.3 yrs in stage 2. For stage 1, 39.1% 
of participants were men; 45.8% of stage 2 participants were men. In stage 1, 17.5% of participants were current smokers; 21.3% 
of stage 2 participants were current smokers. For stage 1, 50.8% of participants were ever smokers; 51.9% of stage 2 participants 
were ever smokers.

Recruitment Recruitment details for this project varied across included tables. Details regarding recruitment for each of the included studies 
are given in the study descriptions provided in the Supplementary Materials.
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