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Trans-ethnic kidney function association study
reveals putative causal genes and effects on
kidney-specific disease aetiologies
Andrew P. Morris et al.#

Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic

differences in prevalence and aetiology. We assemble genome-wide association studies of

estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in

312,468 individuals of diverse ancestry. We identify 127 distinct association signals with

homogeneous effects on eGFR across ancestries and enrichment in genomic annotations

including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence

variants driving eGFR associations and highlights putative causal genes with cell-type specific

expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation

supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation,

diastolic blood pressure and hypertension. These results define novel molecular mechanisms

and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD

treatment development.
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Chronic kidney disease (CKD) affects ~10% of the global
population, with considerable racial/ethnic differences in
prevalence and risk factors1,2. CKD is associated with

premature cardiovascular disease and mortality, and has enor-
mous healthcare costs for treatment, prescriptions and hospita-
lizations3–6. The underlying mechanisms for CKD predisposition
and development are unknown, limiting progress in the identi-
fication of prognostic biomarkers or the advancement of treat-
ment interventions.

Large-scale genome-wide association studies (GWAS) of esti-
mated glomerular filtration rate (eGFR), a measure of kidney
function used to define CKD, have mostly been undertaken in
populations of European7–9 and East Asian10 ancestry. Despite
the success of these GWAS in identifying loci contributing to
kidney function and risk of CKD, the common single nucleotide
variants (SNVs) driving the association signals explain no more
than ~4% of the observed-scale heritability of eGFR, and efforts to
replicate these findings in other ancestry groups have been lim-
ited11. Furthermore, efforts to localise the variants driving eGFR
association signals at these loci, and the putative causal genes
through which their effects are mediated, have been hampered by
the extensive linkage disequilibrium (LD) across common varia-
tion in European and East Asian ancestry populations.

To enhance understanding of the genetic contribution to kid-
ney function and CKD across diverse populations, and to inform
global public health and personalised medicine, we recently
established the Continental Origins and Genetic Epidemiology
Network Kidney (COGENT-Kidney) Consortium. We undertook
trans-ethnic meta-analysis of eGFR GWAS in 71,638 individuals
ascertained from populations of African, East Asian, European
and Hispanic/Latino ancestry12. These investigations provided no
evidence of heterogeneity in allelic effects on eGFR association
signals between ancestry groups, emphasizing the power of trans-
ethnic GWAS meta-analysis for locus discovery that will be
relevant to diverse populations.

To further extend characterization of the genetic contribution
to eGFR, and determine the molecular mechanisms and putative
causal genes through which association signals impact on kidney
function, we expand the COGENT-Kidney Consortium in this
investigation by assembling GWAS in up to 312,468 individuals
of diverse ancestry. With these data, we identify novel loci and
distinct associations for kidney function, assess the evidence for
heterogeneity in their allelic effects on eGFR, and determine
genomic annotations in which these signals are enriched. We
identify high-confidence variants driving eGFR association sig-
nals through annotation-informed trans-ethnic fine-mapping,
and highlight putative causal genes through which their effects
are mediated via integration with expression in kidney tissue.
Finally, we evaluate the causal effects of eGFR on clinically-
relevant renal and cardiovascular outcomes through Mendelian
randomisation (MR) with our expanded catalogue of kidney
function loci.

Results
Study overview. We assembled GWAS in up to 312,468 indivi-
duals from three sources (Methods): (i) 19 studies of diverse
ancestry from the COGENT-Kidney Consortium, expanding the
previously published trans-ethnic meta-analysis12 to include
additional individuals of Hispanic/Latino descent; (ii) a published
meta-analysis of 33 studies of European ancestry from the
CKDGen Consortium9; and (iii) a published study of East Asian
ancestry from the Biobank Japan Project10. Each GWAS was
imputed up to the Phase 1 integrated 1000 Genomes Project
reference panel13, and SNVs passing quality control were tested

for association with eGFR, calculated from serum creatinine,
accounting for age, sex and ethnicity, as appropriate (Methods).

The current study represented a 2.2-fold increase in sample size
over the largest published GWAS of kidney function10. Assuming
homogeneous allelic effects on eGFR across populations, we had
more than 80% power to detect an association (p < 5 × 10−8) with
SNVs explaining at least 0.0127% of the trait variance under an
additive genetic model. This corresponded to common/low-
frequency SNVs with minor allele frequency (MAF) ≥5%/≥0.5%
that decrease eGFR by ≥0.0366/≥0.113 standard deviations.

Trans-ethnic meta-analysis. To discover novel loci contributing
to kidney function in diverse populations, we first aggregated
eGFR association summary statistics across studies through trans-
ethnic meta-analysis (Methods). We employed Stouffer’s method,
implemented in METAL14, because allelic effect sizes were
reported on different scales in each of the three sources con-
tributing to the meta-analysis. We identified 93 loci attaining
genome-wide significant evidence of association with eGFR (p <
5 × 10−8), including 20 mapping outside regions previously
implicated in kidney function (Supplementary
Figure 1, Supplementary Table 1). The strongest novel associations
(Table 1) mapped to/near MYPN (rs7475348, p= 8.6 × 10−19),
SHH (rs6971211, p= 6.5 × 10−13), XYLB (rs36070911,
p= 2.3 × 10−11) and ORC4 (rs13026220, p= 3.1 × 10−11).

Across the 93 loci, we then delineated 127 distinct association
signals (at locus-wide significance, p < 10−5) through approx-
imate conditional analyses implemented in GCTA15 (Methods),
each arising from different underlying causal variants and/or
haplotype effects (Supplementary Tables 1 and 2). The most
complex genetic architecture was observed at SLC22A2 and
UMOD-PDILT, where the eGFR association was delineated to
four distinct signals at each locus (Supplementary Figure 2).
Genome-wide, application of LD Score regression16 to a meta-
analysis of only European ancestry studies revealed the observed
scale heritability of eGFR to be 7.6%, of which 44.7%/5.4% was
attributable to variation in the known/novel loci reported here
(Methods).

Trans-ethnic heterogeneity in eGFR association signals. To
assess the evidence for a genetic contribution to ethnic differences
in CKD prevalence, we investigated differences in eGFR asso-
ciations across the diverse populations contributing to our meta-
analysis. We performed trans-ethnic meta-regression of allelic
effect sizes obtained from GWAS contributing to the COGENT-
Kidney Consortium, implemented in MR-MEGA17, including
two axes of genetic variation that separate population groups as
covariates to account for heterogeneity that is correlated with
ancestry (Methods, Supplementary Figure 3). Despite substantial
differences in allele frequencies at index SNVs for the distinct
associations across ethnicities, we observed no significant evi-
dence (p < 0.00039, Bonferroni correction for 127 signals) of
heterogeneity in allelic effects on eGFR that was correlated with
ancestry (Supplementary Tables 2 and 3). Furthermore, all index
SNVs had minor allele frequencies >1% in multiple ethnic groups,
indicating that the distinct eGFR association signals were not
ancestry-specific. These observations are consistent with a model
in which causal variants for eGFR as a measure of kidney function
are shared across global populations and arose prior to human
population migration out of Africa.

Enrichment of eGFR associations for genomic annotations. To
gain insight into the molecular mechanisms that underlie the
genetic contribution to kidney function, we investigated genomic
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signatures of functional and regulatory annotation that were
enriched for eGFR associations across the 127 distinct signals.
Specifically, we compared the odds of eGFR association for SNVs
mapping to each annotation with those that did not map to the
annotation (Methods). We began by considering genic regions, as
defined by the GENCODE Project18, and observed significant
enrichment (p < 0.05) of eGFR associations in protein-coding
exons (p= 0.0049), but not in 3’ or 5’ UTRs. We then inter-
rogated chromatin immuno-precipitation sequence (ChIP-seq)
binding sites for 161 transcription factors from the ENCODE
Project19, which revealed significant joint enrichment of eGFR
associations for HDAC2 (p= 0.0088) and EZH2 (p= 0.030).
Class I histone deacetylases (including HDAC2) are required for
embryonic kidney gene expression, growth and differentiation20,
whilst EZH2 participates in histone methylation and transcrip-
tional repression21. Finally, we considered ten groups of cell-type-
specific regulatory annotations for histone modifications
(H3K4me1, H3K4me3, H3K9ac and H3K27ac)22,23. Significant
enrichment of eGFR associations was observed only for kidney-
specific annotations (p= 7.4 × 10−14). In a joint model of these
four enriched annotations, the odds of eGFR association for SNVs
mapping to protein-coding exons, binding sites for HDAC2 and
EZH2, and kidney-specific histone modifications were increased
by 3.06-, 2.13-, 1.76- and 4.29-fold, respectively (Supplementary
Figure 4).

Annotation-informed trans-ethnic fine-mapping. We per-
formed trans-ethnic fine-mapping to localise putative causal
variants for distinct eGFR association signals that were shared
across global populations by taking advantage of differences in
the structure of LD between ancestry groups24. To further
enhance fine-mapping resolution, we incorporated an
annotation-informed prior model for causality, upweighting
SNVs mapping to the globally enriched genomic signatures of

eGFR associations (Methods). Under this prior, we derived
credible sets of variants for each distinct signal, which together
account for 99% of the posterior probability (π) of driving the
eGFR association (Supplementary Table 4). For 40 signals, a
single SNV accounted for more than 50% of the posterior
probability of driving the eGFR association, which we defined as
high-confidence for causality (Supplementary Table 5). We
assessed the evidence of association of these high-confidence
SNVs with other measures of kidney function and damage in
published GWAS9,10,25 (Supplementary Table 6). Several SNVs
demonstrated nominal associations (p < 0.05) with eGFR calcu-
lated from cystatin C, blood urea nitrogen and urine albumin
creatinine ratio, with the expected direction of effect of the eGFR
decreasing allele.

Putative causal genes at eGFR association signals. We sought to
identify the most likely target gene(s) through which the effects of
each of the 40 high-confidence SNVs on eGFR were mediated via
functional annotation and colocalisation with expression quan-
titative trait loci (eQTLs) in kidney tissue.

Only four of the SNVs were missense variants (Table 2),
encoding CACNA1S p.Arg1539Cys (rs3850625, p= 2.5 × 10−9,
π= 99.0%), CPS1 p.Thr1406Asn (rs1047891, p= 1.5 × 10−29,
π= 98.1%), GCKR p.Leu446Pro (rs1260326, p= 2.0 × 10−35,
π= 86.1%) and CERS2 p.Glu115Ala (rs267738, p= 1.7 × 10−10,
π= 55.3%). Functional annotation of these high-confidence
missense variants highlighted predicted deleterious impact of
CPS1 p.Thr1406Asn and CERS2 p.Glu115Ala (Methods). CAC-
NA1S (Calcium Voltage-Gated Channel Subunit Alpha 1s)
encodes a subunit of L-type calcium channel located within the
glomerular afferent arteriole, is the target of anti-hypertensive
dihydropyridine calcium channel blockers (such as amlodipine
and nifedipine), and regulates arteriolar tone and intra-
glomerular pressure26. CACNA1S missense mutations cause

Table 1 Novel loci attaining genome-wide significant evidence (p < 5 × 10−8) of association with eGFR in trans-ethnic meta-
analysis of up to 312,468 individuals of diverse ancestry

Locus Lead SNV Chr Position (bp, b37) Alleles EAF Fixed-effects meta-analysis

Effecta Other p-value N Betab SEb

PMF1-BGLAP rs2842870 1 156,200,671 T C 0.632 1.2 × 10−8 312,468 −0.361 0.094
NT5C1B-RDH14 rs13417750 2 18,681,365 A G 0.189 1.0 × 10−8 312,468 −0.439 0.108
C2orf73 rs1527649 2 54,581,356 C T 0.234 1.5 × 10−9 311,225 −0.413 0.107
ORC4 rs13026220 2 148,586,459 G A 0.366 3.1 × 10−11 312,468 −0.265 0.095
NFE2L2 rs35955110 2 178,143,371 C T 0.435 3.9 × 10−9 312,468 −0.353 0.099
XYLB rs36070911 3 38,498,439 G A 0.528 2.3 × 10−11 312,468 −0.296 0.091
AK125311 rs856563 7 46,723,510 C T 0.750 5.1 × 10−10 309,287 −0.455 0.094
SHH rs6971211 7 155,664,686 T C 0.417 6.5 × 10−13 309,287 −0.350 0.090
NRG1 rs4489283 8 32,399,662 T C 0.296 1.5 × 10−8 311,632 −0.325 0.094
TRIB1 rs2001945 8 126,477,978 C G 0.546 1.6 × 10−9 312,468 −0.264 0.091
DCAF12 rs61237993 9 34,130,435 G A 0.666 4.0 × 10−8 312,465 −0.345 0.122
MYPN rs7475348 10 69,965,177 C T 0.607 8.6 × 10−19 312,468 −0.366 0.095
CYP26A1 rs4418728 10 94,839,724 T G 0.539 1.4 × 10−8 312,468 −0.345 0.092
FAM53B rs4962691 10 126,424,137 T C 0.571 5.0 × 10−10 312,468 −0.291 0.093
RASGRP1 rs9920185 15 39,273,575 C A 0.649 1.0 × 10−8 312,468 −0.332 0.094
NFAT5 rs11641050 16 69,622,104 C T 0.697 2.6 × 10−8 312,468 −0.283 0.099
JUND-LSM4 rs8108623 19 18,408,519 A C 0.695 4.4 × 10−8 309,634 −0.390 0.108
ARFRP1 rs1758206 20 62,336,334 T C 0.082 2.4 × 10−8 163,534 −0.546 0.193
NRIP1 rs2823139 21 16,576,783 A G 0.293 3.7 × 10−9 311,637 −0.197 0.093
ATP50 rs2834317 21 35,356,706 A G 0.108 9.5 × 10−10 312,468 −0.475 0.126

Chr: chromosome, EAF: effect allele frequency, SE: standard error
aEffect allele is aligned to be eGFR decreasing allele
bBeta/SE are obtained from fixed-effects meta-analysis, with inverse variance weighting of allelic effect sizes, of up to 81,829 individuals of diverse ancestry from the COGENT-Kidney Consortium, and
represent absolute decrease in eGFR (ml/min per 1.73m2) per effect allele
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hypokalemic periodic paralysis27,28, malignant hyperthermia29

and congenital myopathy30. CACNA1S is highly expressed in
skeletal muscle tissue, raising the possibility that the high-
confidence missense variant may influence eGFR through
creatinine production. CPS1 (Carbamoyl-Phosphate Synthase 1)
is involved in the urea cycle, where the enzyme plays an
important role in removing excess ammonia from cells31. GCKR
(Glucokinase Regulator) produces a regulatory protein that
inhibits glucokinase, and the p.Leu446Pro substitution is a highly
pleiotropic variant with reported effects on a wide range of
phenotypes, including metabolic traits and type 2 diabetes32.

CERS2 (Ceramide Synthase 2) variants have previously been
associated with albuminuria in individuals with diabetes33, and
interrogation of the Human Protein Atlas34 revealed that the
CERS2 protein is abundantly expressed in the glomerulus and
tubules of the kidney. Cers2-deficient mice exhibit changes in the
structure of the kidney35. We verified that Cers2 mRNA is
expressed in primary podocytes isolated from the mouse using a
previously published method36 (Methods, Supplementary Fig-
ure 5). To gain insight into the potential role of CERS2 in
podocyte motility and function, we isolated and grew primary
murine podocytes in culture, and exposed them to the CERS2
inhibitor, ST-107437,38 (Methods). We compared the podocyte
migration rate among treated and untreated cells using the
scratch wound-healing assay (Supplementary Figure 6). Primary
podocytes treated with 3 µM concentration of the CESRS2
inhibitor had a lower migration rate than untreated cells, with
significantly higher percentages of uncovered areas remaining at
18 h after wound-scratch. Podocytes treated with ST-1074
appeared much more elongated at 18 h. Although we cannot
rule out off-target effects of the inhibitor, these preliminary
results suggest that CERS2 may have a functional impact on
podocyte biology. However, further studies are needed to
determine the specific role of the gene in the kidney, in vivo, in
health and disease states.

The remaining 36 high-confidence SNVs mapped to non-
coding regions, which we assessed for colocalisation with eQTL
from two resources: (i) non-cancer affected healthy kidney tissue
obtained from 260 individuals from the TRANScriptome of renaL
humAn TissuE (TRANSLATE) Study39,40 and The Cancer

Genome Atlas (TCGA)41; and (ii) kidney biopsies obtained from
134 healthy donors from the TransplantLines Study42 (Methods).
We observed that high-confidence eGFR SNVs colocalised with
lead renal eQTL variants in the TRANSLATE Study and TGCA
(Table 2, Supplementary Table 7) for FGF5 (rs12509595, p=
4.7 × 10−16, π= 57.1%), TBX2 (rs887258, p= 2.7 × 10−13, π=
62.2%), and both UMOD and GP2 for the same signal at the
UMOD-PDILT locus (rs77924615, p= 1.5 × 10−54, π= 100.0%).
Of these three high-confidence SNVs, rs8872528 was a significant
eQTL (defined by 5% false discovery rate) for TBX2 across
multiple tissues in the GTEx Project43, whilst the associations of
rs12509595 and rs77924615 with an expression of FGF5 and
UMOD/GP2, respectively, were specific to kidney. FGF5 (Fibro-
blast Growth Factor 5) is expressed during kidney development,
but knockout models have not shown a kidney phenotype44.
FGF5 has been implicated in GWAS of blood pressure and
hypertension45, and other fibroblast growth factors are increas-
ingly recognised as contributors to blood pressure regulation
through renal mechanisms40. TBX2 (T-Box 2) plays a role in
defining the pronephric nephron in experimental models46.
UMOD encodes uromodulin (Tamm-Horsfall protein), the most
abundant urinary protein. The eGFR lowering allele at the high-
confidence SNV is associated with increased UMOD expression
(Supplementary Figure 7), which is consistent with previous
investigations that demonstrated uromodulin overexpression in
transgenic mice leads to salt-sensitive hypertension and the
presence of age-dependent renal lesions47.

Mapping genes to kidney cells. Kidney cells are highly specia-
lised in function based on their location in nephron segments.
Previous investigations in mouse and human have revealed that
genes at kidney trait-related loci are expressed in a cell-specific
manner48,49. To provide insight into cellular specificity of the
signals at the UMOD-PDILT, FGF5 and TBX2 loci, we mapped
the four genes identified through eQTL analyses to cell types from
single nucleus RNA-sequencing (snRNA-seq) data obtained from
a healthy human kidney donor (4254 cells, with an average of
1803 detected genes per cell)49. UMOD and GP2 demonstrated
expression specific to epithelial cells of the ascending loop of
Henle (Fig. 1). Uromodulin is involved in protection against

Table 2 High confidence SNVs driving eGFR associations and putative causal genes through which their effects on kidney
function are mediated

Locus SNV p-valuea π Gene Supporting evidence

ANXA9 rs267738 1.7 × 10−10 55.3% CERS2 Encodes p.Gku115Ala (possibly damaging, deleterious)b.
CACNA1S rs3850625 2.5 × 10−9 99.0% CACNA1S Encodes p.Arg1539Cys (possibly damaging, deleterious)b.
GCKR rs1260326 2.0 × 10−35 86.1% GCKR Encodes p.Leu446Pro (possibly damaging, tolerated)b.
C2orf73 rs10181201 7.4 × 10−8 60.9% SPTBN1 Intronic; differential expression across kidney cell types.
LRP2 rs35472707 1.1 × 10−6 64.3% LRP2 Intronic; differential expression across kidney cell types.

rs60641214 5.6 × 10−8 64.9% LRP2 Intronic; differential expression across kidney cell types.
CPS1 rs1047891 1.5 × 10−29 98.1% CPS1 Encodes p.Thr1406Asn (benign, tolerated)b.
PRDM8-FGF5 rs12509595 4.7 × 10−16 57.1% FGF5 Colocalises with lead eQTL SNV.
RGS14-SLC34A1 rs3812036 1.0 × 10−32 65.0% SLC34A1 Intronic; differential expression across kidney cell types.
PIP5K1B rs2039424 1.3 × 10−26 50.7% PIP5K1B Intronic; differential expression across kidney cell types.
WDR37 rs80282103 2.0 × 10−18 100.0% LARP4B Intronic; differential expression across kidney cell types.
MPPED2 rs7930738 4.7 × 10−7 51.5% MPPED2 Intronic; differential expression across kidney cell types.
UMOD-PDILT rs77924615 1.5 × 10−54 100.0% UMOD Lead eQTL SNV; differential expression across kidney cell types.

GP2 Lead eQTL SNV; differential expression across kidney cell types.
DPEP1 rs2460449 4.2 × 10−9 97.8% DPEP1 Intronic; differential expression across kidney cell types.
BCAS3 rs9895611 8.9 × 10−28 100.0% BCAS3 Intronic; differential expression across kidney cell types.

rs887258 2.7 × 0−13 62.2% TBX2 Colocalises with lead eQTL SNV.

π posterior probability of association
ap-values obtained from fixed-effects meta-analysis
bPolyPhen2/SIFT predictions
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urinary tract infections50, and the global distribution of UMOD
regulatory variants in humans correlates with pathogen diversity
and prevalence in urine51. Glycoprotein 2 is a protein involved in
innate immunity. These findings suggest a role for these two
proteins in kidney physiology and potential host defence
immunity to uropathogens at the UMOD-PDILT locus.

By localising high-confidence SNVs to introns and UTRs
(Methods), we identified eight additional genes with differential
expression across nephron single cell-types (Fig. 1, Table 2): LRP2,
SLC34A1 and DPEP1 (specific to proximal tubule); SPTBN1
(specific to glomeruli endothelial cells); PIP5K1B (specific to
glomeruli mesangial cells); and LARP4B, BCAS3, and MPPED2
(multiple cell types in the distal nephron). Of these, DPEP1, which
encodes the protein dipeptidase 1, is implicated in the renal
metabolism of glutathione and its conjugates, and regulates
leukotriene activity. This localisation fits with the previously
suggested connection between glutathione metabolism and
defence against chemical injury in proximal tubule cells52. Taken
together, these findings suggest a potential role of these genes in
influencing kidney structure and function through regulation of:
(i) glomerular capillary pressure, determining intra-glomerular
pressure and glomerular filtration; (ii) proximal tubular reabsorp-
tion, affecting tubuloglomerular feedback; or (iii) distal nephron
handling of sodium or acid load, influencing kidney disease
progression. Additional laboratory-based functional studies will be
required to delineate the mechanistic pathways that determine

kidney function in healthy and disease states, and potential routes
to therapeutic targets for pharmacologic development.

Causal effects of eGFR on clinically-relevant outcomes. We
sought to evaluate the causal effect of eGFR on clinically-relevant
kidney and cardiovascular outcomes via two-sample MR53

(Methods, Supplementary Tables 8, 9 and 10). Analyses were
performed separately in each of the three components of the
trans-ethnic meta-analysis because allelic effect sizes were mea-
sured on different scales in each. For each trait, we accounted for
heterogeneity in causal effects of eGFR via modified Q-statistics54,
excluding outlying genetic instruments that may reflect pleio-
tropic SNVs and violate the assumptions of MR (Methods,
Supplementary Tables 9 and 10).

In each component, we detected a significant (p < 0.0042,
Bonferroni correction for 12 traits) causal effect of lower eGFR on
higher risk of all-cause CKD, glomerular diseases and CKD stage
5, based on reported association summary statistics from the
CKDGen Consortium8 and the UK Biobank (Fig. 2, Supplemen-
tary Table 8). We also detected a significant causal effect of lower
eGFR on lower risk of calculus of the kidney and ureter, in each
component, based on reported association summary statistics
from the UK Biobank (Fig. 3, Supplementary Table 8). The lead
eGFR SNV at the UMOD-PDILT locus (rs77924615) has been
previously associated with kidney stone formation55 and is
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consistent with the role of uromodulin in the inhibition of urine
calcium crystallisation56. However, this SNV was excluded from
the MR analysis due to heterogeneity in effect size and was
therefore not driving the causal eGFR association with risk of
calculus of the kidney and ureter (Supplementary Table 9).

We also detected a novel causal effect of lower eGFR (at
nominal significance, p < 0.05, in each component of the trans-

ethnic meta-analysis) on higher diastolic blood pressure (DBP)
and higher risk of essential (primary) hypertension, but not on
systolic blood pressure, based on reported association summary
statistics from automated readings and ICD10 codes from
primary care data available in the UK Biobank (Fig. 4,
Supplementary Table 8). These results are consistent with a role
for reduced functional nephron mass on increased peripheral
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Fig. 2 Two-sample MR of eGFR on CKD and cause-specific kidney disease. Results are presented separately for each component of the trans-ethnic meta-
analysis for chronic kidney disease (top), chronic kidney disease stage 5 (middle) and glomerular diseases (bottom). Each point corresponds to a lead SNV
(instrumental variable) across 94 kidney function loci, plotted according to the MR effect size of eGFR on the outcome (Wald ratio). Bars correspond to the
standard errors of the effect sizes. The red point and bar in each plot represents the MR effect size of eGFR on outcome across all SNVs under inverse
variance weighted regression. The p-values are obtained under inverse variance weighted regression. Results for other methods are presented in
Supplementary Table 8
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Fig. 3 Two-sample MR of eGFR on calculus of kidney and ureter. Results are presented separately for each component of the trans-ethnic meta-analysis.
Each point corresponds to a lead SNV (instrumental variable) across 94 kidney function loci, plotted according to the MR effect size of eGFR on calculus of
kidney and ureter (Wald ratio). Bars correspond to the standard errors of the effect sizes. The red point and bar in each plot represents the MR effect size
of eGFR on calculus of kidney and ureter across all SNVs under inverse variance weighted regression. The p-values are obtained under inverse variance
weighted regression. Results for other methods are presented in Supplementary Table 8
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Fig. 4 Two-sample MR of eGFR on diastolic blood pressure and hypertension. Results are presented separately for each component of the trans-ethnic
meta-analysis for diastolic blood pressure (top) and essential (primary) hypertension (bottom). Each point corresponds to a lead SNV (instrumental
variable) across 94 kidney function loci, plotted according to the MR effect size of eGFR on outcome (Wald ratio). Bars correspond to the standard errors
of the effect sizes. The red point and bar in each plot represents the MR effect size of eGFR on outcome across all SNVs under inverse variance weighted
regression. The p-values are obtained under inverse variance weighted regression. Results for other methods are presented in Supplementary Table 8
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arterial resistance57 and confirm previous findings from observa-
tional studies58. Although the causal association with DBP could
not be replicated using published meta-analysis association
summary statistics from the International Consortium for Blood
Pressure (ICBP)59 (Supplementary Table 11), we note that their
blood pressure measures were corrected for body-mass index (in
addition to age and sex), and there was significant evidence of
heterogeneity in effects of eGFR on outcome across SNVs,
indicating potential pleiotropy due to collider bias, and conse-
quently invalidating MR estimates. Despite the large sample sizes
available for MR analyses from the CardiogramplusC4D Con-
sortium60 and MEGASTROKE Consortium61, there was no
significant evidence of a causal association of eGFR on
cardiovascular disease outcomes: coronary heart disease, myo-
cardial infarction or ischemic stroke (Supplementary Table 8).

Discussion
We identified 20 novel loci for eGFR through trans-ethnic meta-
analysis, and dissected 127 distinct association signals that toge-
ther explain an additional 5.3% of the genome-wide observed
scale heritability. The effects of index SNVs for these distinct
eGFR association signals were homogeneous across major
ancestry groups, which is consistent with a model in which the
underlying causal variants are shared across diverse populations,
and therefore amenable to trans-ethnic fine-mapping. The loca-
lisation of causal variants at eGFR association signals was further
enhanced through integration with enriched signatures of geno-
mic annotation that included kidney-specific histone
modifications.

We localised high-confidence causal variants driving 40 dis-
tinct eGFR association signals, the majority of which have not
been previously reported. Through a variety of approaches,
including colocalisation with eQTLs in human kidney, and
identification of differential expression between human kidney
cell types through snRNA-seq, these high-confidence variants
implicated several putative causal genes that account for eGFR
variation at kidney function loci. Therefore, our strategy of uti-
lising multiple kidney tissue-specific resources to uncover likely
causal variants and the genes through which their effects are
mediated, followed by mapping of these genes to specific cells in
the nephron, provides important biological insight and potential
targets for drug development. Knowledge of the specificity of gene
expression in nephron segments should also inform future
experiments to elucidate the function of some of these genes and
potentially define causal molecular mechanisms underlying CKD.

MR analyses of lead SNVs at kidney function loci highlighted
previously unreported causal effects of lower eGFR on higher risk
of primary glomerular diseases, lower risk of kidney stone for-
mation, and higher DBP and risk of hypertension. The causal
relationships of eGFR to these outcomes have been demonstrated
to be consistent across ancestries, which is essential for the
development of potential interventions that would be relevant to
diverse global populations. Our MR analyses also identified lead
eGFR SNVs with heterogeneous causal effects on these outcomes,
indicating potential pleiotropy. However, further work will be
required to determine the specific pathways through which these
pleiotropic SNVs act, including non-eGFR determinants of serum
creatinine-based eGFR estimating equations.

In conclusion, we have undertaken the most comprehensive
trans-ethnic GWAS of eGFR, which has significantly enhanced
knowledge of the genetic contribution to kidney function. Our
investigation emphasizes the importance of genetic studies of eGFR
in diverse populations and their integration with cell-type specific
kidney expression data for maximising gains in discovery and fine-
mapping of kidney function loci. Taken together, these strategies

offer the most promising route to treatment development for a
disease with major public health impact across the globe.

Methods
Ethics statement. All human research was approved by the relevant institutional
review boards and conducted according to the Declaration of Helsinki. All parti-
cipants provided written informed consent. All mice were maintained on a 12-h
light–dark cycle with free access to standard chow and water in the animal facility
of the University of Virginia (UVA). Experiments were carried out in accordance
with local and NIH guidelines, and the animal protocol was approved by the UVA
Institutional Animal Care and Use Committee.

COGENT-Kidney Consortium: study-level analyses. Study sample character-
istics for GWAS from the COGENT-Kidney Consortium, which incorporates
81,829 individuals of diverse ancestry (32.4% Hispanic/Latino, 28.8% European,
28.8% East Asian and 10.0% African American) are presented in Supplementary
Table 12. These GWAS included those reported previously12 but were expanded
with the addition of further studies of Hispanic/Latino ancestry to increase the
diversity of represented population groups. Samples were assayed with a range of
GWAS genotyping products, and quality control was undertaken within each study
(Supplementary Table 13). Samples were excluded because of low genome-wide call
rate, extreme heterozygosity, sex discordance, cryptic relatedness, and outlying
ethnicity. SNVs were excluded because of low call rate across samples and extreme
deviation from Hardy–Weinberg equilibrium. Non-autosomal SNVs were excluded
from imputation and association analysis. Within each study, the GWAS genotype
scaffold was pre-phased62,63 and imputed up to the Phase 1 integrated (version 3)
multi-ethnic reference panel from the 1000 Genomes Project13 using IMPU-
TEv263,64 or minimac63,65 (Supplementary Table 13). Imputed variants were
retained for downstream association analyses if they attained IMPUTEv2 info≥0.4
or minimac r2 ≥ 0.3.

Within each study, eGFR was calculated from serum creatinine (mg/dL),
accounting for age, sex and ethnicity, using the four-variable MDRD equation66–68.
We tested the association of eGFR with each SNV in a linear regression framework,
under an additive dosage model, and with adjustment for study-specific covariates
to account for confounding due to population structure (Supplementary Table 13).
For each SNV, the association Z-score was derived from the allelic effect estimate
and corresponding standard error. Z-scores and standard errors were then
corrected for residual population structure via genomic control69 where necessary
(Supplementary Table 13).

CKDGen Consortium: meta-analysis. Full details of the CKDGen Consortium
meta-analysis, which incorporated GWAS in 110,517 individuals of European
ancestry, have been previously published9. Briefly, individuals were assayed with a
range of GWAS genotyping products. After quality control, GWAS scaffolds
were pre-phased62,63 and imputed63–65 up to the Phase 1 integrated (version 1 or
version 3) multi-ethnic or European-specific reference panels from the 1000
Genomes Project13. Imputed variants were retained for downstream association
analyses if they attained IMPUTEv2 info≥0.4 or MaCH/minimac r2≥0.4. Within
each study, eGFR was calculated from serum creatinine (mg/dL), accounting for
age and sex, using the four-variable Modification of Diet in Renal Disease (MDRD)
equation66–68. Residuals obtained after regressing ln(eGFR) on age and sex, and
study-specific covariates to account for population structure where appropriate,
were tested for association with each SNV in a linear regression framework, under
an additive dosage model. Association summary statistics within each GWAS were
corrected for residual population structure via genomic control69 where necessary
and were subsequently aggregated across studies, under a fixed-effects model, with
inverse-variance weighting of allelic effect sizes, as implemented in METAL14.

From the available meta-analysis summary statistics for each SNV (downloaded
from http://ckdgen.imbi.uni-freiburg.de/), we derived the association Z-score from
the ratio of the allelic effect estimate and corresponding standard error. No further
correction for population structure was required by genomic control69: λGC=
0.977.

Biobank Japan Project: study-level analysis. Full details of the Biobank Japan
Project GWAS, which incorporated 143,658 individuals of East Asian ancestry,
have been previously published10. Briefly, individuals were assayed with the Illu-
mina HumanOmniExpressExome BeadChip or a combination of the Illumina
HumanOmniExpress BeadChip and the Illumina HumanExome BeadChip. After
quality control, the GWAS scaffold was pre-phased with MaCH70 and imputed up
to the Phase 1 integrated (version 3) East Asian-specific reference panel from the
1000 Genomes Project13 with minimac63,65. Imputed variants were retained for
downstream association analyses if they attained minimac r2 ≥ 0.7. For each
individual, eGFR was derived from serum creatinine (mg/dL) using the Japanese
coefficient-modified CKD Epidemiology Collaboration (CKD-EPI) equation71–73,
and adjusted for age, sex, ten principal components of genetic ancestry, and
affection status for 47 diseases. The resulting residuals were inverse-rank nor-
malised and tested for association with each SNV in a linear regression framework,
under an additive dosage model.
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From the available GWAS summary statistics for each SNV (downloaded from
http://jenger.riken.jp/en/result), we derived the association Z-score from the ratio
of the allelic effect estimate and corresponding standard error, and subsequently
corrected for residual population structure by genomic control69: λGC= 1.252.

Trans-ethnic meta-analysis. We aggregated eGFR association summary statistics
across the three components: COGENT-Kidney Consortium GWAS, the Biobank
Japan Project GWAS and the CKDGen Consortium meta-analysis. We performed
fixed-effects meta-analysis, with sample size weighting of Z-scores (Stouffer’s
method), as implemented in METAL14, because allelic effect estimates were on
different scales in the contributing components. The COGENT-Kidney Con-
sortium included a GWAS of a subset of 23,536 individuals from those con-
tributing to the Biobank Japan Project, which was therefore excluded from the
trans-ethnic meta-analysis. Consequently, a combined sample size of 312,468
individuals contributed to the trans-ethnic meta-analysis. SNVs reported in at least
50% of the combined sample size were retained for downstream interrogation.
Meta-analysis association summary statistics were corrected for residual population
structure via genomic control69: λGC= 1.113.

Locus definition. We first selected lead SNVs attaining genome-wide significant
evidence of association (p < 5 × 10−8) with eGFR in the trans-ethnic meta-analysis
that were separated by at least 500kb. Loci were defined by the flanking genomic
interval mapping 500kb up- and down-stream of lead SNVs. Where loci over-
lapped, they were combined as a single locus, and the lead SNV with minimal p-
value from the meta-analysis was retained.

Dissection of association signals. To dissect distinct eGFR association signals at
loci attaining genome-wide significance in the trans-ethnic meta-analysis, we used
an iterative approximate conditional approach, implemented in GCTA15. Each
COGENT-Kidney Consortium GWAS was first assigned to an ethnic group
(Supplementary Table 12) represented in the 1000 Genomes Project reference
panel (Phase 3, October 2014 release)74. The Biobank Japan Project was assigned to
the East Asian ethnic group, and the CKDGen Consortium meta-analysis was
assigned to the European ethnic group. Haplotypes in the 1000 Genome Project
panel that were specific to the assigned ethnic group were then used as a reference
for LD between SNVs across loci for the GWAS in the approximate conditional
analysis.

For each locus, we first applied GCTA to the study-level association summary
statistics and matched LD reference for each GWAS (or the CKDGen Consortium
meta-analysis). We adjusted for the conditional set of variants, which in the first
iteration included only the lead SNV at the locus, and aggregated Z-scores across
studies with sample size weighting (Stouffer’s method) under a fixed-effects model,
as implemented in METAL14. The conditional meta-analysis summary statistics
were corrected for residual population structure using the same genomic control
adjustment69 as in the unconditional analysis (λGC= 1.113). We defined locus-
wide significance by p < 10−5, which is a Bonferroni correction for the approximate
number of (independent) SNVs at each locus. If no SNVs attained locus-wide
significant evidence of residual association with eGFR, the iterative approximate
conditional analysis for the locus was stopped. Otherwise, the SNV with the
strongest residual association signal was added to the conditional set. This iterative
process continued, at each stage adding the SNV with the strongest residual
association from the meta-analysis to the conditional set, until no remaining SNVs
attained locus-wide significance. Note, that at each iteration, studies with missing
association summary statistics for any SNV in the conditional set were excluded
from the meta-analysis.

For each locus including more than one SNV in the conditional set, we then
dissected each distinct association signal. We again applied GCTA to the study-
level association summary statistics and matched LD reference for each GWAS (or
the CKDGen Consortium meta-analysis), but this time by removing each SNV, in
turn, from the conditional set of variants, and adjusting for the remainder. The
conditional meta-analysis summary statistics were corrected for residual
population structure using the same genomic control adjustment69 as in the
unconditional analysis (λGC= 1.113). The SNV with the strongest residual
association was defined as the index for the signal.

Estimation of observed scale heritability. We used LD Score regression16 to
assess the contribution of variation to the observed scale heritability of eGFR. LD
Score regression accounts for LD between SNVs on the basis of European ancestry
individuals from the 1000 Genomes Project74. We therefore performed fixed-
effects meta-analysis, with sample size weighting of Z-scores (Stouffer’s method), as
implemented in METAL14, across European ancestry studies from the COGENT-
Kidney Consortium and CKDGen Consortium (134,070 individuals), and used
these association summary statistics in LD Score regression. We first calculated the
contribution of genome-wide variation to the observed scale heritability of eGFR.
We then partitioned the genome into previously reported and novel loci attaining
genome-wide significance in the trans-ethnic meta-analysis (Supplementary
Table 1) and calculated the observed scale heritability of eGFR attributable to each.

Estimation of allelic effect sizes at index SNVs. Allelic effect estimates were
obtained from a meta-analysis of GWAS from the COGENT-Kidney Consortium,
including 81,829 individuals of diverse ancestry (Supplementary Table 12), because
the other components applied different transformations to eGFR prior to asso-
ciation analysis. The meta-analysis was performed under a fixed-effects model with
inverse-variance weighting of effect sizes, implemented in METAL14. For loci with
multiple signals of association, the allelic effect of an index SNV for each GWAS,
prior to meta-analysis, was estimated by application of GCTA15 to the study-level
association summary statistics and ancestry-matched LD reference, and adjusting
for the other index SNVs at the locus. The same approach was used to obtain
ethnic-specific allelic effect size estimates by implementing fixed-effects meta-
analysis of GWAS within each ancestry group.

Assessment of heterogeneity in allelic effect sizes. We considered GWAS from
the COGENT-Kidney Consortium, including 81,829 individuals of diverse ancestry
(Supplementary Table 12), because the other components applied different trans-
formations to eGFR prior to association analysis. We constructed a distance matrix
of mean effect allele frequency differences between each pair of GWAS across a
subset of SNVs reported in all studies. We implemented multi-dimensional scaling
of the distance matrix to obtain two principal components that define axes of
genetic variation to separate GWAS from the four major ancestry groups repre-
sented in the trans-ethnic meta-analysis. For each SNV, allelic effects on eGFR
across GWAS were modelled in a linear regression framework, incorporating the
two axes of genetic variation as covariates, and weighted by the inverse of the
variance of the effect estimates, implemented in MR-MEGA17. Within this mod-
elling framework, heterogeneity in allelic effects on eGFR between GWAS is par-
titioned into two components. The first component is correlated with ancestry and
is accounted for in the meta-regression by the axes of genetic variation, whilst the
second is the residual, which is not due to population genetic differences between
GWAS.

Enrichment of eGFR associations in genomic annotations. Within each locus,
for each distinct signal, we first approximated the Bayes’ factor75 in favour of eGFR
association of each SNV on the basis of summary statistics from the trans-ethnic
meta-analysis. Specifically, the Bayes’ factor for the jth SNV at the ith distinct
association signal is approximated by

Λij ¼ exp
Z2
ij � lnK

2

" #
ð1Þ

where Zij is the Z-score from the trans-ethnic meta-analysis across K contributing
GWAS. The log-odds of association of the SNV is then given by

ln
Λij

Ti � Λij

" #
ð2Þ

where Ti ¼
P
j
Λij is the total Bayes’ factor for the ith signal across all SNVs at the

locus.
We modelled the log-odds of association of each SNV, for each distinct signal,

in a logistic regression framework, as a function of binary variables indicating an
overlap with a given genomic annotation. Specifically, for the jth SNV at the ith
distinct association signal,

ln
Λij

Ti � Λij

" #
¼ αi þ βkzijk ð3Þ

where zijk = 1 indicates that the SNV maps to the kth annotation, and zijk = 0
otherwise. In this expression, αi is a constant for the ith distinct association signal,
and βk is the log-fold enrichment in the odds to the association for the kth
annotation.

We considered three categories of functional and regulatory annotations. First,
we considered genic regions, as defined by the GENCODE Project18, including
protein-coding exons, and 3’ and 5’ UTRs as different annotations. Second, we
considered the chromatin immuno-precipitation sequence (ChIP-seq) binding sites
for 161 transcription factors from the ENCODE Project19. Third, we considered
ten groups of cell-type-specific regulatory annotations for histone modifications
(H3K4me1, H3K4me3, H3K9ac, and H3K27ac) obtained from a variety of
resources22,23, which were previously derived for partitioning heritability by
annotation by LD Score regression76.

Within each category, we first used forward selection to identify annotations
that were jointly enriched at nominal significance (p < 0.05). We then included all
selected annotations across categories in a final model to obtain joint estimates of
the fold-enrichment in eGFR association signals for each.

Trans-ethnic fine-mapping. Within each locus, for each distinct signal, we cal-
culated the posterior probability of driving the eGFR association for each SNV
under an annotation-informed prior model, derived from the globally enriched
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annotations, and the Bayes’ factor approximated from the trans-ethnic meta-
analysis. Specifically, for the jth SNV at the ith distinct association signal, the
posterior probability πij / γijΛij . In this expression, the relative annotation
informed prior is given by

γij ¼ exp
X
k

β̂kzijk

" #
ð4Þ

where the summation is over the selected enriched annotations, and β̂k is the
estimated log-fold enrichment of the kth annotation from the final joint model.

We derived a 99% credible set77 for the ith distinct association signal by: (i)
ranking all SNVs according to their posterior probability πij ; and (ii) including
ranked SNVs until their cumulative posterior probability of driving the association
attains or exceeds 0.99. Index SNVs accounting for more than 50% posterior
probability of driving the eGFR association at a given signal were defined as high-
confidence.

SNV associations with measures of kidney function and damage. We evaluated
the evidence for association of high-confidence variants with measures of kidney
function and damage from published GWAS: (i) eGFR calculated from cystatin C,
obtained from up to 24,061 individuals of European ancestry from the CKDGen
Consortium9; (ii) blood urea nitrogen, obtained from up to 139,818 individuals of
East Asian ancestry from the Biobank Japan Project10; and (iii) urine albumin to
creatinine ratio, obtained from up to 46,061 non-diabetic individuals of European
ancestry from the CKDGen Consortium25. Effects on these traits were aligned to
the eGFR decreasing allele.

Functional annotation of high-confidence missense variants. We assessed the
predicted functional impact of high-confidence missense variants across a range of
databases including FATHMM (functional analyses through hidden Markov
models)78 and metaSVM (scores for non-synonymous variants based on SVM
model)79.

Primary podocyte cell culture and scratch assay. The protocol for isolation and
culture of primary podocytes from 129S6 mice has been previously published36.
Briefly, under general anaesthesia with isoflurane, mice were perfused through the
heart with 6 × 108 magnetic beads/ml (Dynabeads, Invitrogen) diluted in 10 ml of
phosphate-buffered saline (PBS). The kidneys were extracted, decapsulated and cut
into small pieces, then digested in collagenase A (1mg/ml) at 37 oC for 25 min The
digest was pressed with a syringe pestle through a 100 uM cell strainer, collected,
and washed with 5 mL of PBS, repeated once, and then passed through a 40 uM cell
strainer, and washed again with 5 mL of PBS. The isolated glomeruli were then
washed off the cell strainer with pre-warmed cell culture media (RPMI 1640 with
L-glutamine supplemented with 10% of fetal bovine serum, 100 units/ml of Pen/
Strep and 1% of L-glutamine), then further isolated by magnetic particle con-
centrator (Invitrogen) and washed with a pre-warmed culture media 2–3 times.
Glomeruli were then re-suspended in culture media and placed in the 6-well plate
coated with rat tail type I collagen and incubated at 37 oC. Light microscopy was
used to confirm the characteristic migration of podocytes from glomeruli after
3–5 days.

Approximately after 7–9 days, the primary podocytes reached a confluent
monolayer, and a rectangular wound was created by scratching the monolayer
from the top to the bottom of the well using the base of a sterile 200 µl pipette tip.
Images of the scratched area were immediately taken after wound creation and
after an additional 18 h of incubation, using EVOS XL Core Cell Imaging System
(×10 magnification). We utilised ST-1074, a potent inhibitor that can be used in
lower concentrations to avoid cell toxicity, for which the clinical potential of the
class of compounds influencing CerS subtypes has been previously published37,38.
The inhibitor was added to the well containing 1 mL of culture media, at a
concentration of 1 mM in DMSO, immediately after wound creation at a volume of
3 µL (3 µM). For the control condition, 3 µL of DMSO alone was added. At least 3
independent experiments were performed with 3–5 wells per condition. The
images were analysed using ImageJ software (1.48v, NIH, USA), by measuring
pixels of the outlined scratched area immediately after wound creation and after 18
h. The results are expressed as % of area that was not covered by migrating
podocytes after 18 h of incubation time, compared to the scratched area created
immediately after wound creation.

We note that in vitro (HCT116), ST-1074 significantly inhibits both CerS2 and
CerS4 (screening conditions 10 µM). ST-1074 disclosed an IC50 value for C18:0 of
21.4 µM (CerS4 inhibition), and an IC50 value for C24:1 of 28.7 µM (CerS2
inhibition), which do not show significant difference. In HeLa cells, ST-1074
inhibited at 5 µM CerS2 and CerS4 significantly (C24:1 ~40%, C24:0 ~50%).
However, in the Human Protein Atlas34, CERS4 is only expressed in the tubules
and not in podocytes. Although ST-1074 is a CerS2 inhibitor, off-target effects may
also influence podocyte function.

Kidney tissue eQTLs: TRANSLATE Study and TGCA. We performed eQTL
analysis using data from the TRANSLATE Study39,40 and TGCA41. In brief, as a

source of kidney tissue, both studies used apparently normal samples from Eur-
opean ancestry individuals undergoing nephrectomy due to kidney cancer (the
specimens were collected from the cancer-unaffected pole of the organ). The data
from both studies were processed in the same manner using procedures described
below.

Gene expression was quantified in transcripts per million (TPM) using
Kallisto80. The quality control included: removing outlier samples81,82, checking
consistency between declared and biological sex (using XIST and Y-chromosome
genes); removing genes on non-autosomal chromosomes; and removing genes with
either interquartile range of zero or those not meeting the minimum expression
criterion (TPM > 0.1 and read counts ≥6 in at least 30% of samples within each
study/sequencing batch). Before cis-eQTL analysis, the log2-transformed TPM data
were normalised using robust quantile normalisation in the R package aroma and
then standardised using rank-based inverse normal transformation in GenABEL.
To account for technical variation, we used probabilistic estimation of expression
residuals (PEER)83: 30 latent factors for the TRANSLATE Study and 15 for TCGA
as recommended for different sample sizes in the GTEx Project84,85.

Kidney DNA samples from individuals from the TRANSLATE Study were
genotyped using the Infinium HumanCoreExome-24 BeadChip array, and
genotype calls were made using Genome Studio. Individuals from TCGA were
genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0, and
genotype calls were made using the Birdseed algorithm. Quality control removed
variants that: had low genotyping rate (<95%); mapped to Y chromosome/
mitochondrial DNA or had an ambiguous chromosomal location; violated
Hardy–Weinberg equilibrium (HWE, p < 0.001); or had MAF <5%. Quality control
also removed individuals with: genotyping call-rate <95%; heterozygosity above/
below 3 standard deviations from the mean; cryptic relatedness to other
individuals; non-European genetic ancestry; and discordant sex information
(inconsistency between declared and genotyped sex). For both studies, the resulting
scaffold was imputed up to the Phase 3 multi-ethnic reference panel from the 1000
Genomes Project74 using the Michigan Imputation Server86. After imputation, we
retained only SNVs, removing those with low imputation coefficient (R2 < 0.4),
MAF <5%, or violating HWE (p < 10−6).

A total of 260 individuals (160 from the TRANSLATE Study and 100 from
TCGA) were included in the analysis, involving 15,711 genes and 5,498,156 SNVs
common to both studies. Normalised gene expression was modelled as a function
of alternate allele dosage via linear regression, including sex, three axes of genetic
variation (to account for population structure) and PEER latent factors as
additional covariates. The regression coefficients of the alternate allele from the two
studies were then combined in a fixed-effects meta-analysis under an inverse-
variance weighting scheme. For each gene, only those SNVs in cis (within 1Mb of
the transcription start/stop sites) were included in the analysis. A total of 2000
permutations were used to derive the empirical distribution of the smallest p-value
for each gene, which then was used to adjust the observed smallest p-value for the
gene. The correction for testing multiple genes was based on false discovery rate
(FDR) applied to permutation-adjusted p-values (via Storey’s method as
implemented in the R package q-value) with a cut-off of 5%. Furthermore, the
thresholds for nominal p-values were derived using a global permutation-adjusted
p-value closest to FDR of 5% and the empirical distributions determined using
permutations.

We identified high-confidence SNVs from the trans-ethnic fine-mapping that
were colocalised with lead eQTL variants (i.e. the same SNV or in strong LD,
r2>0.8) at a 5% FDR, and reported the corresponding eGene.

Kidney tissue eQTLs: TransplantLines Study. We performed eQTL analysis
using data from the TransplantLines Study42. The study includes kidneys from
donors, donated after brain death or cardiac death. Samples were genotyped on the
Illumina CytoSNP 12 v2 array and imputed up to the Phase 1 integrated (version 3)
multi-ethnic reference panel from the 1000 Genomes Project13 using IMPU-
TEv263,64. Expression and genotype data were available for 236 kidney biopsies
obtained from 134 donors, and analyses have been described previously59. Briefly,
residuals of gene expression for each probe were obtained after adjusting for the
first 50 expression principal components to filter out environmental variation87. A
linear mixed model was used to test the association of residual expression of each
probe with the allele dosage of each SNV mapping within 1Mb of the transcription
start/stop sites using the R package lme3. Sex, age, donor type, time of biopsy and
three axes of genetic variation (to account for population structure) were included
in the model as fixed effects. Random effects were then included for donor to
account for multiple samples obtained from the same individual.

We identified high-confidence SNVs from the trans-ethnic fine-mapping that
were colocalised with lead eQTL variants (i.e. the same SNV or in strong LD,
r2>0.8) at a 5% FDR, and reported the corresponding eGene.

Expression of GWAS genes across kidney cell-types. We identified genes for
which high-confidence SNVs mapped to introns and untranslated regions. We
mapped the genes to cell-types from snRNA-seq data generated by 10x Chromium
from a healthy human kidney (62-year old white male, no history of CKD and
serum creatinine of 1.03 mg/dl)49. The kidney was dissected from the cortex and
was bulk homogenized using a dounce homogenizer. The dataset included 4524
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cells: 7.8% glomerular cells (including podocytes, endothelial cells and mesangial
cells); 86.7% tubular cells (including proximal tubule, loop of Henle, distal con-
voluted tubule, connecting tubule, proximal tubule and intercalate cells); the
remaining 5.5% cells are mostly macrophages and novel cells that do not map to
known cell types. An average of 1803 genes were detected per cell. We generated a
differential expression gene (DEG) list by performing Wilcoxon rank sum tests on
each cell-type from the single nucleus dataset. A gene was defined as mapping to a
specific kidney cell type if the expression fulfils all the following criteria: (i) present
in the DEG list; (ii) expressed in >25% of the total cells in the specified cell-type;
and (iii) log-fold change in expression was >0.25 in the specified cell-type when
compared to all other cell-types49. Gene expression values for each cell were Z-
score normalised. A new gene expression matrix with mean Z-scores for each gene
was obtained by averaging the Z-scores from all individual cells in the same cluster.
The Z-score normalized gene expression were presented as a heatmap using the
heatmap.2 function in the R package gplots.

Two-sample MR analyses. We performed a lookup of association summary
statistics for lead SNVs at each of the eGFR loci across a range of clinically-relevant
kidney and cardiovascular outcomes from public and proprietary data resources.
These included: CKD (12,385 cases and 104,780 controls, published data from the
CKDGen Consortium8); IgA nephropathy (3211 cases and 8735 controls,
unpublished data); glomerular diseases (ICD10 N00-N08, 2,289 cases and 449,975
controls, extracted UK Biobank using GeneATLAS); CKD stage 5 (ICD10 N18,
4905 cases and 447,359 controls, extracted from UK Biobank using GeneATLAS);
hypertensive renal disease (ICD10 I12, 1663 cases and 450,601 controls, extracted
from UK Biobank using GeneATLAS); calculus of kidney and ureter (ICD10 N20,
5216 cases and 447,048 controls, extracted from UK Biobank using GeneATLAS);
DBP (317,756 individuals, automated reading, extracted from UK Biobank using
MR-BASE88); systolic blood pressure (317,654 individuals, automated reading,
extracted from UK Biobank using MR-BASE88); essential (primary) hypertension
(ICD10 I10, 84,640 cases and 367,624 controls, extracted from UK Biobank using
GeneATLAS); coronary heart disease (60,801 cases and 123,504 controls, published
data from the CardiogramplusC4D Consortium60); myocardial infarction (43,676
cases and 128,199 controls, published data from the CardiogramplusC4D Con-
sortium60); and ischemic stroke (10,307 cases and 19,326 controls, published data
from the MEGASTROKE Consortium61).

We performed two-sample MR for each outcome using eGFR as the exposure
and the extracted non-palindromic lead SNVs as instrumental variables. The lead
SNVs were not in LD with each other, so that their effects on exposure and
outcomes were uncorrelated. Analyses were performed separately in each of the
three components of the trans-ethnic meta-analysis because allelic effect sizes were
measured on different scales in each: COGENT-Kidney Consortium (58,293
individuals after excluding those from the Biobank Japan Project); CDKGen
Consortium (110,517 individuals); and Biobank Japan Project (143,658
individuals). For each trait, we first accounted for heterogeneity in causal effects of
eGFR via modified Q-statistics54, implemented in the R package RadialMR, which
identified outlying genetic instruments that may reflect pleiotropic SNVs. For each
trait, our primary MR analyses were then performed after excluding outlying SNVs
in any component of the trans-ethnic meta-analysis using inverse variance
weighted regression89, implemented in the R package TwoSampleMR88. We also
assessed the evidence for causal association between exposure and outcome using
two additional approaches that are less sensitive to heterogeneity (although less
powerful) and implemented in the R package TwoSampleMR88: weighted median
regression90 and MR-EGGER regression91.

We performed an additional lookup of association summary statistics for non-
outlying lead SNVs at each of the eGFR loci for DBP (150,134 individuals,
published data from ICBP51). We assessed the evidence for a causal association of
eGFR on DBP in each component of the trans-ethnic meta-analysis using inverse
variance weighted regression89, weighted median regression90 and MR-EGGER
regression91, as implemented in the R package TwoSampleMR88.

Data availability
Association summary statistics will be made available from: (i) the COGENT-
Kidney Consortium component of the trans-ethnic meta-analysis; and (ii) the
trans-ethnic meta-analysis across the COGENT-Kidney Consortium, CKDGen
Consortium and Biobank Japan Project. Fine-mapping data for each distinct eGFR
signal will be made available, including the posterior probability of driving the
association for each SNV. These data will be made available via: (i) the University
of Liverpool Statistical Genetics and Pharmacogenomics Research Group website
(https://www.liverpool.ac.uk/translational-medicine/research/statistical-genetics/
data-resources); and (ii) the dbGaP CHARGE Summary Results site92 with
accession number phs000930. The source data underlying Fig. 1 and Supplemen-
tary Figure 7 are provided as a Source Data file.
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