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Summary

Genetic pathway analysis has become an important tool for investigating the association
between a group of genetic variants and traits. With dense genotyping and extensive imputation,
the number of genetic variants in biological pathways has increased considerably and sometimes
exceeds the sample size n. Conducting genetic pathway analysis and statistical inference in such
settings is challenging. We introduce an approach that can handle pathways whose dimension p
could be greater than n. Our method can be used to detect pathways that have nonsparse weak
signals, as well as pathways that have sparse but stronger signals. We establish the asymptotic
distribution for the proposed statistic and conduct theoretical analysis on its power. Simulation
studies show that our test has correct Type I error control and is more powerful than existing
approaches. An application to a genome-wide association study of high-density lipoproteins
demonstrates the proposed approach.

Some key words: Genetic pathway analysis; Genetic variant; High-dimensional inference; Nonsparse signal; Power
analysis; Sparse signal.

1. Introduction

Genetic association analysis plays an important role in identifying genetic variants that are
associated with traits. Genetic variants are often analysed by single-variant-based methods, using
approaches such as Armitage’s trend test. Pathway-based analysis has become a popular tool for
analysing genetic variant data (Chen et al., 2011b), whereby multiple genetic variants in the genes
in a prespecified pathway are examined. There are several reasons to consider pathway analysis
for association studies. First, pathways are generally defined using biological knowledge and thus
are more likely to be functionally relevant (Zhong et al., 2010). Second, by analysing multiple
variants simultaneously, pathway analysis has the potential to accumulate weak signals into
stronger ones, while single-variant-based methods lack power in such a situation. Third, because
the number of pathways is much smaller than the number of variants, the multiple-testing burden
can be dramatically reduced.
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652 Y. Liu et al.

One of the main challenges in pathway analysis is to deal with the high dimensionality. With
increasingly dense genotyping and extensive imputation, the number of variants p in genetic
pathways has grown so rapidly that it can be larger than the sample size n. This is seen in our
real-data example, where the sample size is around 4000 while the number of single nucleotide
polymorphisms in a pathway can be as large as 25 000. In such high dimensions, statistical testing
methods that were designed for moderate p, such as the likelihood ratio test, tend to have low
power or may be inapplicable. To deal with the high dimensionality in pathway analysis, one
potential approach is the burden test (Morgenthaler & Thilly, 2007), in which one simply sums
the genotypes into a single predictor and then subjects this predictor to regression analysis. The
burden test works well if all the variants have similar effect sizes, but this assumption rarely holds
in real situations. Another common approach to dealing with high dimensions is to use principal
component analysis in the regression modelling. One first derives the principal components from
the genetic pathway under consideration, and then uses the leading components for association
analysis (Buas et al., 2017). The disadvantages of this approach are that principal components
with large variations need not be associated with the traits; it is rarely clear how many principal
components to include; the interpretation of the regression coefficients can be difficult; and
when p → ∞, the estimated principal components may not be consistent (Shen et al., 2016).
Complementary to the aforementioned approaches, kernel machine methods such as the sequence
kernel association test (Wu et al., 2011) can also be applied to genetic pathway analysis. However,
the latter test has been used primarily to analyse moderate-sized variant sets, and its performance
in cases where p is substantially larger is unclear. Other methods that have been developed for
testing a group of genetic features in high-dimensional settings (Chen & Qin, 2010; Chen et al.,
2011a; Gregory et al., 2015) focus on testing the mean difference between two groups rather than
conducting association analysis.

In addition to the high-dimensional challenge, another difficulty in pathway analysis is power
maximization under multiple plausible alternative hypotheses. For pathway analysis, the alter-
native hypothesis concerns both the number and the magnitudes of the nonzero genetic signals,
which are generally unknown (Zhang, 2015). A situation often considered for genetic signals is
that a pathway harbours potentially many variants with weak effects, called the nonsparse-signal
situation. The sequence kernel association test can aggregate multiple signals and is potentially
applicable to such a setting. Another possibility is that a genetic pathway contains only a few
strong signals, called the sparse-signal situation. Several methods have been proposed to deal
with this case, such as the Pmin test (Conneely & Boehnke, 2007), which first examines each
variant individually and then seeks to obtain the p-value for the maximum of the observed statis-
tics. However, the Pmin test has little power in the nonsparse situation, while the sequence kernel
association test loses power in the sparse situation.

In this paper, we propose a method for conducting high-dimensional genetic pathway analysis,
where the dimension p of the pathway can go to infinity and could exceed the sample size n.
Our approach can be used to identify pathways that harbour a large number of weak signals, i.e.,
nonsparse signals, as well as genetic pathways that contain only a few strong signals, i.e., sparse
signals, or a mixture of weak and strong signals. We establish the asymptotic properties of the
proposed statistics in high dimensions and conduct theoretical analysis of their power.

2. Methods

2.1. Model and statistics

Suppose that the data consist of a continuous trait vector yn×1 = (y1, . . . , yn)
T, an adjusting

covariates matrix Xn×d = (X1, . . . , Xd) and a genotype matrix Gn×p = (G1, . . . , Gp) for a genetic
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Genetic pathway analysis in high dimensions 653

pathway; that is, the pathway being considered contains p genetic variants. Suppose that the true
regression model is

y = X α + Gβ + ε,

where αd×1 = (α1, . . . , αd)T is the coefficient vector for X , with α1 being the intercept, βp×1 =
(β1, . . . , βp)

T is the coefficient vector for G, and εn×1 = (ε1, . . . , εn)
T is a vector of independent

Gaussian errors with mean zero and variance σ 2. The design matrices X and G are considered
fixed. The dimension d of the adjusting covariates is assumed to be finite, while the dimension p
of the genotype matrix can go to infinity.

We are interested in testing the global null hypothesis H0 : β = 0 against the alternative
Ha : β |= 0. Tests such as the likelihood ratio test and Wald test consider all the p variants jointly
and tend to perform poorly when p is large; the statistics may not exist when p > n. Marginal
statistics are easy to calculate and have been widely used to evaluate the significance of each
individual variant. Recall that in a marginal analysis, one first fits a regression model for a given
variant, say the jth, by y = X α + Gjβj + ε (j = 1, . . . , p) and then obtains the marginal score
statistic as

bj = (GT
j PX Gj)

−1/2GT
j PX y

with PX = In − X (X TX )−1X T, where In is the identity matrix. To conduct a pathway analysis, it
is natural to consider the sum of all the squared marginal statistics, Q0 = ∑p

j=1 b2
j . In fact, it can

be shown that Q0 is equivalent to the sequence kernel association test statistic, if the estimator
σ̂ 2 of σ 2 is ignored in the latter. However, our proposed approach is not focused on Q0 per se,
but rather uses Q0 to develop a suite of statistics for high-dimensional settings, particularly for
the case of p/n → γ ∈ (0, ∞) for a constant γ .

Under the null hypothesis H0, it can be shown that E(Q0) = pσ 2 and var(Q0) = 2σ 4‖A‖2
F,

where A = PX GD−1GTPX , with D a diagonal matrix whose elements are GT
j PX Gj (j = 1, . . . , p),

and ‖ · ‖F is the Frobenius norm. For the moment we assume that σ 2 is known, but later on we
will address the practical situation where σ 2 needs to be estimated. We propose to standardize
Q0, which yields

T ∗(n, p) =
∑p

j=1 b2
j − pσ 2

√
2σ 2‖A‖F

, (1)

where the superscript (n, p) emphasizes that both n and p can go to infinity; it will be suppressed
below for ease of notation. Expression (1) suggests that T ∗ may converge to normality as p
gets large. However, the central limit theorem does not directly apply here because the b2

j are
correlated. In fact, the correlation matrix for the bj, �, can be shown to have the form

� = D−1/2GTPX GD−1/2,

and it can further be shown that ‖�‖F = ‖A‖F. In Lemma 1 we show that under proper conditions,
T ∗ is standard normal as both n and p go to infinity.

Before presenting Lemma 1, we define some notation. For a vector a = (a1, . . . , an), let
‖a‖k = (∑n

i=1 |ai|k
)

1/k be the k-norm of the vector for k = 1, 2, . . . , ∞. For any m × l matrix
M = (mij)i=1,...,m; j=1,...,l , denote the induced k-norm by ‖M‖k = sup‖x‖k=1 ‖Mx‖k . When M is
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654 Y. Liu et al.

an m × m matrix, we denote its maximum and minimum eigenvalues by λmax(M ) and λmin(M ),
respectively.

Lemma 1. Let n, p → ∞. If

‖�‖2 = o(p1/2) as p → ∞, (2)

then under H0, the statistic T ∗ = (
∑p

j=1 b2
j − pσ 2)/(

√
2σ 2‖A‖F) → N (0, 1) in distribution.

Remark 1. Here we have no constraint on the order of p with respect to n, providing they
both go to infinity. Condition (2) is mild for genetic studies. By Hölder’s inequality, ‖�‖2 �
(‖�‖1‖�‖∞)1/2 = ‖�‖1, where ‖�‖1 is the maximum absolute column sum of the matrix.
When the correlation structure in � is not overly strong, as is the case for the power-decay
structure, i.e., �jk = O(ρ|j−k|) for some ρ < 1, then one can show that ‖�‖1 = o(p1/2). Here
�jk , the correlation of bj and bk , can be interpreted as the linkage disequilibrium of genetic
variants after adjusting for covariates X ; when there are no adjusting covariates, � reduces to the
linkage disequilibrium matrix of G. The power decay structure indicates that two distant genetic
variants have virtually no linkage disequilibrium, which is indeed what is observed in genetic
studies, particularly in the human genome data (International HapMap Consortium, 2005). Similar
structures have also been used in other articles on genetic studies, such as Dai et al. (2012). Our
proposed statistic naturally takes linkage disequilibrium into account, because ‖A‖F = ‖�‖F.
The linkage disequilibrium can influence both the denominator and the numerator of T ∗, so the
impact of the linkage disequilibrium on the power of the proposed test is influenced by the size
and density of the genetic signals. However, the linkage disequilibrium will not affect the validity
of the test or its asymptotic properties, because the calculation of ‖�‖F does not involve inversion
of the linkage disequilibrium matrix, and the normality of the proposed statistics requires only
that distant variants tend to have linkage disequilibrium approaching zero. In practice, variants
in a gene tend to be in linkage disequilibrium, while those for different genes are generally not
in linkage disequilibrium; this type of structure is covered in Lemma 1.

So far we have assumed that the noise level σ 2 is known. To make our proposal practical, it
is tempting to replace σ 2 with a consistent estimator σ̂ 2. It turns out that the validity of doing
so depends on the order of p relative to n. In the following, we elaborate on this and propose
different statistics to accommodate different ratios p/n.

We first consider the situation where p = O(n1−ξ ) for some 0 < ξ < 1, i.e., p is of smaller
order than n. The following lemma shows that if we replace σ 2 with a consistent estimator σ̂ 2,
normality still holds.

Lemma 2. Suppose that (2) holds. Let σ̂ 2 be a root-n-consistent estimator of σ 2 such that
σ̂ 2 = σ 2 + Op(n−1/2). Then under H0, as n, p → ∞ such that p = O(n1−ξ ) for 0 < ξ < 1,

TL =
∑p

j=1 b2
j − pσ̂ 2

√
2σ̂ 2‖A‖F

→ N (0, 1)

in distribution.

Next, we consider the situation in which p/n → γ ∈ (0, ∞) for some constant γ . The
normality of TL no longer holds because p(σ̂ 2 − σ 2) becomes excessively large; see the proof of
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Genetic pathway analysis in high dimensions 655

Lemma 2 for more details. In light of this, we propose a new statistic

TH =
∑p

j=1 b2
j − (n − d)−1pyTPX y√

2σ̂ 2‖A1‖F
, (3)

where A1 = A − (n − d)−1pPX , with d being the number of adjusting covariates as mentioned
earlier. The pσ̂ 2 in the numerator of TL is replaced by (n − d)−1pyTPX y in TH. The motivation
behind this is that (n − d)−1yTPX y estimates σ 2 under H0. We discovered that this replacement
of σ̂ 2 enables one to overcome the limitation of TL in high dimensions. The following theorem
shows that TH follows a normal distribution for p/n → γ ∈ (0, ∞).

Theorem 1. Suppose that (2) holds. For any consistent estimator σ̂ 2, as n, p → ∞ such that
p/n → γ ∈ (0, ∞), if p−1‖�‖2

F � γ + η for some constant η > 0, then under H0 we have
TH → N (0, 1) in distribution.

Theorem 1 allows one to conduct statistical inference for pathway analysis when p > n,
although p should not be excessively larger than n. The condition p−1‖�‖2

F � γ +η is necessary
to prevent the ‖A1‖F in the denominator equalling zero, as it can be shown that ‖A1‖2

F = ‖�‖2
F −

(n − d)−1p2. To obtain a consistent estimator for σ 2 under Ha in a high-dimensional setting, Fan
et al. (2012) proposed a refitted crossvalidation method based on procedures that satisfy the sure
screening property. When the sparsity of the model is completely unknown, we can also estimate
σ 2 by the moment-based estimators of Dicker (2014), which are root-n consistent when p > n.

2.2. Power loss in the presence of sparse signals

The proposed statistic TH can handle situations where the association signals are spread out
over a large number of genetic variants. However, the power of TH will be relatively low for
the sparse-signal situation, in which a few genetic variants carry strong signals while all the
others have zero coefficients. Fan et al. (2015) proposed the power-enhancement principle, the
fundamental idea of which is to include a screening statistic that goes to zero under H0, but is
nonzero under the sparse alternatives Ha. Motivated by this principle, we propose a statistic that
strengthens TH and is able to guard against potential power loss in the sparse-signal situation.

We define a screening set Ŝ = {j : |bj|/σ̂ > δp}, where δp is a threshold chosen to be slightly
larger than the maximum estimation error of the marginal estimator, i.e., maxj |bj − E(bj)|/σ̂ .
Then, a power-enhancement component T0 is

T0 = sgn(TH) p1/2
∑
j∈Ŝ

b2
j /σ̂

2,

where sgn(TH) denotes the sign of TH. Our statistic that is able to detect both nonsparse and
sparse signals is T = TH + T0.

Since T0 has the same sign as TH, T always has power at least that of TH. The threshold δp needs
to ensure that the screening set Ŝ is empty with probability approaching 1 under H0, so that the
size of T will be asymptotically equivalent to that of TH. Then, under Ha, if an estimator is large
enough that Ŝ is nonempty, one can gain power. For Gaussian and sub-Gaussian errors, δp can
be chosen to be log log n(log p)1/2, as suggested by Fan et al. (2015). The power-enhancement
procedure in Fan et al. (2015) deals with a consistent estimator under Ha, which is not available
in our procedure, while our approach builds upon marginal estimators which are inconsistent
under Ha. Nevertheless, the size of our proposed statistic is asymptotically equivalent to that of
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656 Y. Liu et al.

TH under H0; in the next subsection, we will show that under the sparse alternatives T can be
powerful even when TH is not.

Lemma 3. Under the same conditions as in Theorem 1, if δp = ap(log p)1/2 where ap → ∞
as p → ∞, then under the null hypothesis H0 we have T → N (0, 1) in distribution. Thus, the
sizes of T and TH are asymptotically equivalent.

To select δp in practice, we propose an adaptive procedure to accommodate different
correlation structures. We first generate a vector of n random errors ε∗ from the standard
normal distribution. Then we compute the maximum of the marginal estimators as θ∗ =
max1�j�p |(GT

j PX Gj)
−1/2GT

j PX ε∗|. Finally, we repeat these two steps many times and set
δp = max θ∗ based on all the replicates. McKeague & Qian (2015) also used an adaptive approach
to determine threshold parameters for high-dimensional testing.

2.3. Power analysis

In this subsection we investigate the asymptotic power of the proposed tests TH and T for
nonsparse and sparse alternatives. Under Ha, let S = {j : βj |= 0} be the set of nonzero coefficients,
and let s = |S|. Define the subvector βS = {βj : j ∈ S} and the submatrix GS = {Gj : j ∈ S}. Let
DS be the diagonal matrix with nonzero elements GT

j PX Gj for j ∈ S. Similarly, let βSc , GSc and
DSc denote the corresponding quantities for Sc = {j : βj = 0}.

The following theorem states that the sum-of-squares type of statistic TH has high power for
the nonsparse-signal situation when the accumulated signals are sufficiently large.

Theorem 2. Suppose that all the conditions in Theorem 1 hold. Consider a nonsparse
alternative H (ns)

a in which ‖β‖2 > c1(p log p/n)1/2 for a sufficiently large constant c1. If
λmin(n−1GT

SA1GS) � c2 and λmax(n−1GT
SGS) � c3 for some constants c2, c3 > 0, then as

n, p → ∞, pr(|TH| > q1−ζ/2) → 1, where q1−ζ/2 is the (1 − ζ/2)-quantile of the standard
normal distribution.

While TH can have high power under nonsparse alternatives, it may lose power under sparse
alternatives. In the following theorem we show that T , which adds a power-enhancement term
T0 to TH, can be powerful under both nonsparse and sparse alternatives.

Theorem 3. Assume that the conditions in Theorem 2 hold. Consider a sparse alterna-
tive H (s)

a in which maxj∈S(GT
j PX Gj)

1/2|βj| > c4s1/2δp for a sufficiently large constant c4. If

λmin(D
−1
S GT

SPX GS) � c5 for some constant c5 > 0, then under either the nonsparse alternative

H (ns)
a or the sparse alternative H (s)

a , as n, p → ∞, pr(|T | > q1−ζ/2) → 1.

In practice, we recommend use of T for detecting both weak and strong signals. However, if
one wishes to distinguish between the sparse signals and the nonsparse signals, one can examine
the values of TH and T . If |T | is larger than |TH|, then the power-enhancement component T0 is
nonzero and there exist strong signals in the pathway. If T = TH, then there are no strong signals
in the pathway and the significance is driven by weak signals.

2.4. Incorporating biological information into TH and T

The statistics TH and T give equal weight to all the variants. In some applications, one may
wish to assign different weights based on prior information. For example, if the effect of a genetic
variant is related to its minor allele frequency, one may assign a weight wj = 1/{mj(1 − mj)}
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Genetic pathway analysis in high dimensions 657

to this variant, where mj is the minor allele frequency for the jth variant. In other cases, one
may assign functional scores to different variants to reflect their biological functions. In lieu of
these considerations, we propose incorporating prior biological information into our proposed
statistics as follows.

Let wj (j = 1, . . . , p) be prespecified positive weights, and let Dw be the diagonal matrix with
elements wj. Next, define Q0(w) = ∑p

j=1 wjb2
j and Q1(w) = Q0(w)−(n−d)−1(

∑p
j=1 wj)yTPX y.

Let A(w) = PX GDwD−1GTPX and A1(w) = A(w) − (n − d)−1∑p
j=1 wjPX . Similar to TH, we

define a statistic TH(w) = Q1(w)/{√2σ̂ 2‖A1(w)‖F}. The following result shows the asymptotic
normality of TH(w).

Corollary 1. Suppose that (2) holds and‖�‖2 maxj=1,...,p wj/‖w‖2 → 0 as p → ∞.Assume
that as n, p → ∞, p/n → γ ∈ (0, ∞). For any consistent estimator σ̂ 2, if ‖w‖−1

2 ‖Dw�‖2
F �

γ + ηw for some constant ηw > 0, then under H0, TH(w) → N (0, 1) in distribution.

As was done for TH, we can add T0 to TH(w) to guard against potential power loss in the
presence of strong signals. Thus, our proposed statistics can readily accommodate prior biological
information and still preserve their theoretical properties.

2.5. Edgeworth expansion for extreme significance levels

Genetic studies sometimes involve a large number of pathways, so the significance level can
be much lower than 0.05. For example, in our real-data analysis, the significance level is 0.0003.
At such levels, the normal distribution in Lemma 3 may be a poor approximation. We therefore
propose a two-term Edgeworth expansion to characterize the tail probability of TH with higher
accuracy. Recall that under H0, TH = εTA1ε/(

√
2σ̂ 2‖A1‖F). It is known that εTA1ε/σ

2 follows a
mixed chi-squared distribution with weights λ1, . . . , λp, where λj are the eigenvalues of A1. Using
the Edgeworth expansion for independent random variables with varying distributions (Feller,
1971, p. 546), we can derive the following two-term expansion for pr{εTA1ε/(

√
2σ 2‖A1‖F) � t}:

�(t) + 4�3(1 − t2)

3(2�2)3/2 φ(t) −
{

�4(t3 − 3t)

96�2
2

+ �2
3(t

5 − 10t3 + 15t)

9�3
2

}
φ(t) + O

(
p3

�
9/2
2

)
, (4)

where �k = ∑p
j=1 λk

j for k = 2, 3, 4. Further, �2 = ‖A1‖2
F = ‖�‖2

F − p2/(n − d). Then, under

the conditions in Theorem 1, the last remainder term in (4) can be shown to be O(n−3/2). This
expansion tends to be more accurate than the normal approximation, as the remainder term of the
normal approximation is typically O(n−1/2). Directly calculating (4) involves computing the λj,
which can be onerous when n and p are large. Instead, we can use the identity �k = tr(Ak

1) for
k = 2, 3, 4. We call the test that uses (4) to approximate the p-value for TH the T e

H test. Similarly,
we can apply an Edgeworth expansion to T , and we call the resulting test T e.

3. Simulation studies

Monte Carlo simulations were conducted to evaluate the performance of the proposed tests,
TH and T , in high-dimensional settings and to compare them with the Bonferroni test, the burden
test, principal component analysis, and the sequence kernel association test.
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Table 1. Type I error (%) of the tests at level 0.05
n p Corr. Bonf. Burden PCA PCA50 SKAT TH T

500 300 CS 4.66 4.90 5.00 5.97 2.79 4.84 5.10
AR 4.47 5.30 4.91 6.40 2.77 5.03 5.13

500 CS 4.80 4.92 5.06 6.59 2.04 4.89 4.97
AR 4.64 4.80 5.45 6.59 1.64 4.76 4.84

1000 CS 4.71 5.02 5.00 7.22 0.75 4.75 4.93
AR 4.96 4.98 5.10 7.31 0.68 4.83 4.93

1000 800 CS 5.07 4.86 5.20 6.49 2.47 5.03 5.12
AR 4.78 5.26 5.25 6.49 2.18 4.92 5.01

1000 CS 4.92 5.08 4.71 6.13 2.02 4.85 5.04
AR 5.24 5.00 4.90 6.60 1.81 4.88 4.99

1500 CS 4.92 5.08 5.27 7.07 1.38 4.95 5.14
AR 5.22 5.08 5.26 6.85 1.04 4.82 4.98

Corr., correlation structure; CS, compound symmetric; AR, autoregressive; Bonf., Bonferroni test; PCA, principal
component analysis using the five leading components; PCA50, principal component analysis using components that
explain 50% of the variance; SKAT, the sequence kernel association test.

We generated the genotype matrix G similarly to He et al. (2016). For each person, we first
generated a block-diagonal covariance matrix with each block being a 5 × 5 matrix �0. We
considered compound symmetric �0 with diagonal elements 1 and off-diagonal elements 0.5
and autoregressive �0 with (i, j)th off-diagonal element 0.6|i−j|. Then we trichotomized the
simulated vector into genotype values of (0, 1, 2) according to the Hardy–Weinberg equilibrium.

We generated the trait by setting yi = 1 + xi + ∑p
j=1 Gijβj + εi (i = 1, . . . , n), where

xi ∼ N (0.1Gi1, 1) is an adjusting covariate and εi ∼ N (0, σ 2) with σ = 1. For the sample
size n and the dimension p, we considered both the p > n and the p < n cases by setting n = 500
with p = 300, 500, 1000 and setting n = 1000 with p = 800, 1000, 1500.

The null model is βj = 0 (j = 1, . . . , p). To simulate the data under various alternatives, we
assume that β = (β1, . . . , βp)

T has s nonzero signals with support set S = {1, 6, . . . , 5s − 4}. The
magnitude of the signal |βj| was set to be 0.4(log p/n)1/2, and half of the βj had positive signs
while the other half had negative signs. The magnitude of the signals varied from 0.03 to 0.05
under these set-ups, and the proportion of nonnull variants among all the variants, s/p, was set
to 5%, 10%, 15% or 20%.

The tests TH and T were conducted as described in § 2. For variance estimation, we applied
the refitted crossvalidation method (Fan et al., 2012) to obtain σ̂ 2. The threshold parameter δp in
the power-enhancement component T0 was estimated over 1000 replicates. We used two versions
of principal component analysis. In the first, we used the five leading principal components and
performed a likelihood ratio test. In the second version, we included the principal components
that explain 50% of the total variance for the likelihood ratio test. The reason for considering
the second version is that, in practice, a few principal components may not always capture the
majority of the variance, as seen in Avery et al. (2011). We also included the sequence kernel
association test without any weights.

The Type I errors of the tests were calculated over 10 000 replications, and the power was based
on 1000 replications. Table 1 displays the Type I errors of the tests for the models considered. It can
be seen that the Bonferroni test, principal component analysis using the five leading components,
the sequence kernel association test, and our tests TH and T all have their Type I errors controlled.
Principal component analysis using components that explain 50% of the variance appears to have
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Fig. 1. Power of the Bonferroni test (♦), the burden test (◦), principal component analysis (�), the sequence kernel
association test (·), TH (�) and T (�) at level 0.05 for different sample sizes and dimensions plotted against the

proportion of nonzero signals, s/p. The compound symmetric dependence structure is considered.

an inflated Type I error; this is likely due to the fact that many principal components are needed to
account for the 50% of variance, and hence the likelihood ratio test has a large degree of freedom.
Because of its inflated Type I error, this method was excluded from the subsequent experiments.

For the compound symmetric dependence structure, plots of the power for different sample
sizes and dimensions against the proportion s/p of nonzero signals are shown in Fig. 1. When the
ratio s/p is small, all the methods have low power. This indicates that when signals are sparse and
weak, it is highly difficult to detect the association for the pathway considered. As s/p increases,
the power improves for all methods, because more variants carry association signals in the studied
pathway. However, the tests TH and T always have higher power than the other approaches in
these settings. The results for the autoregressive structure show a similar pattern.

We then considered the situation in which a genetic pathway contains both weak and strong
signals. We simulated weak signals as described earlier, and then simulated a strong signal with
β1 = 2(log p/n)1/2. Table 2 shows that both TH and T compete favourably with the other statistics,
and T has higher power than TH.

We conducted simulation studies to examine the performance of the T e test, which involves a
two-term Edgeworth expansion and is expected to be more accurate than T in controlling Type I
error at extreme significance levels. We set the significance level to 0.0001 and evaluated the
Type I error with 1 000 000 simulations. The threshold parameter δp in the power enhancement
was estimated over 50 000 replicates. Table 3 shows that at level 0.0001, the T statistic tends
to have inflated Type I error due to the less accurate characterization of the tail probability. In
contrast, T e can control the Type I error well at 0.0001 when the sample size and dimension are
sufficiently large.
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Table 2. Power (%) of the tests under mixed signals at level 0.05
n p Corr. Bonf. Burden PCA SKAT TH T

500 300 CS 36.0 5.7 15.6 30.8 35.1 39.8
AR 35.7 5.4 12.0 24.0 28.6 34.1

500 CS 34.8 5.3 15.7 33.6 43.5 46.7
AR 35.2 5.5 12.6 25.0 35.6 39.4

1000 CS 32.4 5.2 18.5 39.2 61.8 63.6
AR 31.1 5.0 14.8 26.8 51.0 53.5

1000 800 CS 38.4 5.2 16.0 54.0 60.1 62.4
AR 36.1 5.0 12.3 42.4 50.1 53.3

1000 CS 36.7 5.0 17.0 59.2 67.2 69.0
AR 36.0 4.8 12.7 45.8 56.2 59.2

1500 CS 35.4 5.1 18.1 67.3 79.4 80.9
AR 34.5 4.6 13.1 52.6 69.1 71.5

Corr., correlation structure; CS, compound symmetric; AR, autoregressive; Bonf., Bonferroni test; PCA,
principal component analysis using the five leading components; SKAT, the sequence kernel association
test.

Table 3. Type I error (×104) of the tests at level 0.0001
n p Corr. Bonf. Burden PCA SKAT T T e

500 500 CS 1.01 1.08 1.31 0.01 5.06 1.04
AR 0.96 1.16 1.16 0.00 4.08 0.97

1000 1000 CS 1.34 1.01 1.20 0.00 3.19 1.08
AR 1.30 1.08 1.10 0.00 2.86 1.05

1500 1500 CS 1.20 1.11 1.00 0.00 2.29 0.95
AR 1.11 1.04 1.34 0.00 2.23 0.95

Corr., correlation structure; CS, compound symmetric; AR, autoregressive; Bonf., Bonferroni test; PCA,
principal component analysis using the five leading components; SKAT, the sequence kernel association test.

4. Real-data analysis

We analysed the high-density lipoprotein cholesterol data from the Genomics and Randomized
Trials Network in the Women’s Health Initiative (Coviello et al., 2012). The overall goal of the
study is to identify novel genetic factors that contribute to the incidence of myocardial infarction,
stroke and diabetes. DNA samples were genotyped on the HumanOmni-Quad platform, and
genotypes were imputed with reference panels. Genetic variants that have imputations R2 > 0.99
and minor allele frequency greater than 5% were included. We focused on the 3990 samples of
Caucasian ancestry.

We first tested whether our approach can capture existing genetic pathways that are known to
be involved in high-density lipoprotein metabolism. Assmann & Gotto (2004) listed a pathway
involved in the generation and conversion of high-density lipoprotein. The pathway includes 11
genes: APOA1, APOE, LCAT, LIPC, CETP, PLTP, SCARB, LRP1, LDLR, ABCA1 and ABCF1.
We mapped the genetic variants to these genes and obtained 629 variants for this pathway. We
adjusted for the following covariates: age, hormone replacement therapy arm, smoking status,
body mass index, and the first two principal components for ancestry (Asselbergs et al., 2012).
The p-values for the pathway analysis are displayed in Table 4. Several methods yielded low
p-values, including the Bonferroni test, the sequence kernel association test and the proposed
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Table 4. Real-data analysis: p-values of the tests for the known lipid pathway
Bonf. Burden PCA SKAT T e

H T e

p-value 3.35 × 10−14 0.252 0.034 4.09 × 10−6 3.23 × 10−11 < 1 × 10−300

Bonf., Bonferroni test; PCA, principal component analysis using the five leading components; SKAT, the sequence
kernel association test.

Pathway index

N
u
m

b
er

 o
f 

S
N

P
s

0 60 120 185

0

5000

15000

25000

Fig. 2. The number of single-nucleotide polymorphisms, SNPs, in each of the 185 KEGG pathways.

tests T e
H and T e. The test T e yielded the lowest p-value. The p-value of the test T e is lower than

that of T e
H because a number of variants in the CETP and LIPC genes were observed to carry

strong association signals that exceed the power-enhancement threshold.
Next, we investigated the associations between the KEGG pathways and high-density lipo-

protein. The KEGG database contains 186 pathways, which represent a wide variety of cellular
processes and molecular functions; for more details see http://www.genome.jp/kegg/
pathway.html. We excluded one pathway from our analysis due to overlapping, so our real-
data analysis includes 185 pathways. Figure 2 provides an overview of the number of variants in
each of the 185 pathways. The median number of variants in these pathways is around 3000. A
number of pathways have more than 10 000 variants, with some containing nearly 25 000.

To control for the familywise Type I error, the threshold of significance was set to 0.05/185 ≈
0.00027, i.e., a Bonferroni correction. Table 5 shows the pathways that pass the significance
threshold in any of the tests. The T e approach identified three pathways: arachidonic acid meta-
bolism, metabolism of xenobiotics by cytochrome P450, and drug metabolism by cytochrome
P450. The T e

H statistic yielded the same values as T e, indicating that no signal exceeds the power-
enhancement threshold in the studied pathways. The sequence kernel association test detected
only the arachidonic acid metabolism pathway, while the other methods identified no significant
pathway.

The arachidonic acid metabolism pathway contains 2590 variants in 55 genes. A recent bio-
logical study suggested that this pathway is an important regulator of cholesterol metabolism
(Demetz et al., 2014). The linkage disequilibrium plot of the genetic variants of this pathway in
Fig. 3(a) shows that variants in proximity to each other tend to have strong correlations, while
those far apart have barely detectable correlations. To gain more insight, we plot the marginal
p-values for all 2590 variants in Fig. 3(b). There are a number of variants with p-values between
10−2 and 10−4, but none of them reaches genome-wide significance. Instead, the proposed T e
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Table 5. The p-values (%) of the tests for the three significant KEGG pathways; p-values
lower than 0.05/185 are indicated by ∗

p-value
#SNPs Bonf. Burden PCA SKAT T e

H T e

Arach. acid metab. 2590 5.11 0.57 0.07 0.02∗ 1.85 × 10−3∗ 1.85 × 10−3∗
Metab. xenobio. 2254 6.30 0.46 0.18 0.07 2.29 × 10−2∗ 2.29 × 10−2∗

Drug metab. 2385 7.86 0.39 0.16 0.04 6.00 × 10−3∗ 6.00 × 10−3∗

#SNPs, number of single-nucleotide polymorphisms; Bonf., Bonferroni test; PCA, principal component analysis using
the five leading components; SKAT, the sequence kernel association test; Arach. acid metab., arachidonic acid meta-
bolism pathway; Metab. xenobio., metabolism of xenobiotics by cytochrome P450; Drug metab., drug metabolism by
cytochrome P450.
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Fig. 3. Analysis of the arachidonic acid metabolism pathway: (a) linkage disequilibrium plot; (b) marginal
p-values of the 2590 single-nucleotide polymorphisms, SNPs, in the pathway, where the dashed line represents the

Bonferroni threshold.

statistic was able to aggregate these relatively mild signals into a stronger one, which leads to
the detection of the arachidonic acid metabolism pathway. The variants that contribute to the
significance of this pathway, the linkage disequilibrium plots and marginal p-values of variants
in the other two pathways, metabolism of xenobiotics by cytochrome P450 and drug metabolism
by cytochrome P450, are given in the Supplementary Material.

5. Discussion

Our approach can be extended to deal with non-Gaussian errors as long as the errors satisfy
the moment condition {E(|ε|k)}1/k � Ck1/2 for some constant C > 0 and k � 1. In such a
situation, we can adjust the denominator of TH in (3) from

√
2σ̂ 2‖A1‖F to {2σ̂ 4‖A1‖2

F + (κ −
3)σ̂ 4∑n

i=1 A2
1ii}1/2, where κ is the kurtosis of the errors and A1ii is the ith diagonal entry of A1.

Then, using the results in Bhansali et al. (2007), we can show the asymptotic normality of the

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/106/3/651/5532130 by U
niversity of W

ashington user on 20 Septem
ber 2019



Genetic pathway analysis in high dimensions 663

adjusted test statistic accordingly. Our approach can be also extended to accommodate genetic
interactions.

Screening techniques have been used in genetic association studies to filter out irrelevant vari-
ants; see, for example, Li et al. (2014) and Cui et al. (2015). However, these screening procedures
are typically used as a variable-selection step to reduce dimensions, not for statistical testing.
In contrast, our screening statistic is directly integrated into the test statistic and is designed for
statistical testing. Our approach has focused on the fixed design, which is commonly considered
in genetic studies. It will be interesting to develop similar methods under the random design,
although it remains challenging to establish the asymptotic properties of the proposed statistics
in high dimensions.
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