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ABSTRACT
◥

Background: Obesity and diabetes are major modifiable risk
factors for pancreatic cancer. Interactions between genetic var-
iants and diabetes/obesity have not previously been compre-
hensively investigated in pancreatic cancer at the genome-wide
level.

Methods: We conducted a gene–environment interaction
(GxE) analysis including 8,255 cases and 11,900 controls from
four pancreatic cancer genome-wide association study (GWAS)
datasets (Pancreatic Cancer Cohort Consortium I–III and Pan-
creatic Cancer Case Control Consortium). Obesity (body mass
index ≥30 kg/m2) and diabetes (duration ≥3 years) were the
environmental variables of interest. Approximately 870,000 SNPs
(minor allele frequency ≥0.005, genotyped in at least one dataset)
were analyzed. Case–control (CC), case-only (CO), and joint-
effect test methods were used for SNP-level GxE analysis. As a
complementary approach, gene-based GxE analysis was also
performed. Age, sex, study site, and principal components
accounting for population substructure were included as covari-

ates. Meta-analysis was applied to combine individual GWAS
summary statistics.

Results: No genome-wide significant interactions (departures
from a log-additive odds model) with diabetes or obesity were
detected at the SNP level by the CC or CO approaches. The joint-
effect test detected numerous genome-wide significant GxE signals
in the GWAS main effects top hit regions, but the significance
diminished after adjusting for theGWAS top hits. In the gene-based
analysis, a significant interaction of diabetes with variants in the
FAM63A (family with sequence similarity 63 member A) gene
(significance threshold P < 1.25 � 10�6) was observed in the
meta-analysis (PGxE ¼ 1.2 �10�6, PJoint ¼ 4.2 �10�7).

Conclusions: This analysis did not find significant GxE inter-
actions at the SNP level but found one significant interaction with
diabetes at the gene level. A larger sample size might unveil
additional genetic factors via GxE scans.

Impact: This study may contribute to discovering the mecha-
nism of diabetes-associated pancreatic cancer.
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Introduction
Pancreatic cancer is the third leading cause of cancer-related death,

accounting for more than 47,000 deaths each year in the United
States (1). It is a highly lethal disease with a 5-year survival rate of
9% (2). Epidemiologic studies have shown that 20%–25% of pancreatic
cancer cases are attributable to cigarette smoking (3). However, the
incidence of pancreatic cancer has been rising slightly each year in the
United States since 2002; this is unexpected given the decreasing
prevalence of cigarette smoking, and may be due to the rising prev-
alence of obesity and diabetes. Accumulating evidence suggests that
obesity and long-term type II diabetes are associated with increased
risk of pancreatic cancer. For example, a pooled analysis of 14 cohort
studies of bodymass index (BMI) has shown that obesity (BMI≥30 kg/
m2) was associatedwith 47% [95% confidence interval (CI), 23%–75%]
increased risk of pancreatic cancer (4). A meta-analysis of 23 cohort
and case–control (CC) studies suggests that the association between
BMI and pancreatic cancer is not linear (5). At least fourmeta-analyses
of large datasets from cohort and CC studies have shown that long-
term diabetes was associated with a 1.5- to 2-fold increased risk of
pancreatic cancer (6–9). Because only a small portion of obese and
diabetic individuals develop pancreatic cancer, understanding how
genetic factors affect risk among those individuals could inform
targeted interventions or screening. Identifying variants that are
only associated with risk of cancer (or have stronger associations)
among obese or diabetic individuals is of particular interest.

Genome-wide association studies (GWAS) conducted by the Pan-
creatic Cancer Cohort Consortium (PanScan) and Pancreatic Cancer
Case Control Consortium (PanC4) have identified 21 genetic loci and
chromosome regions significantly associated with the risk of pancre-
atic cancer (10–15). However, these findings explain limited herita-
bility of the disease, that is, the established GWAS loci explain 2.1% of
the heritability of pancreatic cancer in contrast to the estimated
heritability of 36% from a large population-based twin study (13, 16).

Beyondmain effects, some genetic factorsmay contribute to the risk of
pancreatic cancer only in the presence of specific risk factors for the
disease such as obesity and diabetes, that is, gene–obesity/diabetes
interaction, and broadly referred as gene–environment interaction
(GxE) herein. Therefore, a genome-wide GxE scan may help find the
missing heritability of pancreatic cancer. Several of the susceptibility
genes identified by GWAS (NR5A2, PDX1, HNF1B, and HNF4G)
are important for pancreas development (17). These genes are
important components of the transcriptional networks governing
embryonic pancreatic development and differentiation, as well as
maintaining pancreatic homeostasis. Mutations in some of these
genes are responsible for maturity onset diabetes of the young and
common variants of these genes have been associated with BMI
and risk of type 2 diabetes in GWAS (17). Therefore, in addition to
their roles in regulating the development and function of the
pancreas, these genes may contribute to pancreatic cancer, partially
through an increased risk of obesity and diabetes. Whether these
genes and other unidentified genes have an interactive action with
obesity and diabetes in modifying the risk of pancreatic cancer is
the focus of the current investigation.

We have previously performed GxE analyses at SNP/gene/pathway
levels using GWAS data from 2,028 cases and 2,109 controls from
PanScan I and II. No significant interactions at the SNP or gene levels
were observed for diabetes or obesity. At the pathway level, NF-kB–
mediated chemokine signaling and axonal guidance signaling pathway,
respectively,were identifiedas the toppathways interactingwithobesity
and smoking in modifying the risk of pancreatic cancer (18, 19).
These studies were limited by the small sample size, and underpowered
for genome-wide GxE analysis (20). To address this limitation, we
conducted the current analysis in a much larger combined dataset of
PanScan I–III and PanC4 with 8,255 cases and 11,900 controls. We
further leveraged recently developed, more powerful SNP-set/gene-
based GxE tests (21, 22) to discover novel genetic variants that may
modify theassociationbetweendiabetics/obesity andpancreatic cancer.
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Materials and Methods
Study population and datasets

This genome-wide GxE study includes 8,255 cases and 11,900
controls of European ancestry drawn from the PanScan and PanC4
consortia. Cases were patients with known or presumed primary
pancreatic ductal adenocarcinoma (ICD-O-3 code C250–C259) and
controls were free of pancreatic cancer. Individual studies were
approved by the respective institutional review board following the
institution's requirement. Written informed consent was obtained
from each study participant. The approaches for data harmonization
and meta-analysis were approved by the University of Texas MD
Anderson Cancer Center Institutional Review Board (Houston, TX).

Genotype data were generated in four previously reported GWASs,
that is, PanScan I, II, and III and PanC4, and the details of these studies
have been described previously (10–13). Genotyping in PanScan I, II,
and III was conducted at the Cancer Genomics Research Laboratory of
the NCI of the National Institutes of Health (NIH) using the Illumina
HumanHap550 Infinium II, Human 610-Quad, and OmniExpress
series arrays, respectively. PanC4 employed the HumanOmniExpress-
Exome-8v1 array. Because different genotyping platforms were used
in these studies, missing genotypes were imputed using the University
of Michigan imputation server (https://imputationserver.sph.umich.
edu/index.html) with the Haplotype Reference Consortium (23) as the
reference panel or IMPUTE2 with the 1000 Genomes Phase 3 as the
reference panel (https://mathgen.stats.ox.ac.uk/impute/impute_v2.
html). After imputation, SNPs that were identified by imputation
only (not genotyped in any of the four GWASs), having minor allele
frequency (MAF) ≤ 0.005, imputation quality score <0.3, or Hardy–
Weinberg equilibrium test P < 1 � 10�6 in controls were excluded; a
total of about 870,000 common SNPs to all four studies were included
in this GxE analysis. The PanScan (I, II, and III) and PanC4 GWAS
data are available through dbGaP (accession numbers phs000206.v5.
p3 and phs000648.v1.p1, respectively).

Exposure variables
The exposure variables considered in this GxE analysis were obesity

(BMI ≥30 kg/m2 vs. <30 kg/m2) and diabetes (diabetes with ≥3 years of
duration vs. nondiabetes). Because diabetes could be amanifestation of
occult pancreatic cancer, we excluded diabetes with a short duration
(<3 years) for studies with diabetes duration information to control
reverse causality. Covariates for adjustment included age (continuous),
sex, study sites, and principal components accounting for population
substructure. The distribution of demographics and risk factors of
participants in eachGWAS included in this analysis are summarized in
Supplementary Table S1.

Statistical analyses
We applied CC, case-only (CO), and 2 degrees-of-freedom (2-df)

joint-effect test (24) methods at the SNP level, and the “rareGE”
method (21) at the gene level in the genome-wide GxE scan. The 2-df
joint-effect test is more powerful in detecting a susceptible SNP in the
presence of strong genetic main effect (SNP), strong interaction effect
(SNPxE), or a combination of weak/moderate main and interaction
effects (SNP þ SNPxE). Thus, the joint-effect test is a useful comple-
mentary approach to CC, CO, and single-SNP marginal association
analysis in identifying disease susceptible loci (20).

The PanScan I–III and PanC4 datasets were analyzed individually
using the CC, CO, and joint-effect test at the SNP level. The “rareGE”
method was used for gene-based GxE analysis. The summary statistics
for each consortium were then subjected to meta-analysis.

SNP-level tests
To perform SNP-level analysis, we ran the logistic regression model

as follows:

Logit P Y ¼ 1ð Þð Þ ¼ b0 þ bEEþ bGSNPþ bGESNP � Eþ bCC; ðAÞ

where Y is the disease status (1 for case; 0 for control); b0 is the
intercept; E is the exposure variable of interest (diabetes or obesity);
SNP is the dosage of the genetic variant of interest, coded additively
accounting for genotype imputation uncertainty (ranging from 0 to 2);
and C is the vector of all covariates including age (continuous), sex,
study indicators, principal components accounting for population
substructures, and either diabetes or BMI [e.g., diabetes serves as the
exposure of interest with BMI (continuous) included in the covariate
vector]. For the CC study design, the null hypothesis to be tested H0:
bGE ¼ 0. ebGE was referred as the interaction OR.

Joint-effect analysis of SNP and SNPxEwere run using the approach
by Aschard and colleagues (25) by testing the null hypothesis H0:
bG ¼ bGE ¼ 0, derived from model (A) with a 2-df x2 Wald test. For
the CO study design, a logistic regression model was run in the case
group only as follows:

Logit P E ¼ 1ð Þð Þ ¼ b0 þ bGSNPþ bCC; ðBÞ

where the coefficients in model (B) are denoted the same as those in
model (A).

Gene-level tests
Gene regions were defined according to coordinates of the hg19

assembly, retrieved from the University of California, Santa Cruz
(UCSC) Genome Browser (26). About 22,300 genes were downloaded
from UCSC server, of which approximately 20,000 genes covering ≥2
GWAS genotyped SNPs were analyzed in this study.

We performed gene-based GxE analysis using the “rareGE” meth-
od (21) based on common SNPs (MAF ≥ 0.005, located within 20 kb
upstream or downstream of a given gene). For a gene with p SNPs, the
full model is as follows:

Logit P Y ¼ 1ð Þð Þ ¼ b0 þbEEþ
Xp

j¼1

bGjSNPj þ
Xp

j¼1

bGEjSNPj�EþbCC;

ðCÞ

where bGj and bGEj are the regression coefficients for the genetic main

effect and GxE effect for the jth SNP, respectively.
Two tests were implemented in the “rareGE” R package: GxE test

with genetic main effects estimated as random effects (PInt) under the
null hypothesis of no GxE, that is,H0: bGE1 ¼ bGE2 ¼ . . . ¼ bGEp ¼ 0,
and a joint test of G and GxE (PJoint) withH0: bG1 ¼ bG2 ¼ . . .¼ bGp ¼
0 and bGE1 ¼ bGE2 ¼ . . .¼ bGEp ¼ 0, analogous to the 2-df SNP-level

joint-effect test.

Meta-analyses
We applied a fixed-effects meta-analysis in METAL to combine

SNP-level GxE results from the CC or CO method across individual
consortia (27). Fisher meta-analysis was used to combine gene-level
GxE P values from the rareGE method (28).

Statistical thresholds
All tests were two sided. We consider P < 2.5� 10�8 and P < 1.25�

10�6 as genome-wide significant at the SNP and gene level, respec-
tively (29), for each individual study and each meta-analysis, adjusted
for 1 million SNPs, 20,000 genes, and two exposures of interest by the
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Bonferroni correction at family-wise error rate of 0.05. P < 5.0� 10�2

was considered as nominally significant for all analyses.

Statistical power estimation
We used the QUANTO software (version 1.2.4; ref. 30) to perform

power estimation for these GxE scans. With 8,255 cases and 11,900
controls, we had 80% power to detect an interaction OR of 1.5 and 1.6,
respectively, for obesity (main effect OR¼ 1.2 with 20% prevalence in
controls based on Supplementary Table S1) and diabetes (main effect
OR ¼ 1.7 with 10% prevalence in controls based on Supplementary
Table S1) for an SNP with MAF of 20% at a significance level of 2.5�
10�8 by the standard CC test.

Results
First, we examined the GxE (obesity and diabetes) interactions at

the SNP level using the CC, CO, and joint tests in each individual
GWAS, followed by meta-analysis of the summary statistics. Supple-
mentary Fig. S1 shows the quantile–quantile (Q–Q) plots for the CC
and CO meta-analyses. There was no discernable abnormal behavior
in the Q–Q plots for CC and CO study designs (genomic control l

ranged from 0.942 to 1.023). Q–Q plots also performed well for meta-
analysis of joint-effect tests (ls: 0.94–1.045).

CC and CO analyses
No signal at a genome-wide threshold of significance (P < 2.5 �

10�8) was detected in CC or CO analyses on interactions of genes with
diabetes or obesity. Using the CC approach, four SNPs on chromo-
somes 10, 18, and 20 showed evidence of interactions with diabetes at
near genome-wide significance (P < 1 � 10�6) and six SNPs on
chromosomes 2, 7, 11, and 16 showed weaker evidence of interactions
with obesity (P < 1� 10�5; Table 1). By the CO approach, four SNPs
on chromosomes 3 and 10 showed evidence of interactions with
diabetes at near genome-wide significance (P < 1 � 10�6; Table 2).
Of these, two SNPs (rs12255372 and rs7901695) were near TCF7L2
and in linkage disequilibrium (r2 ¼ 0.74 and 0.87, respectively) with
the lead SNP from a recent GWAS of type 2 diabetes (rs7903146; P ¼
1 � 10�347; ref. 31). Thus, the CO signals for these two SNPs likely
reflect violations of the gene–environment independence assumption
rather than evidence for GxE. In addition, five SNPs on chromosomes
4, 8, 14, and 17 had possible interactions with obesity at P < 1 � 10�5

(Table 2). Further, no significant across-consortiumheterogeneity was

Table 1. Top SNPs interacting with diabetes and obesity (CC).

Meta-analysis
SNP Chr. Position Genea Effect/ref allele MAFb OR (95% CI) P

Diabetes
rs7505930 18 4092001 �ROCK1P1-SLC35G4 G/A 0.35 1.60 (1.34–1.91) 1.9E-07
rs2777534 10 34109601 �GTPBP4-FGF8 A/G 0.12 2.04 (1.56–2.67) 2.3E-07
rs2812656 10 34116863 �GTPBP4-FGF8 G/A 0.12 0.50 (0.38–0.65) 2.4E-07
rs11086650 20 57183256 APCDD1L_AS1 C/T 0.32 0.61 (0.51–0.74) 5.8E-07

Obesity
rs7802442 7 22736446 �COX19-SLC12A9 C/A 0.31 0.73 (0.65–0.83) 1.2E-06
rs4298423 7 151643909 PRKAG2_AS1-GALNTL5� A/G 0.34 1.34 (1.19–1.51) 2.3E-06
rs559449 11 55340379 OR4C16 A/G 0.45 1.31 (1.17–1.47) 3.6E-06
rs7608326 2 37903390 �GRHL1-CHST10 C/T 0.07 0.51 (0.38–0.68) 4.2E-06
rs759831 16 82863660 CDH13 A/C 0.31 1.32 (1.17–1.49) 5.5E-06
rs1476483 7 22731199 �COX19-SLC12A9 G/A 0.20 0.72 (0.62–0.83) 8.5E-06

Abbreviation: Chr., chromosome.
aGene region was defined by the UCSC Genome Browser; �, the nearest gene to the SNP.
bDerived from the PanC4 dataset.

Table 2. Top interaction signals from CO analyses.

SNP Chr. Position Genea Effect/ref allele MAFb PCO

Diabetes
rs608841 3 138764229 �PRR23C-BPESC1 G/A 0.24 1.6E-07
rs696638 3 138775377 �PRR23C-BPESC1 A/G 0.16 2.2E-07
rs12255372 10 114808902 TCF7L2 A/C 0.28 2.3E-07
exm-rs7903146 10 114758349 TCF7L2 A/G 0.29 4.9E-07

Obesity
rs2018572 17 11599798 BHLHA9-DNAH9� G/A 0.19 1.3E-07
rs4791473 17 11574959 BHLHA9-DNAH9� G/T 0.18 1.9E-06
rs4413478 4 48491651 SLC10A4-ZAR1� A/G 0.25 2.8E-06
rs925611 8 9768690 OR4F21-C8orf49� T/G 0.097 3.2E-06
rs961044 14 87608094 �LOC283585-GALC G/A 0.14 6.9E-06

Abbreviations: Chr., chromosome; PCO, CO test P value.
aGene region was defined by the UCSC Genome Browser; �, the nearest gene to the SNP.
bDerived from the PanC4 dataset.
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found for the meta-analysis results inTables 1 and 2 (all heterogeneity
test P > 0.05).

2-df joint-effect test
Meta-analysis of joint-effect tests for SNP and SNP � diabetes or

SNP � obesity detected numerous genome-wide significant signals
that are all located in the chromosome regions containing previously
identified GWAS top hits (Supplementary Table S2). Conditional
analysis adjusting for the GWAS top hits in each region resulted in
null findings, indicating that joint-effect test signals were all driven by
the strong main effects of the SNPs.

Gene-level GxE analysis
Possible interactions of nine genes with diabetes and three genes

with obesity at a meta-analysis significance level of P < 1� 10�4 in at
least one of the interaction-only and joint tests are listed in Table 3.
Among these genes, a significant (P < 1:25 � 10�6) interaction of
diabetes with FAM63A gene was observed in the meta-analysis
(PInteraction ¼ 1:2 � 10�6, PJoint ¼ 4:2 � 10�7; Table 3). The SNPs
contributing to this gene are listed in Supplementary Table S3. No
individual SNP of this gene showed a significant interaction with
diabetes.

Discussion
In this genome-wide gene–obesity/diabetes interaction study of

pancreatic cancer, no significant departures from a log-linear odds
model at the SNP level were identified by the CC or CO approaches. In
the gene-based analysis, a significant interaction between variants in
the FAM63A gene and diabetes was observed.

FAM63A, also known as MINDY-1 (MINDY lysine 48 deubiqui-
tinase 1) is a member of an evolutionarily conserved and structurally
distinct family of deubiquitinating enzymes (32), which specifically
cleaves K48-linked poly-ubiquitin chain to regulate protein degrada-
tion. This distinct deubiquitinase class localizes to DNA lesions, where
it plays an important role in genome stability pathways, functioning to
prevent spontaneous DNA damage and to promote cellular survival in
response to exogenous DNA damage (33). Previous GWASs have

associated FAM63A or FAM63A homolog gene variants with the risk
of primary rhegmatogenous retinal detachment (34) and chronic renal
disease (35). Genetic analysis of a diabetes-prone mouse strain has
revealed gene regions homologous to FAM63A contributing to dia-
betes susceptibility (36). Although the role of FAM63A in pancreatic
cancer is unknown at present, the observed interaction with diabetes
deserves further investigation.

Genome-wide GxE analysis has unique challenges compared with
genetic main effects analysis in GWAS. First, GxE analysis requires a
much larger sample size to detect a realistic interaction OR than does a
GWAS scan for a comparable main effect OR (20, 37), largely
explaining why few positive findings have been reported in GxE
studies (38–40). For example, this GxE scan with 8,255 cases and
11,900 controls, even though about four times as large as our previous
gene–obesity/diabetes interaction analysis (18), had 80% power to
detect an interaction OR of 1.5 and 1.6, respectively, for obesity and
diabetes for an SNP with MAF of 20% at a significance level of
2:5 � 10�8 by the standard CC test; in contrast, the same sample
size had 80% power to detect a genetic main effect OR of 1.18 at the
same MAF and significance level. To boost the power for a given
sample size, novel statistical and analytic methods have been proposed
to leverage a priori biological knowledge in the form of genes, path-
ways, or other functional genomic annotations such as those derived
from the ENCODE and NIH Epigenomics Roadmap pro-
jects (18, 19, 41). Second, exposure variability and measurement
accuracy play a considerable role in determining the power and
reproducibility of GxE studies (42, 43). Third, there is no single most
powerful statistical method for either SNP or gene-level genome-wide
GxE analysis due to the largely unknown patterns of GxE interaction
signals and combinations of genetic main and GxE effects (20, 22).
Therefore, we suggest that the GxE analysis should make use of
multiple methods with complementary strengths, as used here and
suggested by other investigators (44), to discover the missing herita-
bility of pancreatic cancer (45).

This study identified a statistically significant interaction of diabetes
with variants in FAM63A in gene-based GxE analysis, but no signif-
icant SNP-level GxE interactions with either diabetes or obesity. We
note that the absence of interaction on the log-odds scale has

Table 3. Top genes interacting with diabetes and obesity by rareGE method.

Meta PanScan I PanScan II PanScan III PanC4
Gene Chr. PInt PJoint PInt PJoint PInt PJoint PInt PJoint PInt PJoint

Diabetes
FAM63A 1q21.3 1.2E-6a 4.2E-7a 3.8E-2 6.8E-2 0.024 0.04 2.2E-4 8.8E-6 3.3E-3 8.1E-3
CLTCL1 22q11.21 1.5E-4 5.2E-4 0.85 0.98 4.9E-3 0.01 0.77 0.95 6.0E-5 1.0E-4
MIR561 2q32.1 4.1E-5 6.6E-4 9.3E-4 1.7E-3 0.043 8.5E-2 8.1E-3 3.5E-2 0.13 0.25
GNG2 14q22.1 3.4E-5 1.1E-3 0.76 0.66 3.4E-3 7.9E-3 2.5E-5 5.9E-4 0.51 0.76
ADA 20q13.12 6.8E-5 4.6E-4 0.14 0.27 1.8E-3 3.7E-3 0.47 0.6 0.97 0.38
TP53I3 2p23.2 7.0E-5 1.7E-3 0.31 0.52 0.28 0.36 2.0E-6 3.0E-5 0.46 0.71
SF3B14 2p23.3 6.9E-5 1.9E-3 0.31 0.52 0.28 0.36 2.0E-6 3.6E-5 0.45 0.7
DCAF6 1q24.1 2.7E-2 1.6E-5 2.4E-2 0.05 0.49 2.7E-5 0.21 7.3E-2 0.07 0.14
OR6K2 1q23.1 3.3E-6 4.0E-3 6.4E-2 0.12 0.037 7.3E-2 2.0E-6 2.9E-3 0.45 0.48
MIR4457 5p15.33 0.57 9.9E-6 0.14 2.9E-2 0.93 0.61 0.61 5.8E-4 0.44 7.6E-4

Obesity
CDC42EP3 2p22.2 3.40E-04 2.10E-05 0.18 0.17 0.62 4.3E-3 5.50E-02 1.70E-01 9.10E-05 1.5E-4
FSD1L 9q31.2 6.50E-02 3.60E-05 4.2E-2 0.066 6.1E-2 0.13 8.80E-01 8.70E-06 2.80E-01 0.48
MIR4457 5p15.33 3.10E-01 5.10E-06 0.45 0.0045 0.82 0.32 6.20E-01 6.50E-03 4.00E-02 3.8E-4

Abbreviations: Chr., chromosome; PInt and PJoint, P values, respectively, derived from random-effect GxE interaction test and joint-effect test.
aGenome-wide significant P values (<1.25E-6).
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potentially important implications for risk modeling, as it typically
implies presence of interaction on the risk difference scale, sometimes
referred to as “public health interaction” (46). Developing and vali-
dating amultifactorial riskmodel is beyond the scope of this article, but
we note that our results lend support to the common assumption of
additive log oddswhen combining genetic, clinical, and environmental
risk factors to predict risk (47, 48).

This study has strengths and limitations. This is by far the largest
GxE analysis in pancreatic cancer. Quality control was strictly per-
formed in steps of genotyping, population structure definition, expo-
sure measurement, and harmonization. Diabetes was defined as
disease with ≥3-year duration, avoiding reverse causality. Along the
same line, because it is common for patients with pancreatic cancer to
experience severe weight loss (43), we avoided using body weight at or
close to cancer diagnosis for caseswhen calculating the BMI. Following
the state-of-the-art analysis strategies in large consortium-based GxE
scans (49, 50), we only adjusted for a “minimum” set of covariates,
including age, sex, study sites, and principal components accounting
for population substructure, in the regression analysis. As shown by
the well-behaved Q–Q plots in Supplementary Fig. S1, there was no
indication of uncontrolled confounding effects. Finally, genome-wide
significant thresholds based on the Bonferroni correction were
applied to reduce false-positive discovery. Nevertheless, relatively
small sample sizes curbed the power of the genome-wide GxE scan
from CC and CO study designs. Despite this, the current GxE analysis
discovered a novel susceptibility locus for pancreatic cancer using a
gene-based GxE test, and may contribute to discovering the mecha-
nism of diabetes-associated pancreatic cancer.
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