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3
Linear Models

In this chapter, we consider linear regression models that use ordinary least
squares as a fitting criterion. The simplicity of this estimation problem al-
lows us to focus on issues unique to spline modeling. We first treat the case
of a single, univariate predictor, a problem that is often referred to as curve
estimation or scatterplot smoothing. We introduce splines as natural exten-
sions of ordinary polynomial regression. Our approach is essentially data
analytic, illustrating features that make splines ideal for statistical applica-
tions. We examine the smoothing parameters implicit in these models, ex-
ploring in particular how the positioning of breakpoints or knots affects the
overall smoothness of a spline fit. Heuristics involving local bias-variance
considerations make these ideas concrete.

Early applications of splines typically relied on prior information or sub-
ject knowledge to place breakpoints. In practice, we rarely receive such
guidance, and hence recent work has focused on designing automatic knot
placement algorithms. Familiar techniques from variable selection have in-
spired many such schemes, often by simply treating a number of candidate
spline basis functions as potential predictors in a simple linear model. The
connection between spline smoothing and (parametric) data analytic tools
for model building will appear throughout the text as we incorporate flex-
ible elements into more elaborate estimation schemes. A clear advantage
of this programme is that we can apply our intuition concerning regres-
sion diagnostics directly to curve estimation. This connection breaks down
somewhat, however, over questions of inference for spline models, a topic
we will address in the context of a particular example.
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In this chapter, we will also examine problems with more than one pre-
dictor. In traditional applications of multivariate regression, an analysis
of variance (ANOVA) decomposition can be an important tool for assess-
ing the dependence between (subsets of) input variables and the response.
Borrowing this construction, we introduce the concepts of “main effects”
and “interactions” for multivariate spline models, where individual ANOVA
components are now smooth functions of the predictors. Tensor products
of univariate spline spaces provide a formal way to describe the result-
ing decomposition. We next present relatively straightforward extensions
of the adaptation procedure developed for curves. The presence or ab-
sence of ANOVA components is determined adaptively subject to famil-
iar constraints on the order in which main effects and interactions can
be added or removed from a model. As we will see, the power of such
schemes comes from their ability to identify important structure in large,
high-dimensional problems, and to express often complicated dependencies
in an interpretable way. The ease with which polynomial splines carry us
from curve estimation to multivariate problems is somewhat surprising,
making this approach relatively unique among competing techniques for
nonparametric regression.

3.1 Examples

We begin with two applications of spline-based methods, one for simple
curve estimation and one involving a high-dimensional regression function.
We briefly present the data and describe the fits, and then we use the
analysis to motivate a general methodology for modeling with splines.

3.1.1 Smoothing and extrinsic catastrophists

The data set under study was collected to test several hypotheses about the
catastrophic events that occurred approximately 65 million years ago. This
point marks a division between two geologic time periods, the Cretaceous
(from 66.4 to 144 million years ago) and the Tertiary (spanning from about
1.6 to 66.4 million years ago). Earth scientists believe that the boundary
between these periods is distinguished by tremendous changes in climate
that accompanied a mass extinction of over half of the species inhabiting
the planet at the time. Recently, the composition of stronium (Sr) isotopes
in sea water has been used to evaluate several hypotheses about the cause
of these extreme events. The quantity plotted in Figure 3.1 is related to
the isotopic makeup of Sr measured for the shells of marine organisms
(foraminifera). The vertical line in the middle of this figure denotes the
Cretaceous-Tertiary boundary, referred to as the KTB. The apparent peak
exhibited by these data at the KTB has been used by researchers to argue
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FIGURE 3.1. Tracking the standardized ratio, 878 Sr, of strontium isotopes %7Sr
to 8°Sr present in shells of marine organisms. Data are taken from 4 sites listed
in Table 2 of Hess et al (1986).

that the disastrous climate changes could not have resulted solely from
increased volcanic activity or the general drop in sea level that occurred
at the time. Instead, this peak is said to support the theory that one or
more meteors collided with the earth, causing short term acid rain, the
emission of poisonous gases, and an overall cooling. Scientists favoring this
hypothesis have been labeled “extrinsic catastrophists.”

The data in Figure 3.1 represent a (standardized) ratio of strontium-
87 isotopes (®7Sr) to strontium-86 isotopes (®9Sr) contained in the shells
of foraminifera fossils taken from cores collected by the Deep Sea Drilling
project (Hess et al., 1986). Let 87Sr/%6Sr sample denote the isotopic Sr
ratio for a given sample. The Sr composition of each selected shell records
the ratio of 87Sr to 80Sr in the oceans at the time the shell was formed.
Also, because the time Sr remains in sea water is much longer than the
mixing time of the oceans, it is believed that this ratio does not depend
on the location where the fossils were found. Finally, for each sample a
standardized ratio was computed via

g — (o O St sample ) s
B 87S1/808r sea water

where we let 87Sr/80Sr gon water denote the isotopic concentration of Sr for
modern sea water. Earth scientists expect that 87§ Sr is a smoothly-varying
function of time, depending on “gradual” effects like the rate of runoff
from rivers and the introduction of Sr from deep-sea ridges. The scatter
in Figure 3.1 is thought to be primarily measurement error. Martin and
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FIGURE 3.2. Several different fits to the isotope data. The solid line is discontinu-
ous and has 6 degrees of freedom. The dashed curve is continuously differentiable
and involves 4 degrees of freedom.

Macdougall (1991) outline how 37§ Sr values are obtained from foraminifera
fossils and detail several sources of measurement error.

Hess et al. (1986) present a complete collection of 87§Sr values that
extend from about 100 million years ago to the present. Following Hallam
and Wignall (1997) and Macdougall (1988), however, we focus on strontium
concentrations around the transition between the Cretaceous and Tertiary
periods. To obtain coverage similar to these other studies, we selected mea-
surements from the sites in Hess et al. (1986) labeled 366, 305, 356 and 577.
In Figure 3.1, we have 45 points ranging in age from 43.4 to 100.9 million
years ago.

In Figure 3.2, we present three different fits to the isotope data. The
curves are each splines, piecewise polynomials that satisfy certain smooth-
ness constraints. For example, the solid curve is discontinuous, with a break
positioned at the KTB, while the dashed curve is continuously differen-
tiable. The models exhibit differ in their ability to capture the features
evident in the 876 Sr data. The dashed curve seems to smooth over the
peak at the KTB and in the process produce a rather poor fit everywhere.
In addition, one can question whether a jump occurs at the KTB, as ex-
hibited by the solid line, or if the simple bend in the dot-dashed line is
sufficient. In terms of degrees of freedom, the solid line represents two sep-
arate quadratic polynomials, one fit to data on either side of the KTB,
and hence has 6 parameters. By forcing the quadratics to be continuously
differentiable across the KTB, we impose two “smoothness constraints” on
the fit (one to ensure continuity and then one to ensure continuity of the
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Model DF F  P-value

Quadratic polynomial 3 159 0.000
Discontinuous second derivative at KTB 1 10 0.002
1
1

Discontinuous first derivative at KTB 111 0.000
Discontinuous at KTB 7 0.011

TABLE 3.1. Judging smoothness across the KTB with a classical ANOVA table.

first derivative) and drop the number of free parameters to 4. The dashed
curve is the result. In between these two in terms of smoothness is the dot-
dashed curve which is continuous across the KTB, but has a discontinuity
in its first derivative at that point.

Later in the chapter we will develop criteria to evaluate how much
smoothness is required across a given breakpoint using simple ¢ tests or
F tests from classical regression analysis. As it turns out, each constraint
corresponds to a single degree of freedom in the model and testing for its
presence is equivalent to deciding if that parameter is different from zero. In
Table 3.1, we present an ANOVA decomposition that separates an overall
quadratic fit from various elaborations that reduce the smoothness of the
estimated 879 Sr curve across the KTB. We computed the F-statistics using
a hierarchy of conditions that relaxes the continuity in higher derivatives
first. This kind of ordering turns out to be quite natural from a regression
analysis perspective as well, a fact we will return to in Section 3.3. Note
that all of the breaks seem highly significant, providing some evidence for
a large drop in 87 Sr across the KTB.

While inference for the 7§ Sr data naturally focuses on the behavior of
the curve at the KTB, in many smoothing situations we do not know what
sort of structures might be present in the data. Instead, we would want
some way of automatically identifying prominent features. In this chapter,
we will discuss methods that adapt to peaks and valleys by introducing
breakpoints like those at the KTB in Figure 3.2. These techniques use
regression diagnostics similar to the ANOVA decomposition in Table 3.1
to identify locations that require more or less flexibility. As an example,
we applied one such scheme to the 87§ Sr data; the “best fitting” curve
is plotted with a solid line in Figure 3.3. Given several different fits, we
judged the “best” using a common (regression) model selection criterion,
an approach we will outline in detail in Section 3.3.3. The curve itself is a
so-called natural cubic spline. For the moment, all that we need to know
is that this curve represents a piecewise cubic polynomial which is twice
continuously differentiable, and that it has jumps in its third derivative at
the three points indicated by arrows in the plot. The fact that breakpoints
cluster in the region of the KTB indicates the need for extra flexibility
there. The grey bands in this plot represent (asymmetric) pointwise 95%
confidence bands obtained by a simple bootstrap procedure suggested by
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Friedman and Silverman (1989) and discussed in Section 3.8.1. A total of
200 bootstrap samples were used to create this plot.

In the lower panel of Figure 3.3, we present a closeup of KTB together
with a boxplot of the locations of the peaks (ages at which the peaks
occurred) in the 200 bootstrap samples. The run of four positive residuals
to the left of the KTB provides us with only modest evidence for a stronger
peak; but from the boxplot we do see a fair amount of uncertainty in
the placement of the maximum. (The variability of a spline fit has been
characterized considering runs of errors of a common sign; see Section 3.6.1
for more details.) This kind of observation might lead us to explore further,
possibly with the analysis in Figure 3.2. Granted we have only 45 data
points, the peak is identified mainly by the two largest points just to the
left of the KTB. In Section 3.8.2, we will introduce an auxiliary data set
collected by Martin and Macdougall (1991) to better resolve the peak.

Clearly, modeling with splines provides us with considerable flexibility
in constructing an estimate of the 37§Sr values. How we decide on an
appropriate model is the subject of this chapter. For the moment, it is
only important to recognize that several different kinds of spline fits can
be constructed, and we can evaluate each on the basis of its ability to
describe the underlying data. Typically, our choice of spline model involves
some implicit assumptions about the smoothness of the function we are
estimating. In the later sections of this chapter, we will translate these
assumptions into explicit constraints on a general methodology. As we will
see, one strength of the spline approach is that these constraints can be cast
in terms of familiar stepwise approaches to building regression models.

Martin and Macdougall (1991), McArthur, Thirlwall, Engkilde, Zinsmeis-
ter and Howarth (1998) and Howarth and McArthur (1997) consider the
geological implications of the slopes just to the left and the right of the
KTB. The approach from the right indicates an introduction of strontium
isotopes into the planet’s oceans. Martin and Macdougall (1991) argue that
the only explanation for an extremely sharp rise in strontium isotopes is
a meteor impact that sets off hundreds of years of acid rain.® The nar-
rowness of the peak relative to other features found in the 876 Sr curve at
other periods (from the present, reaching as far back as 200 million years
ago) could tell us something about the plausibility of this argument. Stron-
tium isotopes dissipate at a fixed rate, and hence the rate of decline on
the left of the KTB was argued by McArthur et al. (1998) and Howarth
and McArthur (1997) to be too steep to be believable. Questions related
to possible deficiencies in the underlying data are beyond the scope of this
text and the reader is referred to McArthur et al. (1998).

1A meteor striking the earth could produce enough airborne soot to trigger long
periods of acid rain, and the runoff or “continental weathering” would be responsible
for the extra isotopes.
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FIGURE 3.3. Upper: Modeling the standardized ratio 57§ Sr with a (natural)
cubic spline. Gray regions represent (asymmetric) 95% pointwise bootstrap con-
fidence intervals. Lower: On the left, we plot the fit only in the neighborhood
of the KTB. Black points indicate points that are larger than the fit (positive
residuals) and open circles indicate points that are smaller than the fit (negative
residuals). On the right we present a boxplot representing the distribution of
times at which the peak occurred in our bootstrap samples.
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FIGURE 3.4. Piecewise linear spline fit to the 376 Sr data with pointwise (asym-
metric) 95% confidence bands. Breakpoints are marked with arrows.

So far, we have seen examples of several different kinds of spline spaces.
In each case, we are working with piecewise polynomials that satisfy certain
smoothness constraints across a set of breakpoints distributed within the
support of the data. In curve fitting, the kind of analysis we performed with
the (natural) cubic splines is quite common as a general purpose methodol-
ogy. When the data do not seem to support such smooth models, we might
consider other kinds of splines. In Figure 3.4, we present an example of a
linear spline, or a continuous, piecewise linear function. In this figure we
see the tradeoffs between the two kinds of fits; while the linear spline might
resolve a sharp peak more effectively, it often smoothes over more subtle
structure like the bend just to the left of the KTB or the subtle drop to
the right. The grey band represents pointwise (asymmetric) 95% confidence
intervals for the regression function using the same bootstrap procedure as
above. Notice that our fit is pinned near the edge of the confidence inter-
val at the KTB. This could suggest that our actual piecewise linear model
has “over-fit” the data in the sense that it is tracking the two large points
to the left of the K'TB too closely. The raggedness of the lower confidence
band is one byproduct of the “stiffness” or simplicity of the piecewise linear
fit. Still, even with these caveats, the overall shape of the curve has been
captured faithfully. In the next subsection, we will see that for multivariate
problems, such piecewise linear components are excellent building blocks.
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FIGURE 3.5. Abundance (IV) of four tree species. From left to right, top to
bottom: American beech, southern red oak, white oak and Virginia pine. Lighter
pixels indicate counties with greater IV values, black pixels indicate missing or
absent data.

3.1.2  Global warming and tree migration

We now consider another, more contemporary (and avoidable?), environ-
mental disaster, namely the buildup of so-called greenhouse gases and the
accompanying trend of global warming. Researchers predict that by the
end of the twenty-first century we could see a doubling of current COq
levels, triggering a temperature increase of between 1 and 4.5 degrees Cel-
sius. What impact will this have on the living systems around us? In this
section, we consider a large data set assembled by the United States De-
partment of Agriculture (USDA) Forest Service to assess how such changes
in climate will affect the distribution of various tree species in the eastern
portion of the United States. The USDA study examined more than 2,100
eastern counties with data characterizing the local climate, soils, and ele-
vation. The Forest Inventory Analysis (FIA) database provided figures on
the range and abundance of various tree species.
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Historical data suggests that climatic warming can shift the “optimal
habitats” for various tree species and that, over time, such shifts can result
in a kind of “migration” of trees toward the more favorable conditions. For
most species, this movement has been northward and has occurred over
thousands of years. By contrast, recent studies of global warming predict
dramatic changes in climate that significantly alter the optimal habitats of
many species in a relatively short period of time. To quantify the impact
of such rapid changes, the USDA Forest Service first constructed a model
describing the abundance of trees as a function of various climatic and soil
factors. The USDA then substituted predictions for the climatic variables
under different warming scenarios to study habitat shifts species-by-species.
The implication that we might see actual tree migrations as a result of these
changes is less obvious, again because of the short time periods involved
in the warming scenarios. In addition, the open landscape of the modern
US is much more fragmented (crossed with highways, homes and shopping
malls, for example), complicating the migration of species in certain areas.
Still, with these caveats in mind, it is useful to assess how the forests in
the US might be impacted by projected environmental conditions.

As mentioned above, much of the data to support this study comes from
the FIA. The FIA contains measurements on over 3 million trees, orga-
nized around 100,000 forested plots. For each plot researchers calculated
an importance value (IV) for 8 different tree species,

area(s) + 100 stems(s) ,
>, area(z) >, stems(x)
where area(s) is the total basal area of trees of species s in a given plot
and stems(s) is a count of the number of trees of species s in a given plot.
In a stand of trees consisting of essentially one species, the IV value will be
near 200. Our data set consists of county-level averages of importance values
together with the environmental and land use statistics, also summarized
by county. The IV values for four species are plotted in Figure 3.5.

To predict IV for a given tree species, a series of variables was collected
that describe the habitat of the forests in each of the 2,100 study counties.
From an original list of 100 potential predictor variables, the researchers
focused on 28. In Table 3.2 we present these covariates, listing the seven
climate-related variables first. The remaining factors deal with the condi-
tion of the soil in each county as well as measures relating to the elevation.
Unlike the curve estimation problem in the previous section, model building
for the IV data means also having to identify which variables are important
as well as the general shape of the dependence. This extra complexity is
the first we will see of the so-called “curse of dimensionality.”

We begin by considering just the IV values for the American beech (Fa-
gus grandifolia) because Iverson and Prasad (1999, 1998) report success
in constructing models based on the variables in Table 3.2. In Prasad and
Iverson (2000), two kinds of spline-based smoothers were studied with four

IV(s) = 100 (3.1.1)
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Climate factors (monthly means, 1984-1987)

AVGT Temperature (C)

MAYSEPT Mean May—September temperature (C)
JANT Mean January temperature (C)

JULT Mean July temperature (C)

PPT Annual precipitation (mm)

PET Potential evapotranspiration (mm/month)
JARPPET July—August ratio of precipitation to PET

Soil factors: Habitat

PH Soil pH

TAWC Total available water capacity (cm, to 152 cm)

oM Organic matter content (% by weight)

PERM Soil permeability rate (cm/hour)

BD Soil bulk density (g/cm3)

CEC Cation exchange capacity

ROCKDEP Depth to bedrock (cm)

ERODFAC Soil erodibility factor, rock fragments free
(susceptibility of soil erosion to water movement)

SLOPE Soil slope (percent) of a soil component

PROD Potential soil productivity, (m3 of timber/ha)

Soil factors: Texture

TEXFINE Percent passing sieve No. 200 (fine)
TEXCOARS Percent passing sieve No. 10 (coarse)
ROCKFRAG Percent weight of rock fragments 8-25 cm
CLAY Percent clay (< 0.002 mm size)

Soil factors: Soil orders

ALFISOL Alfisol (%)

ULTISOL Ultisol (%)

INCEPTSL Inceptisol (%)
SPODOSOL Spodosol (%)
MOLLISOL Mollisol (%)

Elevation

MAXELV Maximum elevation (m)
MINELV Minimum elevation (m)

TABLE 3.2. Candidate variables considered for predicting abundance of tree
species in the eastern United States. The first group consists of a series of climate
factors generated by the United States Environmental Protection Agency (EPA)
Environmental Research Laboratory (1993). The second class of variables relates
to soil conditions in each county and was collected by the USDA Soil Conservation
Service (now Natural Conservation Service). This class is further divided into
groups of factors relating to the habitat, the soil texture and the soil orders for
each county. Finally, elevation (the minimum and maximum for each county) was
obtained from the US Geological Survey. The data were provided by the USDA
Forest Service.



112 3. Linear Models

different tree species. After some preliminary exploratory analysis, we de-
cided to model the square root of IV and focus our attention on the middle
region of the eastern half of the US consisting of 1093 counties. (After
some experimentation, these choices tended to remove some of the skew
in the residuals.) The spline procedure we applied is similar to the curve
fitting routine outlined for the 37§ Sr data: We generated a number of dif-
ferent candidate spline models with different complexities and employed
a model selection criterion to identify the “best” or final fit. For this ex-
ample, we chose to work with linear splines, and applied a methodology
known as PolyMARS. In Figure 3.6 we present the spline components from
this model involving just the climate variables (AVGT, JULT and PPT).
In each case, dependence of IV on the selected variable involves a single
breakpoint or bend. In all, the model makes use of 15 of the candidate
predictors; 9 appear as simple linear effects (no breakpoints) and the re-
maining 6 are all simple broken lines as in Figure 3.6. We will have more
to say about this model and the stepwise process used to construct it later
in the chapter.

In the lower right corner of Figure 3.6 we present a simple quantile-
quantile plot of the residuals from the spline fit against the standard nor-
mal distribution. Common regression diagnostics did not suggest any gross
misfit, although the R? value is only 58%. Iverson and Prasad (2000) report
similar values for their fits to the data, in part suggesting that this is a dif-
ficult estimation problem. In Figure 3.7 we examine the fit to the IV data
a bit more closely. In the upper left corner, we present the raw importance
values. Predictions under current climate conditions are mapped out in the
upper right panel of this figure. The model has trimmed some of the peaks
(the light patches in these images) and has smoothed out areas in the Ohio
valley. Still, as was true for our piecewise-linear fit to the 876 Sr values in
the previous section, the broad structures appear to be reproduced by the
model.

Using this fit, we now consider two different scenarios for climate change
in North America. In both cases, we generate IV values for the Ameri-
can beech using the same county-by-county values for the soil factors, but
replacing the climate variables with predictions from one of two different
models for weather conditions associated with a doubling of COg levels. The
lower left image in Figure 3.17 is based on predictions from the Hadley Cen-
tre for Climate Prediction and Research, part of the Meteorological Office
of the British Government. The lower right image is based on data from
the Canadian Centre For Climate (CCC) Prediction and Analysis. The cli-
mate predictions themselves are taken to be county-wise, 30 year averages
from the period 2071-2100. The Hadley scenario predicts increases in the
temperature variables of about 2°C in each county, while CCC predicts a
jump of 5°C per county. In terms of precipitation, the Hadley model an-
ticipates county increases of between 200 and 400mm (with only 3 of the
1093 counties experiencing less rainfall). The CCC model, on the other
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FIGURE 3.6. Some of the functional components (based on the climate variables)
in the spline fit to the square root of the IV values computed for the American
Beech.

hand, suggests that about a third of the counties will have less rainfall,
and that the county-specific shifts will be between —200 and 200 mm. Ge-
ographically, Hadley predicts much greater rainfall in the southeast, near
the mountains of Tennessee and the coast of North Carolina, while CCC
predicts modestly more rainfall in the Great Lakes region.

For each of Hadley and CC, we extract county-by-county values of AVGT,
JULT and PPT and supply them (together with the soil variables) to the
partially exhibited model in Figure 3.6. Comparing the upper and lower
rows in Figure 3.7, we see that both climate predictions indicate a dra-
matic shift in the regions with high IV values for the American beech. The
trend is northward in each case, with the CCC model predicting a virtual
elimination of the species from the US. To quantify this shift, we consid-
ered the percent change in an area-weighted IV score for each of the fitted
models under the two climate scenarios. Under our spline model, we see
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FIGURE 3.7. Predicted abundance of the American beech using the linear spline
model. Upper left is the raw data; upper right is the fit. The lower set of plots
are predictions under two different global warming scenarios; CCC is left, Hadley
is right.

a 35% drop in the area-weighted IV scores under the Hadley model, with
a 68.5% drop under the CCC predictions. In Section 3.4 we will extend
this analysis to other tree species and even extend the spline modeling to
work with multiple IV values at one time. Finally, we consider a censored
regression model that is more appropriate for these data.

3.2 Regression modeling and approximation spaces

Given a set of (potentially relevant) predictor variables X1,..., X, and a
univariate response Y, our interest is in describing the dependence of Y
on X = (Xy,...,X,4). Formally, we want to capture the major features
evident in the regression function

f(x) =E(Y|X =x), reX, (3.2.1)
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where X is a (possibly unbounded) subset of R%. Throughout this chapter
we will assume that the conditional variance of Y given X is constant; that
is,

var(Y|X =) = o? reEX. (3.2.2)

Equivalently, we can write
Y =f(X)+e (3.2.3)

where E(e|X) = 0 and var(e| X ) = 02. As an example, note that the normal
regression model

Y =f(X)+e e~N(0,0%), (3.2.4)

where € is independent of X, yields a dependence of the form (3.2.1) and
(3.2.2).

We gain insight into the important features in the relationship between
X and Y by entertaining various descriptions of our models for f. Through
this exercise, we might identify the width and height of peaks or perhaps
simply explore the overall shape of f in some neighborhood, finding areas of
sharp increase or regions exhibiting little curvature. This was the case with
the 87§ Sr data in the previous section. Sometimes the need to estimate f
arises when investigators have to decide among various explanations for a
physical phenomenon, explanations that might be indistinguishable from
the standpoint of existing subject-knowledge or scientific theory. Exhibiting
some aspect of f may then imply the confirmation or revision of a given
theory. This was the case with the importance values IV for the American
beech: The dependence on certain climate variables helped us understand
the “migration” patterns we could expect from this species under global
warming. The data to support such investigations are typically a set of n
paired observations (X 1,Y1),...,(Xn,Y,). These can be either a random
sample from the joint distribution of (X,Y"), as is the case in observational
studies; alternatively, the input values {X;} can be fixed, as in a designed
experiment. For the moment, we assume that the inputs are distinct.

In the next three sections, we will review the basic components of re-
gression analysis. We start with the least squares criterion and the compu-
tation of regression estimates; we then consider the bias-variance tradeoff
that arises in the context of spline modeling (or any time in which we
work with so-called approximation spaces); and finally, we examine simple
model selection criteria, rules for comparing different fits and determining
a single “best” model from the available candidates. Those familiar with
regression analysis can safely skim the material in Section 3.2.1 and skim
or skip Sections 3.2.2 and 3.2.3 on first reading.

3.2.1 Linear spaces and ordinary least squares

Our approach to estimating f involves the use of finite-dimensional lin-
ear spaces, and in particular one of the approximation spaces presented
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in Chapter 2. (We will mainly be concerned with polynomials, piecewise
polynomials, or splines; the separate fits in Figure 3.2 is a good example of
the different spaces we might consider). A linear model for the regression
function (3.2.1) consists of a J-dimensional linear space G having as a basis
the functions

Bj(x), ji=1,...,J, (3.2.5)

defined for € X. Each member of g € G can be written uniquely as a
linear combination

g(x) =g(x;B8) = prBr(z) +- -+ BsBs(x), xTEX, (3.2.6)

for a unique value of the coefficient vector 3 = (1, ..., 37)T. The space G
represents a linear model, and each g € G is a candidate description for f.
In the next section, we will consider models G that are constructed from
polynomials or piecewise polynomials.

We choose between the competing functions g € G on the basis of the
ordinary least squares (OLS) criterion

plg) => [Yi—g(X)]*, g€G. (3.2.7)
i=1
The function
g = argmin p(g) (3.2.8)
geG

minimizing this criterion is referred to as the OLS estimate of f in G.
Computationally, we solve this problem by rewriting the OLS criterion
in terms of the parameter vector 3 as

p(B) = Z[Yi —9(X58))°

[Yi = B1BU(Xi) =+ = BsBs(X3) ], (3.2.9)

I

s
Il
-

we find that

~

B = argmin p(3), (3.2.10)
BeR’

and that g = g(w;ﬁ). We obtain the OLS estimate B by solving the so-
called normal equations

(B'B)B =B"Y, (3.2.11)

where B is the n x J design matrix with elements [B];; = B;(X;) and
Y = (Y1,...,Y,)T. If we solve for 3 in the above expression we find

B=(B"B)'BTY. (3.2.12)
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Finally, we define the residual sum of squares RSS associated with G to be
the value of the OLS criterion for g; that is,

n
RSS(G) = min p(g) = p(9) = > Y- g(xa)”. (3.2.13)
i=1
We will study some properties of RSS in Section 3.2.3.

Connecting with classical treatments on regression, under the normal
model (3.2.4), p(g) is proportional to the log-likelihood for g or, equiv-
alently, 3. If we assume that f is contained in G, then there is a “true
parameter” 3* such that f = g(x;3"). The reader can consult Cook and
Weisberg (1999), Seber (1977) or Rao (1973) for basic background material
on classical regression modeling and the geometry of OLS estimation. We
have chosen to work with approximation spaces (piecewise polynomials or
splines) because they can adapt to a variety of different features; they can
provide a good description of an unknown regression function. Therefore,
we are rarely comfortable with the assumption that f € G; and instead,
we assume that f can be reasonably well approzimated by some member of
G. Still, the least squares criterion is a useful measure of misfit and is fre-
quently applied in such cases. In the next section, we examine some unique
aspects of regression analysis involving approximation spaces.

3.2.2  The bias-variance tradeoff

In this subsection, we derive one version of the bias-variance tradeoff for
regression estimators based on linear spaces. In Sections 3.3.2 and 3.4.2 we
will apply this result for univariate and multivariate splines, respectively.
For simplicity, we assume the input variables, @1, ..., x,, are fixed. While
it is possible to derive versions of these results more generally, we delay a
complete treatment until Chapter 11. For the moment, the reader can either
think of the data as coming from a sequence of designed experiments, or
instead think of the analysis as conditional on the values of the input data.
Then, given the design points «1, ..., x,, we make observations Y7,...,Y,
according to the regression setup (3.2.3).

In this book, we are concerned with linear spaces G that are adaptable
in the sense that they can describe a wide range of smooth functions. In
Section 3.1, for example, we fit different smooth curves to the 876 Sr data. In
the literature on numerical analysis, it is common to quantify the notion of
adaptability in terms of the achievable approzimation error. To be precise,
given a function f and a linear space G, we define the distance

d(f,G) =min || f — ¢g||co, (3.2.14)
geG
where the norm on the right is defined by

Ilf = gllec = sup |f(x) — g(z)].
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The approximation error (3.2.14) associated with spaces of polynomials or
piecewise polynomials is well known and will be used as motivation in the
next section.

In statistical applications, the flexibility or approximation power of a
linear space is (quite literally) only half the battle. When we use a linear
space G to form an estimate of the unknown regression function f, we need
a different notion of error, one that specifically incorporates the fact that
we are working with noisy observations of f at some set of points. To this
end, for any point g € X, we define the pointwise error

B([f(@0) - g(@e: B)]”).

where the expectation is taken with respect to Yi,...,Y,. This quantity
tells us on average how well we can expect to capture f(xg) if we repeat
the experiment multiple times, each time drawing new observations at our
design points. We gain insight into this metric by decomposing it into two
components:

B([f(@0) - g(@0:B)]”)
= [f(20) — g(z0: B)]” + E([g(:vo; B) — g(o; B)]Q) , (3.2.15)

where Eﬁ = B This equality follows easily because G is a linear space
and the representation in equation (3.2.6) holds. Rather than evaluate the
model error at one point, we will instead take an average over all the design
points. That means replacing zo in (3.2.15) with each of x1,...,x, and
forming the model error

MEG) = = 3" B([f(:) — glw B)]°). (3.2.16)
=1

(Since the expectation in the above expression is with respect to the data
Y1,...,Y, conditional on @1, ...,x,, this quantity is often referred to as
an in-sample measure of error.) We can gain insight into the structure of
this quantity with the simple decomposition

ME(G) = % zj: E([f(fvi) - 9(%‘;5)}2)

+ % ZE([Q(@;@) - 9(%;3)]2). (3.2.17)
=1

The expression on the right is often referred to as a bias-variance decom-
position. To make this terminology precise, we consider each component in
a bit more detail.
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We begin with the second sum on the right in (3.2.17), which we think
of as a variance term. Using the expression in (3.2.12), we find that B has
mean B

B=(B'B) 'BT,
where = [f(x1),...,f(zn)] and variance-covariance matrix o?(BTB)~!.
Now, if we let b(zg) denote the 1 x n row vector (By(xo),. .., Bs(xg)) for
any point g € X, then we can rewrite the second term on the right in

(3.2.15) as

o~

E([g(0: B) — g(w0: B)]") = ob(z0) (B'B) ' [blwo)]"

By summing this expression over the design points we find that the variance
component of the model error is given by

1

1 n -~ 2 Jo?2
=S " b(z;) (B™B) ' b(x;)T = Ztrace [B(BTB)'BT] =~ (3.2.18)
n n n
i=1
from the properties of the so-called hat matrix, B(BTB) !B (see Rao,
1973, Chapter 4; Seber, 1977; or Cook and Weisberg, 1999).
To get a handle on the first term in (3.2.17), note that from the expression

for 3 (3.2.12) we can write 3 as
B=(B"B) 'B'f. (3.2.19)

where f = (f(x1),..., f(x,))T is an n x 1 column vector evaluating f at

the design points. In fact, comparing this with (3.2.11), we find that B
minimizes the measure

> O If (@) — gl B))° (3.2.20)

i=1

over all coefficient vectors 3. Therefore, g(x; B) is obtained by solving an
OLS problem in G with response f; that is,

n n

Z [f(fcz) - 9(33“5)} ’ = IgTéi(I;} % Z [f(x:) — g(x)])” . (3.2.21)

1
n
Letting ¢g* = argmin g || f — g, We conclude from (3.2.21) that

S [r@) -~ gtwaB)] < 23 ) - g (@)

=1 i=1

SN

1

.

<1y epe - e
=1

Combining this with (3.2.18), we have the following result.
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Proposition 3.2.1. The the model error can be bounded:

MEG) = 3" B([f(w) — g(ws )
=23 B( ) gl B)) + 1 (3222)
<d*(f,G) + %’2 . (3.2.23)

The last expression is referred to as a bias-variance decomposition; its first
component represents the squared bias and the second is the variance of
estimates from G. The bias is controlled by the approximation error of G,
while the variance term simply records the number of terms used in our
model, which is the dimension of G.

The model error in Proposition 3.2.1 is one component of the prediction
error

1< B
PE(G) = ~ EE*(Y-*— ” ) 3.2.24
© =5 22 B (177 - o(wisB) (3:2.24)
where Y* is a new observation from the model (3.2.3) for i = 1,...,n. The
inner expectation is with respect to the new data points Y™ = (Y}*,..., V),

and it records the error in our predictions based on models from G. In this
expression we have also made explicit the fact that the outer expectation
is with respect to the sample Y = (Y7,...,Y,) used to construct 3. Notice
that this is the same expectation that appears in our definition of model
error, (3.2.17). It is not hard to show that the prediction error can be
written as

PE(G) = 0 + ME(G). (3.2.25)

The first term is often referred to as an irreducible error in the sense that
we cannot eliminate it by our choice of model space G. In various chapters
of this book, we will alternate between methods that select models based
on estimates of either PE or ME.

3.2.3 How smooth? Some simple model selection criteria

In our presentation on the 876 Sr data, we needed to evaluate different mod-
els, which represented different degrees of smoothness across the KTB.
Initially, we relied on simple F-statistics to help us decide the question.
Throughout this chapter, we will encounter the problem of deciding which
aspects of the data represent structures in our regression function and which
are artifacts of noise. In the case of the 87§ Sr data, researchers are interested
in behavior of the function at a single point, the KTB. In most situations,
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however, we do not have such refined hypotheses and the F-statistic ap-
proach breaks down. Instead, we will compare not just two different linear
models but possibly hundreds.

Estimates of model error and related criteria

To guide our search for linear models that are well supported by the data,
we will employ a model selection criterion. One of the first of these is based
on model error (3.2.16). Obviously, ME(G) is not directly useful as a metric
for evaluating G as it depends on the unknown function f. Instead, Mallows
(1973, 1994) defined an estimate of ME known as Mallows’ C,. For a J-
dimensional linear space G with residual sum of squares RSS, the criterion
is defined by

Cp = R—S28 —-n+2J, (3.2.26)

o

where we have assumed for the moment that the error variance o2 is known.
Extending slightly the analysis leading to (3.2.22), we find that

BRSS) =" B([f(z:) - g(@isB))°) +o*(n — ) (3.2.27)
=1

nME + ¢ (n — 2J) (3.2.28)

so that €} is an unbiased estimate of 3 ME.

Therefore, when o2 is known, we can use C, as a (scaled) estimate of
ME. Given two linear spaces G and G5 with RSS; and RSSs, respectively,
we would prefer the model with the smaller value of C,. Suppose G; C G2
and that G; has J parameters while G, has J4-1 parameters. The C), value
for G is smaller than that for Go if

RSSs

RSSs — RSS;
o2 -

RSS
—n42(J 1) > =2 -

= —n+2J or 2.

g

It is possible to go farther and interpret this result in terms of classical hy-
pothesis testing, and even develop the F' tests alluded to at the beginning
of the chapter (substituting an estimate for o2 based on the residual sum
of squares associated with G2). In situations where we believe that the un-
known regression function f is actually contained in one of the linear spaces
we are considering, this approach is sensible, and certainly a mainstay of
classical statistics.

In our applications, however, we are entertaining linear spaces because
they have good approximation properties, and we do not believe f is actu-
ally a member of any of these spaces. Hence we prefer to consider criteria
like C) as estimates of model error. Akaike (1973) arrived at the same mea-
sure, but took an information-theoretic approach. He considered a general
likelihood and approximated the Kullback-Liebler divergence between the
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data-generating model and its maximum likelihood estimate using G. This
criterion is given in general by

—2max/(g) +2J, (3.2.29)
geG

where £(G) is the maximized log-likelihood computed for the model G. For
the normal linear model, this becomes essentially C,, or

R—S28 +2J when &2 is known
o

and
nlogRSS +2J when ¢? is unknown.

The form of AIC (3.2.29) has been modified by several authors to incorpo-
rate more or less penalty on dimension, depending on the characteristics
of the function under study, the smoothness of the splines, and the type of
search used to identify the final model; see Section 3.6.3 for a simulation
to illustrate the point. In general, these alterations yield a criterion of the
form

—2max{(g) +p(n)J, (3.2.30)
geG

where p(n) is some increasing function of sample size. For the normal linear

model with o2 unknown, this is simply

nlogRSS + p(n)J. (3.2.31)

One such example is the Bayesian Information Criterion (BIC) developed
by Schwarz (1978)
—2max¥(g) + (logn)J . (3.2.32)
9€G
Schwarz derived this formula as an approximation to a posterior distri-
bution on model classes and not as an estimate of prediction error. The
interested reader is referred to Chapter 10 for more discussion of this.

Estimates of prediction error

Many model selection schemes estimate the prediction error and decide
between competing linear spaces on the basis of this estimate. A test set is
used in the simplest such approach. Here we set aside an independent set

of observations (X 7,Y7),..., (X%, Y%) and use them to estimate PE as
—~ 1 & 12
PErs(G) = = > [V —o(XT:B)]" (3.2.33)

i=1

Note that in this formulation, our new observations are not necessarily
taken at the original design points «1,...,®,. The definition and analysis
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we followed for ME and PE that held the design points fixed can be re-
laxed and we can instead take our design points to be observations from
a random variable X. In that case, we take an expectation with respect
to the distribution of the pair (X,Y") in (3.2.16) and (3.2.24), replacing
the average over the fixed design points. We cover this approach in greater
depth in Chapter 11.

When a test set is not available, leave-one-out cross validation has been
proposed as another estimate of the prediction error. Here

PEcv(G) = % Z [Yi —g(xi; B(_i))} g (3.2.34)
=1

where ﬁ(_z) is the least squares fit in G omitting the point (X;,Y;). The
omitted point is now a test set of size one. For OLS, this leave-one-out
cross-validated estimate of prediction error can be written as

n . 3112
i g@s B (3.2.35)

where D; is the ith diagonal entry of I — B(BTB)~!BT. Note that in this
expression, we are now working with the ordinary residuals and not the
residual from a fit that dropped the ith point. The derivation of this fact
can be found in Miller (1990).

An adjusted RSS criterion known as generalized cross-validation was
proposed by Craven and Wahba (1975):

oy =L B (3.2.36)

"2

The original motivation for this scheme was as an approximation to leave-
one-out cross validation in the context of smoothing splines. For OLS, it is
obtained by replacing the D; in (3.2.35) with their average. Recalling that
the sum of the diagonal elements of B(BTB)~'B7 is just .J, the average
of the D; is (1 — J/n). Making this substitution in (3.2.35) yields (3.2.36).
Similar adjustments for the penalty implicit in this expression have also
been applied to the GCV criterion, where one might write

1
E(]thiS(’,SL)W . (3-2.37)
to again add a higher penalty for increased dimensionality. Here we must
restrict consideration to models having fewer than n/p(n) basis elements.
The criterion (3.2.37) is used in MARS (Friedman, 1990), Hybrid adaptive
splines (Luo and Wahba, 1995) and PolyMars (Stone, et al., 1997) for
comparing different linear spaces.
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We can relate this criterion to C}, by noting that
log(l —z) = —x

for small z. Applying this to (3.2.37), we get that

1 RSS p(n)J
This expression is proportional to the rule (3.2.31), providing we pick our
penalties properly. (Actually, the two expressions also differ by an additive
constant that depends only on n and hence will not change our model
comparisons. )

3.3 Curve estimation

3.3.1 From polynomials to splines

For the moment, the regression function f given in (3.2.1) depends on a
single, real-valued predictor X (and hence we drop the boldface notation)
ranging over some (possibly infinite) subinterval X C R of the real line.
Therefore, the dependence of the mean of Y on X is given by

f@)=EY|X=2), zeXCR (3.3.1)

This setup is often referred to as scatterplot smoothing. The properties
of OLS estimates based on (fixed, univariate) spline spaces G are most
easily characterized in this simple context. After illustrating the implicit
smoothing parameters that control the flexibility of a spline model, we
take up the topic of adaptation. Familiar model selection schemes translate
almost immediately into easily understood smoothing methods.

Throughout this section, we will return to the data in Figure 3.1 as we
discuss various curve estimation procedures. The ability to resolve the ap-
parent peak near the KTB is a good benchmark for comparing different
models. In motivating the applicability of spline models, we borrow ideas
and notation from Chapter 2. We have tried to keep the material somewhat
self-contained, however, so that a reader unfamiliar with (or uninterested
in) detailed results from approximation theory can easily follow our discus-
sion. Splines have been used extensively as flexible tools for data analysis,
so we have chosen a somewhat pragmatic introduction to the subject.

Polynomials

Recall the univariate regression setup given in (3.3.1). In many practical
applications, standard exploratory analysis reveals that a simple linear rela-
tionship between the predictor X and the observed output Y is inadequate;
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that is, as a description of the regression function f, the model

g(I7/6):/61+ﬂ2I5 IGX,

ignores important features in the data. This is certainly the case for the
values of 87§ Sr plotted in Figure 3.1. To overcome such deficiencies, we
might consider a more flexible polynomial model. Let Py denote the linear
space of polynomials in x of order (at most) k defined as

9(x;8) = Pr+ Box + By + -+ B2, weX. (3.3.2)

for the parameter vector 3 = (841,...,3k) € R*. Note that the space P},
consists of polynomials having degree k — 1.

In exceptional cases, we have reason to believe that the regression func-
tion f is in fact a high-order polynomial. This parametric assumption could
be based on physical models describing how the data were generated. For
historical values of 7§ Sr, however, we consider polynomials simply because
we believe f to be smooth. We recall from elementary analysis that polyno-
mials are good at approximating well-behaved functions in reasonably tight
neighborhoods (the classical Taylor expansions). If f is not exactly given
by (3.3.2), then our estimates will be biased by an amount that reflects
the approximation error incurred by a polynomial model. (This is just the
analysis in Section 3.2.2.) In Chapter 11 we formalize the assumption of
smoothness for f. In short if all we are able to say about a function is that
it is smooth, we are naturally led to a nonparametric problem; that is, we
cannot express f as a member of any finite dimensional linear space. The
interested reader is referred to Chapters 11 and 12 for more discussion of
these ideas. R

Given (X;,Y;), i = 1,...,n, a unique OLS estimate 3 exists provided
there are at least k unique values in {X;}. We should note, however, that
the basis of monomials

Bj(z)=2""t  j=1,... k, (3.3.3)
given in (3.3.2) is not well suited for numerical calculations. While conve-
nient for analytic manipulations (differentiation, integration), this basis is
ill-conditioned for k larger than 8 or 9; that is, the matrix operations needed
to compute the coefficient estimates in (3.2.10) are prone to rounding and
other numerical errors. We make this notion precise in Section 3.7.

Returning to our 876 Sr data in Figure 3.1, we see that they exhibit a
local minimum between 50 and 60 million years ago, reach a peak at the
KTB, and then decrease rather quickly (toward 100 million years). By
simply counting features, we expect that at least a cubic polynomial is
needed for a good fit (that is, k > 4). Several OLS estimates are plotted in
Figure 3.8. The cubic (order 4) and even quintic (order 6) models are clearly
inadequate. While larger values of k yield greater adaptability to resolve
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FIGURE 3.8. Simple polynomial fits to the 87§ Sr dataset. Increasing the order
of a polynomial adds flexibility, but it can yield wild features in regions with few
data points.

features like the peak at the KTB, the fit degrades dramatically in other
regions. For example, the data are thin near the 90 million year mark, and
the highest order fit oscillates wildly. Similarly, a spurious peak appears at
45 million years for k = 8. This feature slowly disappears for & > 9 (see the
upper right hand panel of Figure 3.8). Although we considered polynomials
because they represent a space of smooth, approximating functions, it seems
that they are in some sense “too smooth.” To overcome this problem, we
are led to models with large order that can seriously overfit the data. For
more information on the difficulty in working with high-order polynomials
see Schumaker (1981).

In Chapter 2, we derived a result from approximation theory known as
Jackson’s Theorem. This result is basically a refinement of the classical
Taylor expansion for smooth functions. It says that if a function f defined
on the interval X = [a,b] has bounded pth derivative, then

dist(f, Py) < c(b;ka)p, (3.3.4)
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for k > p, where C' is a constant that depends only on p and properties
of the pth derivative of f. Clearly, we have the same effect on the ap-
proximation error in (3.3.4) by dividing [a, b] into, say, 5 equal pieces and
approximating f with separate cubic polynomials (k = 4) in each as we do
by approximating f by a single polynomial of order 5 x 4 = 20 in the entire
interval [a, b]. Each of these options has 20 degrees of freedom (unknown
parameters to be estimated).

Recall that the distance between a function f and a linear space G,
dist(f, G), records how well f can be approximated by some member of G.
The result above demonstrates that the two spaces (a global polynomial of
order 20 or 5 cubic pieces) are equally flexible and, if we knew f, we could
find some function of each type that is close to f. What we have seen in
the previous section, however, is that it can be very hard based on data
to find these functions; identifying a polynomial of order 20 that closely
tracks f when we are only privy to 45 noisy observations leads to possibly
wild effects. (It turns out that these effects can happen even if we observe
samples of f without noise; the issue is less about noise than it is about
the difficulty of working with polynomials; see Schumaker, 1981 for more
details.) The use of lower-order polynomials piecewise turns out to be a
powerful idea which we now examine in more detail.

Piecewise polynomials

Given a sequence a = tg < t1 < -++ < t;, < t;q1 = b, we construct m + 1
(disjoint) intervals

-)(l = [tl—l7tl)7 1 < l <m and Xm-i—l = [tmutm-i—l]a
whose union is X = [a,b]. Set t = (t1,...,tm) and let PPy (t) denote the

space of piecewise polynomials of order k defined on U,,X,,. Then each
function g € PPy(t) is of the form

gl(x) :/61,1 +/61,2$+"'+,61,k$k71, T e X
9@ =9 2 2 s ,
gm+1($) =Bmi11+ B2+ F Bpan2™", € X, 11,
(3.3.5)
and for the parameter vector 8 = (81,1, -8k -+ Bm+1,1s-- s Omt1.k)

we write g(z) = g(z; 3). The least squares criterion (3.2.9) is again used to
form an estimate of f based on observations (X1,Y1),...,(Xn,Yy). This
time, our solution is obtained by a series of ordinary polynomial regressions
of the form (3.2.11), one for each interval. We are guaranteed a solution
provided that X1, ..., X;,+1 each contain k or more distinct values of { X }.
As mentioned above, we envision taking k small so that we avoid problems
of numerical instability. This is but the first advantage of a piecewise ap-
proach.

For Figure 3.9 we constructed piecewise linear and quadratic models
having the same degrees of freedom as the corresponding polynomial fits in



128 3. Linear Models

50 60 70 80 90 100

piecewise linear, 8 dof

FIGURE 3.9. Piecewise polynomial fits to the 376 Sr dataset. The number of
degrees of freedom in each panel matches that for Figure 3.8. While the approxi-
mation power in each case is essentially the same, these estimates appear to track
the data better.

Figure 3.8. In comparing these two figures, we find our second advantage
to piecewise modeling. The fits from PPy with equal degrees of freedom
exhibit far fewer wild oscillations than their global counterparts and track
trends in the the data much more reliably. For the plots in the bottom row of
this figure, the range of the data [43.4, 100.9] was divided into two intervals
taking the KTB as a dividing point and piecewise linear (left panel) and
quadratic (right panel) polynomials were fit to the 874 Sr data. Each of
these intervals was further divided in half, producing the (4-piece) fits in the
upper row. By design, the piecewise polynomial spaces underlying the fits in
the left column are subspaces of the models in the right column (piecewise
linear functions are also piecewise quadratics providing they are defined
relative to the same intervals). This nesting also occurs between the top
and bottom rows (each function in the 2-piece spaces is trivially a member
of the 4-piece space). Using these relationships, classical F' tests have been
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suggested to assess the quality of competing piecewise polynomial fits. We
will return to this topic in our discussion of splines.

Piecewise polynomials have a long tradition in statistics. Beginning in the
late 1950’s, econometricians studied these models under the title of “mul-
tiphase” or “switching” regressions (Quandt 1958, 1960; Sprent 1961). At
that time, many authors viewed PP} as a means of constructing paramet-
ric descriptions of structural changes in the regression function. As such,
f was assumed to be of the form (3.3.5), where the endpoints of the inter-
vals A7, ..., X411 were either given or estimated. For example, taking this
approach with our 87§ Sr data, we might posit a model with two quadratic
regimes, one before and one after the KTB (as in the lower right hand
panel of Figure 3.9). The most natural question about a multiphase regres-
sion model is whether or not the fitted structural changes are real. One
might also question the order of the polynomial needed in each regime. For
known breakpoints, these hypotheses are easily evaluated for fixed k and
X1, ..., Xme1 using the I tests described above. Analyses of this kind can
be found in Poirier (1973), Wold (1974) and Smith (1979, 1982ab), among
others.

Splines

As mentioned previously, the curves in Figure 3.9 were formed by OLS
estimates using nested, piecewise polynomial spaces. Take, for example,
the two quadratic models in the right hand column of this figure. These
two fits differ by 6 degrees of freedom. One can easily question the need
for the breaks at 60 and 75 million years. Would a continuous estimate of
875 Sr suffice? What about continuous first derivatives? We now consider
subspaces of PPy(t) that satisfy these types of constraints. First, we need
to introduce notation describing the smoothness of functions in PPy ().
For each breakpoint ¢;, 1 <1 < m, the size of the discontinuity in the jth
derivative of g € PPy(t) at t; is given by

jump,, (D7 g) = D7 giy1(t) — D’ gi(t1), (3.3.6)

where g; and g¢;4+1 are the two polynomial pieces meeting at t; defined
in (3.3.5).

Working directly with (3.3.5) and (3.3.6), we can rewrite a continuity
restriction of the form jump,, (D7g) = 0 as a simple linear constraint in the
coefficients 3. For example, to remove the 6 degrees of freedom separating
the upper and lower piecewise quadratic fits in Figure 3.9, we derive con-
tinuity constraints (3 for each of the two extra breakpoints) of the form
CpB =0, where C is a 6 x 12 matrix and 3 is the coefficient vector corre-
sponding to the 4-piece model. This leads to an ordinary F' test to decide
whether the extra flexibility is necessary. Here, the F' statistic corresponds
to a P-value of 0.60, indicating that the 2-piece model is sufficient.

Rather than remove a break completely, we may instead prefer only to
force the curves to be continuous, or perhaps to have one continuous deriva-
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tive. These restrictions again yield linear constraints of the form C8 = 0.
For example, by imposing a single constraint, we can make the 2-piece,
quadratic fit in the lower right hand panel of Figure 3.9 be continuous.
Therefore, the effect of removing the jump at the KTB can be evaluated
by another F' test. In this case, the F' statistic has a P-value of 0.0007,
strong evidence of a sharp peak in 876 Sr. In both this and the previous
application of classical hypothesis tests for smoothing a piecewise polyno-
mial model, we have intentionally avoided specifying the matrices C. Our
purpose has been to make a connection between tools for parametric model
building and nonparametric estimation with piecewise polynomials. While
deriving the necessary constraints is a straightforward exercise, it should be
clear that this approach becomes needlessly complex for large curve fitting
problems. In particular, as we introduce automated procedures for locating
breakpoints, constrained fits become impractical.

Instead, we now introduce an alternative basis for piecewise polynomials.
While (slightly) more problematic from a computing standpoint, this rep-
resentation leads naturally to the definition of polynomial splines. Given
a sequence of breakpoints t = (¢1,...,%,) and an order k, we can write
g € PP(t) in the truncated power basis,

g(I) = /6)0,1 + /80,2$ + -+ ﬂo,kiEk71+

61,1(17 - tl)i + /81,2(33 - t1)+ +e+ ﬂl,k(z - tl)iﬁl_k (3.3.7)

ﬁnl,l(x - tm)i + ﬁ7n,2(x - tm)+ + e + ﬁnl,k(‘r - t7n)]j,71

where (- )1+ = max(-,0). Expressed in this way, the coefficients 31 1, ..., Om,1
record the size of the discontinuities in g at the points t1, ..., t,,, respec-
tively. Similarly, the jumps in ¢’ at these points are 51 2,. .., Om,2. In gen-

eral, for g € PPy(t),
jump,, (D?g) = 3! B1j41 for0<j<k-1.

The continuity constraints discussed previously now only involve setting
one or more elements of B equal to zero. For example, fixing 5;; = 0
guarantees that g is continuous across ¢;. Equivalently, we drop the basis
element (z — #;)9 from the model (3.3.7).

While the truncated power basis (3.3.7) is extremely natural for specify-
ing the properties of piecewise polynomials, it can be disastrous for numeri-
cal computations. Recall that with the piecewise specification (3.3.5), fitting
a model from PPy (t) involved m+ 1 separate polynomial regressions of the
form (3.2.11). The normal equations associated with the truncated power
basis, however, are more complicated. Given data (X;,Y;), i =1,...,n, the
OLS estimate of the parameter vector

ﬁ: (ﬁo,lu"'uﬁO,ka"'aﬁm,l"'76777,,/6) (338)



3.3 Curve estimation 131

in (3.3.7), requires working with a full (m + 1)k x (m + 1)k system of
equations BTBB = BTY where

[B]i,j = B](Xl), 1<i<nand1<5 < (m + 1)k, (339)

and B; denotes the basis function in (3.3.7) corresponding to the jth coef-
ficient in the parameter vector 3 (3.3.8).

We are now in a position to define polynomial splines. As mentioned
before, splines are elements of PPy (t) that satisfy certain smoothness or
continuity constraints. Each spline space will take as its basis a subset of
the elements in (3.3.7). With each breakpoint ¢;, we associate an integer
s; that counts the number of continuity restrictions enforced across ¢;. By
setting s; = 0 we allow a jump at t;: s; = 1 specifies continuity at #;;
s; = 2 provides one continuous derivative; s; = 3 results in a continuous
second derivative at ¢;; and so on. Any value of s; larger than k& — 1 forces
the polynomial pieces on either side of ¢; to be the same, removing the
breakpoint. To avoid such degeneracies, we require that 0 < s; < k— 1. Set
s =(s1,...,8m) and let Si(¢,s) C PPy(t) be such that, for g € Si(¢,s),

m k—s;

9(x) = Bog + Bo2r + -+ Bosz™ T+ DD Buile — 1) (3.3.10)

=1 j=1

Aside from a renumbering of the coefficients, the difference between this
expression and (3.3.7) is that we have left out the first s; basis functions,
(x — tl)i, 0 < j < s;— 1, associated with the breakpoint ¢;. We refer to
Sk(t, s) as a space of polynomial splines, and the breakpoints ¢ are com-
monly called knots.

We recover the space of piecewise polynomials by choosing s; = 0 for
1 <1 < m. For a fixed k and ¢, the “smoothest” spline space corresponds
to setting s; = k — 1 for 1 <[ < m. Because this specification is extremely
popular in statistical applications, we write Sk (¢) for this special case. The
spaces Si(t) for k = 2, 3 and 4 are known, respectively, as linear splines,
quadratic splines and cubic splines. Because of their importance in this
book we write out explicitly the truncated power basis for the space of
linear splines with knots ¢

Lz, (x—t1)4,.. ., (@ —tm)+ -
The cubic spline space with knot sequence t has a basis of the form
1,z 2%, 2%, (x — tl)i, vy (@ — tm)i )

Cubic splines are frequently used in penalized regression problems, where
a penalty is placed on the “roughness” of the spline curve (Wahba, 1990;
O’Sullivan, 1987; Eilers and Marx, 1997; and Ruppert, Carrol and Wand,
1999). We will return to these so called smoothing splines in Section ?7.
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In terms of the flexibility or approximation power of splines, we observe
that a spline space performs identically to a space of piecewise polynomials
when the underlying function f is sufficiently smooth. Thus, for functions f
with three continuous derivatives, dist(f, PP4(t)) is essentially the same as
dist(f, Sa(t)). The extra degrees of freedom associated with the discontinu-
ities across the break points do not help us when approximating a smooth
curve (and will only add to extra variance when it comes to our OLS esti-
mates). In the pages that follow, it will be useful to have the approximation
rate for a very simple example: Assume f has p continuous derivatives over
the interval X = [a,b]. Then for k > p, the approximation rate for the
spline space Si(t) associated with a vector ¢ = (t1,...,t,) of m equally
spaced knots in [a, ] is given by

a(f,G) = C(%)p, (3.3.11)

where m is the number of knots and C is a positive constant that depends
only on properties of the pth derivative of f and b — a (technically, we
require further conditions on the pth derivative of f, but we leave these
until Chapter 11). For piecewise polynomials, we saw a similar result in
(3.3.4), Jackson’s Inequality. The intersted reader can find more results of
this kind in Chapter 2 as well as Schumaker (1981).

3.3.2  Model error for fixed-knot splines

Using the approximation rates described in the previous section, we now
revisit the bias-variance tradeoff for regression using approximation spaces,
focusing our discussion on splines. We assume that the unknown regression
function f has p continuous derivatives over the interval X = [a, b] and that
we will form an estimate from the linear space Si(t), where ¢ is a vector
of equally spaced knots over [a, b]. Substituting the rate (3.3.11) this into
(3.2.23), we have

1 & 2 o/ 1N\22  (m+k)o?

3 Bl -t <2 (2) " 4 R
where we recall that Si(t) is an (m + k)-dimensional space. The tension
between bias and variance is now clear: the more knots we use, the better
the approximation, but the larger the variance. A simple heuristic is that
for equally spaced knots, the bias decreases like a power of 1/m, while
the variance depends roughly on m/n, the average number of points per
interval separating adjacent pairs of knots. We refer to this quantity as the
span of the interval.

We can strike a balance between the two effects, bias and variance, by

minimizing the model error with respect to m. Differentiating with respect
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to m and solving leads to
1
e e ()] o
Substituting this value into the bias-variance decomposition, we find that

2p

25 B([f() — g B)]) ~n (3.3.12)
=1

Clearly, as we collect more data (as n gets larger), we should entertain larger
and larger knot sequences; we do not believe that f belongs to any given
spline space, but we entertain more and more complex representations as
our sample size grows. This is consistent with our notion of a nonparametric
problem mentioned earlier.

In Chapter 11, we will see that this rate of convergence holds in much
more general situations. Assuming X, ..., X, are independent and identi-
cally distributed observations from some density on [a, b], then it is possible
to bound

EX,Y([f(X) - Q(X;B)}Q) ,

in probablility, where X,Y are new observations independent of the data
we used in our OLS estimates. The bound is essentially the one derived
in (3.3.12), but requires more analysis. This kind of asymptotic study has
been an important motivation for many methodological innovations using
splines. In a series of papers, Stone (1980,1982, 1985, 1986) demonstrates
rates of this kind for multivariate problems and in so doing opened the
door for techniques like those illustrated in Section 3.1.2 on the importance
values for the American beech.

We will return to this historical motivation in Section 3.4.2 when we take
up multivariate problems. Before leaving this topic, however, we should
note that the results of this section, and in particular (3.3.12) and the
more sophisticated rate result alluded to above, were derived with fixed
knot sequences; that is, knots simply fill up the domain [a,b] evenly in
some sense. In the earliest methodologies, this was also the case; knots
were placed either evenly or some prior knowledge led researchers to spe-
cific configurations. In addition to the regression examples cited above,
Stone and Koo (1986a,b) applied a similar strategy for logistic regression
and density estimation. An important long-term goal of the development of
theoretical results like those in Stone (1980,1982,1985,1986) for nonadap-
tive methodologies was to motivate the equally challenging development
and implementation of corresponding practically useful adaptive method-
ologies and to make such methodologies seem less ad hoc. Conversely, the
development and implementation of such adaptive methodologies has moti-
vated the further development of theories for nonadaptive versions of these
and similar methodologies.
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In the next section, we will explore the use of adaptively placed knots,
letting the data indicate areas needing more or less flexibility. Theoretical
results for this case have been derived in Huang and Stone (2002), and are
also presented in Chapter 12.

3.3.8 Adaptive knot placement

Having introduced splines through a regression-modeling framework, we
now consider the issue of knot placement in more detail. We begin with
some notation. First, we rewrite the least squares criterion (3.2.9) making
t explicit:

n

p(t,B) = [Yi—g(Xi;8)] for g(x:8) € Sk(t), (3.3.13)
i=1
where for simplicity we take t = (t1,...,tm) and t; < to < -+ < t;,,. Now,

we know for any fixed ¢ that the OLS estimate in Si(t) minimizes p(t, 3)
with respect to 3. By substituting the corresponding coefficient estimate
3 into this expression, we derive a criterion that depends only on t:

=3 [Vi—g(XsB)]" for g(z:B) € Si(t). (3.3.14)

i=1

In statistical terminology, we might consider the elements of 3 to be nui-
sance parameters and view —p(t) as a kind of profile log-likelihood for t;
our interest focuses on finding t* = argmin, p(¢). In the numerical analysis
literature, this set up is referred to as curve fitting or approximation with
free-knot splines because the breakpoint locations are free parameters.

As you add more predictors to an OLS fit, the residual sum of squares
decreases. Therefore, we cannot use RSS to compare spline spaces; this
metric will always favor larger models. Instead, following the discussion in
Section 3.2.3, we want to identify a knot sequence ¢ that minimizes a model
selection criterion. For a given penalty p(n), the generalized AIC criterion
is simply

—log RSS(t) + p(n)J,

where, if a knot sequence t has m elements, the dimension of Sk(t) is just
J = k 4+ m. For each fixed dimension, we are again looking for the knot
sequence with the smallest residual sum of squares. Unfortunately, these
kinds of problems are quite difficult numerically. For a fixed number of
knots, the criterion p(t) depends nonlinearly on ¢ and in fact is known to
have local minima: for any two free knots p(t) = p(t1,t2) is symmetric
along any normal to the line ¢t; = t2, and hence has zero derivative there
(recall the discussion of repeated knots at the end of Section ??). Standard
optimization techniques will have difficulty with this kind of problem.
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FIGURE 3.10. Fitting a two-knot cubic spline model. Contour and perspective
plots of RSS(t) for t = (¢1,t2). The minimum is marked with with black points
on the contour plot.

To make this more concrete, in Figure 3.10 we present RSS(¢) for just
two knots ¢t = (¢1, t2) using S4(t), or cubic splines. The data are again the
87§ Sr values. From the contour plot, we notice that the RSS surface is in
fact symmetric. The black points correspond to the knot sequence with the
minimum RSS, namely ¢ = (69.3,78.2). The value obtained is 8.8 x 1078, A
pair of local minima occur at ¢t = (56.7, 60.2) with a residual sum of squares
value of 9.9 x 1078, Even with just two knots, we get a sense of how difficult
this optimization problem can become. Several suggestions have been made
to improve the numerical properties of free-knot splines through some kind
of penalization. This regularization also tends to improve the statistical
performance of the estimator as well. We will discuss two such schemes in
Section ?7.

For the rest of this section, we will consider strategies designed only ap-
proximately to minimize p(t). In particular we consider stepwise approaches
that solve the problem one knot at a time. The reader will notice similari-
ties with stepwise methods for variable selection in classical linear models.
These methods were used to create the fits in Figures 3.3 and 3.4 at the
beginning of the chapter.

Stepwise addition

As its name suggests, under this method, we introduce knots sequentially,
placing each knot so that it produces the greatest drop in RSS. In Fig-
ure 3.11 we illustrate this process for cubic splines. Consider the top curve
in the leftmost plot. For each value of ¢1, we plot p(t1) = RSS(#1), the
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residual sum of squares associated with the model
g(z; B) = Bor + Bo + 50,3332 + 60,4333 + Bz — tl)i )

where g(z;3) € Si(t1) and B is the OLS estimate of B8 = (Bos, ..., Br.s)-
Here we have used the truncated power basis representation of a cubic spline
space; this construction was used to motivate stepwise knot placement as
early as Smith (1982). In fact, the work in Smith (1982) inspired many later
polynomial spline algorithms, such as TURBO (Friedman and Silverman,
1988), MARS (Friedman 1990), and the Polyclass, Polymars, Logspline,
LSPEC, and Triogram algorithms discussed in Chapters 5-9.

As t; runs through the range of the data (from 40 to 100 million years
ago) we sweep out a smooth curve in RSS(¢1). Given the form of the func-
tion g and the OLS criterion, this curve has to have two continuous deriva-
tives in t1. The best location for a single knot is marked in Figure 3.11 with
a vertical line and labeled “knot 1.” Let ¢; denote this point. The single-
knot model is shown in the top panel of the right column of the figure.
Next, we set t = (f1,t2) and now define RSS(t,) to be the residual sum of
squares corresponding to the model

Bo,l + BO,Q:E + Bo,sxz + Bo,z;xg + 31,2(1' - i\l)i + 32,2(1' - t2)i
when to # t; and
Bo,l + Bo,zx + Bo,sxz + 50,45173 + 31,2(37 - %\1)1 =+ 32,2(37 - %\1)3. (3315)

otherwise. Keep in mind that when knots are repeated, we lower the degree
of smoothness across the breakpoint. In both cases, 3 is the OLS estimate
of B= (50,17 ceey 62,2)-

The second curve (dashed) in Figure 3.11 sweeps out RSS(¢2), which
again appears quite smooth. The minimizing point, tAQ, is marked “knot 2”
and the associated fit is in the second panel at the right in this figure. The
new knot sequence is now taken to be (tAl , tAg, t3), and we look for the single
addition that drops the residual sum of squares the most. Figure 3.11 il-
lustrates this process, sequentially adding 5 knots for the 874 Sr data. The
curve in Figure 3.3 at the beginning of the chapter was constructed in this
way, where the largest fit had 10 knots. Most readers will recognize this
scheme as a variant of the classical stepwise addition of variables for build-
ing regression models. While a simple idea, it has been used successfully
in non-parametric regression schemes like that of Smith (1982), Friedman
and Silverman (1989), Friedman (1990), Luo and Wahba (1995) and Stone
et al. (1997).

The smoothness of the p(-) curves in Figure 3.11 should not be surprising
since the criteria inherit their smoothness from the underlying spline spaces.
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FIGURE 3.11. Hlustrating the process of stepwise addition. Each curve sweeps
out the residual sum of squares for a model with one free knot location. The five
plots on the right correspond to adding knots 1 through 5, respectively.

For the first knot t; we have

o~

pltr) = 3 [¥i — g(Xi: B))”
- Z [}/z - BO,I + Bo,in + BD,inQ + 30,4X§ + Bl,z(Xi - tl)i]2 .

Since functions g € S4(t1) have two continuous derivatives, so does the
profile log-likelihood p(t1), with breaks in the third derivative at each of
the data points X7,...,X,,. Given this smoothness, we can apply various
heuristic schemes to locate the optimal value of ¢;. For example, we can
initially evaluate p(-) at several points in the interval X’ and further refine
our search based on a smooth fit to these values. This strategy is employed
in the context of density estimation discussed in Chapter 6. After the first
knot #; is added, the curve for RSS(tz) will again be smooth. Although it is
not immediately obvious from our use of truncated powers and the change
in basis in (3.3.15), RSS(¢2) still has two continuous derivatives in t3. The
reader is referred to Chapter 2 or Schumaker (1981) for these and other
properties of spline spaces.

By considering just one knot at a time, we have sidestepped some of the
numerical difficulties in working with the full sequence t. Of course, it is
unlikely that a sequential approach to determining ¢ will actually identify
the knots ¢* that minimize p(t). In Chapter 10, we study the tradeoffs
involved in terms of bias, variance and computation time.



138 3. Linear Models

Stepwise deletion

Continuing our analogy with stepwise procedures for building regression
models, we recall that forward addition is not the only strategy for uncov-
ering interesting structures in a data set. Backward deletion from a larger
model also proves to be a useful scheme. In the spline context, suppose we
have a knot sequence t = (t1,...,t,) that does not contain any repeated
knots. The cubic spline associated with ¢ can be written as

171'71'271:3,(,T—tl)i,...,(l'—tm)i, (3.3.16)

in terms of the truncated power basis. Since each knot is associated with a
single basis function, we can treat the individual spline terms (the truncated
monomials) individually and drop them from the model just as we would
predictor variables in an ordinary linear regression setup. In this case, we
would consider eliminating the terms that create the smallest increase in the
residual sum of squares. The DKCV (delete knot, cross-validate) procedure
of Breiman (1990) starts with a rich set of knots, removing them one at a
time.

If any of the knots in t were repeated, then we have an expansion of the
form (3.3.7) in terms of the truncated power basis. In this case, we want
to be careful during stepwise deletion to remove the a term of the form
(x —t)! before (z —t)?? when j1 < jo. This hierarchy makes sense given
how we have constructed our spline spaces. Removing terms (z — t)f|r in the
order of j means we are reintroducing smoothness across the breakpoint
beginning with discontinuities in the lowest derivatives first. This is just
one case in which the analogy with variable selection is not to be taken too
literally; it is only a device to simplify the computations.

As another example, given the basis in (3.3.16), we should not apply
stepwise deletion blindly and remove any of the pure monomial terms
while there are still truncated basis elements in the model. In Chapter 2
and the previous subsection, we have motivated an ordering of approx-
imation spaces in terms of their flexibility (their ability to capture im-
portant features of a function). In terms of a range of models achievable
by variable addition and deletion from the cubic splines, this ordering is
Po C Pa C P3s C Py C S4(t) for any knot sequence ¢; that is, we begin
with linear, quadratic and cubic polynomials and then finish with any cu-
bic spline model. Therefore, if we view variable addition and deletion as
tools for constructing candidate approximation spaces, we need to restrict
the selection process. We should only consider candidate “alterations” that
make sense from the standpoint of increasing or decreasing the approxi-
mation power of the underlying linear space. (For a discussion about the
pitfalls of not following this hierarchy, the reader is referred to Stone et al.,
1997.)
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Specify an initial spline model

Stepwise addition: Continue until the maximum model size is reached or
no candidates can be found

Decide which basis functions are candidates for addition
Add the best candidate

Fit the model

Evaluate the model

If the model is better than the best previous one, save it

Stepwise deletion: Continue until the minimum model size is reached
Decide which basis function can be removed from the model
Remove the one that is the worst predictor
Fit the model
Evaluate the model
If the model is better than the best previous one, save it

Output the best fit

FIGURE 3.12. Adaptive knot placement via stepwise addition and deletion.

A simple recipe

Passes of stepwise addition and deletion can be used in concert to produce
a series of nested fits. In Figure 3.12 we present a simple strategy for adap-
tively placing knots in this way. The algorithm is worded somewhat gener-
ally because we will use the same prescription several times in the course
of the text in much more elaborate modeling situations. Model evaluation
can be based on one of the selection criterion discussed in Section 3.2.3
or some other appropriate measure. Candidate models for both addition
and deletion involve the basic hierarchy between polynomial models and
splines discussed above. For the final model, the “best fitting linear space,”
in Figure 3.3, we added knots sequentially until we reached a model of size
10. We then removed knots one at a time, producing a chain of 19 models.
The evaluation criterion BIC (3.2.32) was used to decide which of the 19
models “best” fit the data. The entire process is plotted in Figure 3.13.
The simple recipe outlined here is nearly identical to that used to produce
the fit given in Figures 3.3 and 3.13. In Section 3.6, we will see that we can
control the variance of our adaptive estimate in two ways; one is by assign-
ing a minimum number of data points between consecutive knot points. We
have chosen 3 for this example, meaning that at each stage in the addition
process we are only searching in those locations where a new knot has at
least three points separating it and a knot already in the model. Such points
are “viable candidates” in the recipe in Figure 3.12. In Section 3.6 will also
see that boundary constraints can help reduce variance in our estimate out-
side the support of our data. The fit in Figures 3.3 and 3.13 uses so-called
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FIGURE 3.13. Stepwise addition and deletion for the 37§ Sr data using (natural)
cubic splines. The evaluation criterion BIC is plotted against the number of knots
in the spline space.

tail-linear constraints at the smallest and largest data points in the 378 Sr
data. This changes our spline space from the ordinary cubic splines to the
natural splines. These alterations are spelled out in Section 3.6, but do not
really change the general methodology. The basic ingredients — stepwise
addition, stepwise deletion, and then model selection — are at the heart
of several popular spline-based techniques, including MARS (multivariate
adaptive regression splines) by Friedman (1990) and PolyMARS described
in Bose, Kooperberg and Stone (1997).

Amazingly, this recipe can be applied in a wide range of estimation con-
texts and not just regression. First, the initial model can be a simple spline
space with a modest number of knots (as is the case in Chapter 5 for
the Logspline density estimator) or perhaps a polynomial space (constant
functions are used in the PolyMARS algorithm in the next subsection). The
“evaluation” steps in both the addition and deletion phases do not necessar-
ily require refitting models with the candidate alterations. In the regression
context, there are reasonably efficient schemes for computing the change
in RSS without first finding the new OLS fit. For more elaborate model-
ing situations, however, some form of iteration is required to fit a spline
model (recall the Newton—Raphson iterations in Chapter 2). In Chapter 4,
we will derive simple Taylor expansions that allow us to approximate the
change in the objective function (usually a log-likelihood) without comput-
ing new parameter estimates. These methods really get their power from
the concavity of the likelihood as a function of the coefficients of the spline
basis elements. For stepwise addition, we obtain a series of Rao statistics
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for the candidate variables, while deletion is based on a collection of Wald
statistics. Later in this chapter we discuss various computational schemes
for regression, illustrating the tradeoff between our choice of basis and the
speed of computations.

Finally, the algorithm in Figure 3.12 is designed to produce a single fit.
Even if it were computationally feasible to find the best spline fit according
to some selection criterion, we would still want to examine a few “reason-
able” models as well. Naturally, the same is true for automated variable
selection routines from standard regression analysis (Mallows, 1973). In
Chapter 10, we examine Bayesian and other sampling-based methods for
generating several good-fitting models, highlighting the tradeoff between
simplicity of interpretation and predictive performance.

3.4 Multivariate models

In this section, we consider various methods for estimating a regression
function f(z), originally defined in (3.2.1), where the vector z € R? is
comprised of one or more candidate predictors @ = (x1,...,24). Data an-
alysts will appreciate the fact that this is a challenging task even when the
vector of predictors is of modest size (consisting of, say, 4 or 5 variables),
much less when there are 28 candidate predictors as in the case of the im-
portance values in our tree species example. Despite advances in graphical
methods, it can be difficult even to visually assess the relationship between
inputs and outputs, much less capture the dependence mathematically.
In part, our ability to ascertain the structure in multivariate problems is
hampered by what Bellman (1961) referred to as the curse of dimension-
ality. In the 40 years since it was originally described, the curse has been
broadly applied to a number of difficulties that scale exponentially with
dimension. When estimating a function of several variables, we will con-
tend with several consequences of Bellman’s observation and propose an
adaptive strategy partially to overcome these difficulties.

3.4.1  From multivariate polynomials to splines
Multivariate polynomials

The simplest regression model for the d predictors is given by

g(x; B) = Po + frar + -+ - Baza,

where 8 = (B, - . ., 84). If diagnostic plots or some other model assessment
tool suggest that this model is inadequate, we might consider adding higher
order terms and possibly interactions between the variables: In the first
case, we add monomial terms like 27 or 23, while in the latter, we entertain
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products like x1x5. Our statistical modeling approach naturally leads us to
consider spaces of multivariate polynomials, which are linear combinations
of product terms of the form

ghighe .. xfjd . (3.4.1)

Multivariate polynomials also arise in approximation theory. The reader
is no doubt familiar with multivariate versions of Taylor expansions for
smooth functions. In that context, we might consider how closely we can
approximate a given smooth function with multivariate polynomials of a
given order. For example, the space of multivariate polynomials with (co-
ordinate) order at most k is made up of all terms (3.4.1) where k; < k,
l=1,...,d, and hence it has dimension k?.

As with the univariate polynomials in Section 3.3, increasing k increases
the flexibility of the space, an effect we can quantify through the associ-
ated approximation rate achievable for smooth functions. Unfortunately,
the complications of working with high-order polynomials carry over from
the univariate to the multivariate case as well. In fact, things become much
worse. The wild excursions we saw in Section 3.3 when there were gaps in
the input data are even more prevalent for a multivariate domain, simply
because data tend to appear more sparse in higher-dimensional settings.
To make this precise, suppose that the vector X of predictors is uniformly
distributed over a d-dimensional unit cube. Take as our gap a subcube of
side-length §. The chance that in a sample of size n, no points fall into
this gap is (1 — 69)". For 1,000 points, we can expect a hole with § = 0.5
with probability essentially zero for dimensions d = 1,...,5. However, for
d = 12 the probability is 0.78, and it is practically one for d = 20 and
larger. This is one manifestation of Bellman’s curse.

We encounter a second form of the curse when we work with multi-
variate polynomials with different orders k. As noted earlier, the space of
polynomials with (coordinate) order at most k has dimension d*. For even
modest orders, the number of parameters balloons as we increase k. Aside
from perhaps deriving theoretical approximation rates, using a global poly-
nomial of a fixed order is simply not practical. This is precisely why most
statisticians will instead be familiar with modeling schemes that introduce
monomials and products of monomials in a sequential fashion; adding in-
teractions or higher order terms a few at at time. As it turns out, this
kind of stepwise approach will help to offset the curse. Before developing
this idea further, we first introduce some basic concepts for working with
multivariate functions.

Tensor products of linear spaces and simple ANOVA representations

In moving from univariate to multivariate polynomials, we considered prod-
ucts of monomials in the different variables. This operation is a simple
building block for constructing multivariate approximation spaces from uni-
variate ones. Formally, we consider products of basis functions from each
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univariate space, and form what is known as the tensor product. Consider
linear spaces G1, ..., Gy of dimensions Ji, . .., Jg in the variables z1, . . ., x4,
respectively. Let G; have basis functions By 1,..., By j,. Then we define
G1 ® -+ ® Gy to be the space of all functions of the form

I Ju
g(x) =g(x1,...,2q) = Z e Z Biy...0,B1, (1) -+  Bag,(xa), (3.4.2)

l1=1 lg=1

where we collect the coefficients into a vector 8 = (611, .., 84,5,)- The
dimension of this space is Jy - - - Jg.

Suppose each of the spaces G, ...,Gy consists of polynomials of order
k. For example, let Gy have the basis 1,z1,2%, ... ,a:’f_l and do the same

for the other spaces. Then the tensor product G; ® --- ® G4 consists of
the polynomials of coordinate order k given in (3.4.4). Before considering
constructions based on piecewise polynomials or splines, we first introduce
a general decomposition of tensor product spaces using ideas from classical
regression modeling.

Suppose each G; contains the constant function, and in fact, let B;; =1
for [ = 1,...,d. By analogy with our polynomial models, we can pull out
terms from (3.4.2) and set

J1
gl(l'l) = Z ﬁll,l,...,lBLh (1’1) .

1=2

We can do the same for the other variables, defining g;(x;) for all 1 <1 < d.
Put another way, each of these terms involve only one variable. We can then
proceed to collect terms that involve only two variables. For z1 and zs, for
example, we can set

J1 Ja

g1,2(z1,22) = Z Z Bis ta1,...1 By (21) Ba,, (2) -

11=213=2

If we proceed in this way, we can re-express each function g € G1®---® Gy
in the tensor product space (3.4.2) as a sum of terms

9(®) = g0+ > 95 (@) + D Gjuga (T, 75)
J1 Jj1<g2
+ Z 9j1.52,43 (‘TJ& ) ‘szvxjs) te (3'4'3)
J1<j2<J3
where we take go = [1,...,1, the constant function.

The expansion in (3.4.3) is similar to constructions found in the classi-
cal analysis of variance for contingency tables; hence we refer to it as an
ANOVA decomposition for g. It has a natural interpretation in terms of
main effects and interactions. It also builds nicely on our intuition from
regression modeling with polynomials. Throughout this book, we will see
various expansions of this form in both applications and theoretical work.
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FIGURE 3.14. Left: Breaklines for a piecewise polynomials space with knots
t1 = (0,0.2,0.3,0.4,1) (horizontal axis) and t2 = (0,0.3,0.5,1) (vertical axis).
Right: An alternate construction of “pieces” for a bivariate, piecewise polynomial.

Piecewise polynomials and splines

In curve estimation, we found that knot placement controls the flexibil-
ity of piecewise polynomial and spline spaces. For example, by introducing
knots near the KTB we improved our ability to resolve the peak in 876 Sr.
For multivariate models based on tensor products, flexibility is inherited
from the separate spaces Gy, ..., G4. We have seen that tensor products of
univariate polynomials of order k give rise to multivariate polynomials of
coordinate order k. For piecewise polynomials, assume that each z; ranges
over an interval [aj,b;] and let t; = (tj0,...,tjm, ;4+1) denote a knot se-
quence dividing the interval into m; + 1 subintervals X;; = [t;i1-1,t;.1)-
Then, using the expression in (3.3.5) for the space of piecewise polynomi-
als, we find that the tensor product space is made up of polynomials of the
form

ahighe .. a:gd for k; < k (3.4.4)

on each interval X, . ;, = X1 X --- X Xy ;,. In short, the “pieces” as-
sociated with this space of multivariate piecewise polynomials are hyper-
rectangles. In the lefthand panel of Figure 3.14, we take d = 2 and ex-
hibit the rectangular regions corresponding to ¢t; = (0,0.2,0.3,0.4,1) and
ty = (0,0.3,0.5,1).

When moving from piecewise polynomials to splines in Section 3.3, we
introduced constraints that forced the functions to join smoothly at the
breakpoints. For tensor product models, this means that the lines in Fig-
ure 3.14 no longer delineate regions in which we fit separate multivariate
polynomials of order k. Instead, they indicate places where surfaces in
G1 ® G2 can have discontinuities in various partial derivatives. For exam-
ple, if G; and G consist of cubic splines with knot sequences t; and %5
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specified above, then for g € G; ® G2 the partial derivatives

HF1+k2

Wﬂ(fcla 2)

are continuous for k1, ko < 3. However, the third partial derivatives in each
variable have discontinuities along the lines indicated in Figure 3.14. Clearly
our notion of knots representing increased flexibility locally is somewhat
different for tensor products.

In Section 3.3 we found that we could increase the approximation power
of polynomials either by increasing their order or by breaking the domain
into separate pieces and fitting a relatively low-order polynomial in each
piece. The same is true in a multivariate setting. Using the tensor product
construction, we can either take Gq,...,Gg4 to be polynomial spaces and
increase the coordinate order k in (3.4.4); or we could take each space
to consist of piecewise polynomials with breaks at t1,...,t; and let the
number of pieces (equivalently, the number of breakpoints) increase. To
make this precise, let f = f(x1,...,24) be a function of d input variables
and assume that each x; has the same domain, namely, z; € [a, b]. For some
integer p, assume that f is p times continuously differentiable on X' = [a, b]<.
Now, if we let each G; be a spline space Sk (t) with m equally spaced knots,
where k > p, then the approximation rate for G = G; ® - - - ® G4 is given
by

dist(f,G) < c(i)p, (3.4.5)
m

just as it was in the univariate case (3.3.11). (This result actually requires
extra conditions on certain partial derivatives of f; we leave these tech-
nicalities to Chapter 11.) Note that, as also true for univariate splines,
this result holds for Si(t) as well as for PP (t) assuming f is sufficiently
smooth; that is, the extra degrees of freedom in a piecewise polynomial
space do not help when approximating f.

The use of hyper-rectangles to define the structures in a multivariate
piecewise polynomial or spline fit is by no means the only option. In the
literature on approximation theory, there are numerous examples of alter-
native constructions. For bivariate predictors, d = 2, one might consider
triangles, or for d = 3, simplicies. An example of such a structure is given
on the right in Figure 3.14. While it is fairly easy to conceive of techniques
for fitting with piecewise polynomials defined over triangles, it is harder to
envision a simple construction for splines. Forcing the different pieces to
join smoothly along the lines in Figure 3.14 happens automatically for ten-
sor products and the rectangular mesh; for triangles the process becomes
harder. At this point, we merely hint at the idea that there are many more
multivariate approximation spaces than those based on tensor products.
We take up the topic in more detail in Chapter 9.
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3.4.2  Model error and functional ANOVA

We now quantify the impact that the curse of dimensionality has on the
estimation of multivariate functions. First, recall the bias-variance trade-
off defined in Section 3.2.2. In analyzing curve estimation, we found that
the variance component of the model error for a spline estimate depended
roughly on the average span, the average number of data points separating
each knot: The larger the span, the lower the variance. We will show that
the same result holds for d > 1 when we use tensor products, but now
we consider the size of hyper-rectangles defined by the knot sequences.
The curse confounds our ability to estimate a function of several variables
accurately by making even moderately large data sets appear sparse. At
the beginning of this section, we noted that randomly distributing design
points in the unit cube leaves (subcube) gaps with large edge lengths with
high probability for even moderately sized d. Therefore, to achieve roughly
the same variance for n data points, we have to consider models involving
relatively fewer “pieces” as the dimension d increases.

This observation can be made rigorous by examining the model error
attainable by splines (or any other nonparametric method). Assuming the
standard regression setup (3.2.3) with unknown regression function f, recall
the result from Proposition 3.2.1:

1 & ~ 12 9
MEG) = — > E([f(@:) - 9@ B)]") < #(£.G) +
i=1

2
7 (3.40)

Let’s take each G; to be a spline space of order k with m equally spaced
knots and define G to be the tensor product space G; ® --- ® G4. Then
we know that the approximation rate is C'(1/m)P. We also recall that the
dimension of G is just the product of the dimensions of Gy, ...,G s, which
in this case is (m + k)?. Therefore, substituting these values into (3.4.6),
we find that

ME(G) < 02(%)% j mE R ( ! )2p oy (3.4.7)

n m n

The last expression is a minimum if we take m ~ n'/(@+2P) and then we

have L
ME(G) ~ n2»+d . (3.4.8)

The impact of the dimension of our input space is now clear. To put this
in perspective, if we assume p = 2, then to achieve the same rate of decay
for ME when estimating a univariate function with n = 500 data points,
we would need n? = 250K data points for a function of d = 6 variables,
and n® = 125M points for a function of d = 11 variables—a clear sign of
the curse at work.

We can partially overcome this problem by borrowing intuition from the
decomposition in (3.4.3). In regression analysis, it is common to consider
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only models that consist of, say main effects and pairwise interactions. Sup-
pose we truncate the expansion (3.4.3) and consider only terms involving
at most 2 variables; to be precise, we set equal to zero all the coefficients
Biy....1, for which more than 2 of Iy, ...,lq are not equal to one. As a mod-
eling tool, this space still retains a certain degree of flexibility. In addition,
we are able display the main effects and the interactions using standard
plotting routines for curves and surfaces. This means we can rely on com-
mon graphical tools to explore the model and diagnose possible misfit. The
gains in interpretability certainly help ameliorate the curse of dimension-
ality from a practical standpoint.

In fact, there are also theoretical gains to be had by considering only
low-order interactions. Suppose we truncate (3.4.3) to include only main
effects. This is often referred to as an additive model. As we will see in
Chapter 11, the model error associated with this reduced space is given by

o~ —2p

MEG) = - ([ (@) — glwi B)]) ~n, (3.49)

where the target of our estimation procedure is no longer f, the unknown
regression function, but the “best” approximation f* to f of the form

d
@) =fo+> f). (3.4.10)

Jj=1

Comparing this expression to (3.3.12), we find that, in terms of model error,
estimating f* is no harder than estimating a function of just one variable.
That is, we do not have the same explosion in data required to estimate
this function as we did for f itself. Of course, we cannot guarantee that
f* is a reasonable approximation to f, so it is common to include higher-
order terms in the expansion. In general, if we truncate (3.4.3) to include
all I-factor interactions, then

~

1 & N 2 —2p
MEG) = — > ([ (@) - g@is B)]") ~n7, (3.4.11)
i=1
where f* is the best approximation to f of the form

f*(m) :fO + Z f;l(le) + Z f;l,j2(xj1axj2)
1-factor terms 2-factor terms

et Z f;h'-wjz(le"'"Ijl)'

I-factor terms

In Chapter 11 these results will be spelled out in much more detail. For
the moment, we mention them to indicate that in addition to the practical
value in considering only a portion of a tensor product space, there is a
considerable theoretical justification.
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In our discussion of splines, we have alternated between data analysis,
methdology and theory. In fact, the development of asymptotic theory in
the context of spline modeling has fueled a great deal of the innovative
methodological work. First, Stone (1980, 1982) quantified the curse of di-
mensionality for the problem of function estimation; that is; the optimal
pointwise (squared error) or global (integrated squared error) is shown to
be of the form n=2P/(2P*+d) where p is the number of bounded derivatives
assumed on the regression function and d is the number of covariates. In
other words, no matter what method we might use to estimate f, this is
the best rate we can expect to achieve. In Stone (1982), the possibility was
raised that if the regression function is the sum of p-times differentiable
functions in the individual covariates, then the optimal rate of convergence
would be n=2?/(2r+1)  which would ameliorate the curse of dimensionality.
This possibility was verified in Stone (1985). In this paper the regression
function was modeled as the sum of polynomial splines as in (3.4.10).

In Stone (1986), the results in Stone (1985) were extended to logistic
regression, Poisson regression and other concave generalized linear models.
Here the canonical regression function was modeled as the sum of polyno-
mial splines in the individual covariates, with maximum likelihood being
used to fit the unknown parameters. Further theoretical results involving
polynomial splines are found in Stone (1989, 1990, 1991b), Hansen (1994)
and Huang (1998, 1998, 2001), among others. These results are discussed
in detail in Chapters 11 and 12. As mentioned earlier, many of these the-
oretical results, including the simpleminded bound in (3.4.11) are derived
for spline spaces based on essentially equally-spaced knots. In more recent
work, this restriction has been relaxed, and in Huang and Stone (2002)
properties of free-knot splines are discussed. In the next section, we ex-
plore adaptation for multivariate regression problems, where we let the
data guide us not only in choosing knots, but also which terms in the
ANOVA expansion to include.

3.4.83 Adaptation for multivariate splines

At this point, spline modeling seems to involve a dizzyingly large number of
choices, from both the number and location of knots on individual variables
to the kinds of interactions we should include in the ANOVA-style decom-
position. In some sense, this is another manifestation of Bellman’s curse:
in modeling multivariate functions, we have an exponentially increasing
number of decisions. Performing an exhaustive search for models among
all the possibilities is simply infeasible. To sidestep some of these issues,
we look to common statistical practice. When faced with a large number
of variables, we often opt for some kind of stepwise modeling approach,
adding predictors one at a time to optimize an overall selection criterion



3.4 Multivariate models 149

Estimate SE t P-value
(Intercept) 2.6229 0.5012 5.233 .000
AVGT —0.3884 0.0242 —16.047 .000
PPT 0.0012 0.0003 3.707 .000
JARPPET —0.7193 0.2114 —3.403 .001
PERM —0.1227 0.0211 —5.824 .000
CEC —0.0375 0.0069 —5.449 .000
ROCKDEP 0.0540 0.0067 8.074 .000
SLOPE 0.0570 0.0062 9.169 .000
PROD 0.1648 0.0354 4.660 .000
ALFISOL —0.0055 0.0012 —4.610 .000
SPODOSOL | —0.0072 0.0018 —3.939 .000
MOLLISOL —0.0110 0.0027 —4.121 .000
MAXELV —0.0008 0.0002 —5.056 .000
MINELV —0.0018 0.0004 —4.240 .000

TABLE 3.3. Simple linear fit to the IV data.

like BIC (3.2.32). Elaborations of a simple linear fit
g(@) = Po+ Prwy + - + Paza

might include interactions or higher order terms, again added sequentially
according to a selection criterion. As we will see, the same kind of adap-
tation can take place in the context of spline modeling. While this recipe
reduces the complexity of our search for good-fitting spline models, we are
certainly not guaranteed to find the “best” set of choices (knots, locations,
interactions). Again, we have made a compromise to undercut the curse of
dimensionality.

To motivate a general purpose strategy for modeling with multivariate
splines, we reconsider the IV values for the American beech introduced
previously. Recall that in the FIA dataset, we have 28 possible predictor
variables. As was done at the beginning of the chapter, we still work with
the square root of IV and focus our attention on 1093 counties in the
middle region of the eastern half of the US. To see how we will introduce
spline elements into this multivariate setting, we first fit a simple regression
model in which all of the covariates appear linearly. In this fit, 13 of the
28 variables are not statistically significant (individually at the 5% level).
From here, simple backward deletion was performed to trim off irrelevant
predictors. A final model was chosen using the BIC criterion (3.2.32).

In Table 3.3, we present some simple summary statistics from this fit.
Note that three of the climatic variables (AVGT, PPT and JARPPET)
remain after backward deletion. While the R? value for this simple fit is
rather low, just 41%, this value is not out of the range for the 80 or so tree
species considered by Iverson and Prasad (1999). To assess systematic defi-
ciencies in the model, we examined several diagnostic plots. In Figure 3.15,
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Residuals from linear model
Residuals from linear model

AVGT (Temperature) JULT (Mean July temperature)

Residuals from linear model
Residuals from linear model
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FIGURE 3.15. Diagnostic plots associated with a simple linear fit to the IV values
computed for the American Beech.

we present residual plots from the model in Table 3.3 against three cli-
matic variables that Prasad and Iverson (2000) found to be important for
predicting abundance of the American beech (two of the variables, JULT
and PPT, being among the factors remaining after backward deletion). We
also include a normal quantile plot of the residuals. The lines in the three
plots were fit using the stepwise addition and deletion scheme outlined in
the previous section, but with continuous, piecewise linear functions. We
include them as crude indicators of regions where the model is missing
possible structure.

Additive models

Starting from these scatter plots, we might consider model elaborations
that introduce extra flexibility associated with each variable.

For example, it is common to add higher order monomials like quadrat-
ics in, say, a stepwise-forward manner. Simple diagnostics like those in
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Figure 3.15 can be used to guide the process, and perhaps a model selec-
tion criterion like BIC should be consulted as a more formal benchmark.
Broadly, this kind of approach might take us from a simple linear model

Bo + Brz1 + - + Baxa (3.4.12)

for f(x) = f(x1,...,24) to a more general expansion of the form (3.4.3)
involving only main effects; that is, the additive model

go + g1(x1) + - + ga(za), (3.4.13)

where gg is just a constant.

To ground our discussion leading to (3.4.13), we explore how spline func-
tions like those in the diagnostic plots of Figure 3.15 can be used in a general
procedure for fitting additive models. Here we return to the algorithm in
Figure 3.12 but consider several input variables at once. As with simple
curve estimation, we want to make sure we add spline basis elements for a
variable, terms of the form (xj — t), only after we have added the simple
variable zy, itself. We can formally express these constraints in terms of the
candidate basis functions available for each step of addition

ez, k=1,...,d; and
o (2 — tgm)+ if x is already a basis function in the model.

We performed this addition process with the IV data starting from a con-
stant fit, and proceeding until we had added a total of 25 terms.

Then, following the recipe in Figure 3.12, we performed backward dele-
tion. Borrowing from our experience with curve estimation, we want to
impose some restrictions on the deletion process, making sure we remove
all the spline elements for a variable zj, before we remove the simple term
xy itself. Again, we can formally word this in terms of the candidate basis
functions at each step of the deletion process

o (zx —tkm)+; and
e 1y, if there are no terms of the form (xy — tgm)+ in the model.

From our 25-term additive fit to the IV data, we then conduct backward
deletion down to a constant fit. We then select the best model according
to BIC. When we do this, we find functional dependencies on three of the
climatic variables plotted in Figure 3.16. As indicated in the discussion of
Figure 3.15, these three variables were all found to be important by Prasad
and Iverson (2000). For the most part, these curves are all consistent with
the missing structures found in the residual plots of Figure 3.15. (They are
also very similar to those in the final model plotted in Figure 3.6 earlier in
the chapter.)
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FIGURE 3.16. Functional components (based on the climate variables) in the
additive fit to the square root of the IV values computed for the American Beech.

Two-factor interactions

Finally, we generalize this procedure one step further. Given a significant
lack of fit in a model of the form (3.4.12), we might consider adding in-
teractions between the covariates. Borrowing from this idea, we consider
a model that allows for interactions involving not only linear terms, but
also some of the nonlinear elements plotted in Figure 3.6. We can think of
moving from the simple linear model

60+61$1+"'+/6d517d

to a more general expansion involving two-factor interactions; that is, trun-
cating (3.4.3) to include only

90+ g1(x1) + -+ ga(@a) + Y Gho ko (Thy Thsy) (3.4.14)
k1 <kz
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Just as with additive models, we have to determine which interactions are
important and which are not.

We now present a simple spline procedure that fits this kind of model.
We again build on the algorithm in Figure 3.12. In this case, the set of
candidates at each stage involve a hierarchy of linear terms, spline terms
and products. We impose this hierarchy to create a tensor product space of
splines. Therefore, we want to maintain the order of linear terms xj before
spline terms (zx — t)+. In addition, we have to impose a constraints on the
kinds of interactions that can be included at each step.

To be precise, the candidate basis functions are:

e xi, k=1,...,d;

o (21 — tgm)+ if x is already a basis function in the model;

® Iy, Tk, if 2k, and zy, are already basis functions in the model;

o iy (Thy — thym)+, if Ty Ty, and (g, — thy,m)+ are in the model;

i (xkl —lky,m, )+ (‘Tkz _tkz,mz)-i' if Lky (xkl _tkhml) and (xkl _tkhml )+w7€2
are in model.

In short, we add the linear effects (monomials) of a variable first, then
spline terms; interactions are entered first with the simple linear effects
(monomials) and then between splines and monomials and finally between
spline elements of a different variable.

For the IV data, we added terms until the model included 25 terms and
then performed backward deletion. In Table 3.4 we display the individual
terms in the model and their complexity. All but one of the interactions
are between linear effects, and these would have been found by operat-
ing as usual with a linear model. The one complex interaction is between
temperature and elevation.

Predictions from the IV models

Using the models fitted so far, we now consider different scenarios for cli-
mate change in North America. As we did at the beginning of the chapter,
we generate IV values for the American beech using the same county-by-
county values for the soil factors, but replacing the climate variables with
predictions with one of two different models for weather conditions asso-
ciated with a doubling of COs levels. The three rightmost images in the
top row of Figure 3.18 are based on the Hadley predictions, while the lower
images are based on data from the CCC. The three two-image columns cor-
respond to predictions from the simple linear regression (left), the additive
spline model (middle) and the interaction spline model (right).

As done previously, we quantify the drift northward of regions with high
IV values through the percent change in an area-weighted IV score for
each of the fitted models under the two climate scenarios. The entries in
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Interactions
Term SLOPE CEC ROCKDEP INCEPTSL MINELV

AVGT spline 1 2
JULT spline 1 1

PPT spline

TAWC linear

PERM linear

CEC linear

ROCKDEP linear

SLOPE linear

PROD linear 1

TEXFINE spline

ROCKFRAG  spline 1 1 1

ALFISOL linear

INCEPTSL linear

MOLLISOL linear

MINELV spline

TABLE 3.4. Spline fit to the American beech IV values. The second column de-
scribes whether the variable enters linearly or as a spline function. The remaining
columns describe the interactions. A “1” denotes an interaction between linear
terms and a “2” denotes an interaction with a spline term.

Table 3.5 correspond to the 2 x 3 grid of images on the right in Figure 3.18.
Under the interaction spline model of Table 3.4 we recognize the 35% drop
in the area-weighted IV scores under the Hadley model and the 68.5% drop
under the CCC predictions.

Scenario  Linear Additive Spline Interaction Spline
Hadley 54.9%  69.0% 65.0%
CCC 18.4% 18.4% 31.5%

TABLE 3.5. Ratio of the area-weighted IV score under each climate scenario using
the three statistical models for the area-weighted IV score for the raw data.

3.5 A survey of multivariate spline methods

3.6 Properties of spline estimates

3.6.1 Knot spacing

The bias-variance discussion in Section 3.2.2 also has implications for knot
spacing. In Figure 3.19, we present plots of the pointwise bias and vari-
ance obtained from simple OLS estimates based on regularly spaced knot
sequences. The input values are 100 equally spaced points in the interval
[0,10], and the response is generated via

Y =2.5[cos (mx) + ¢ (200 — 12.5) /6] + € (3.6.1)

where ¢ is the standard normal density function and e is normally dis-
tributed with mean 0 and o2 = 1. The individual panels summarize the
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FIGURE 3.17. Predicted abundance of the American beech using four different
models. Upper left is the raw data; upper right is the simple linear fit; lower left is
the additive linear-spline model; and lower right is the interaction spline model.

pointwise behavior of estimates based on spaces of cubic splines, where
the knots are indicated by vertical lines. The plots in each row have the
same vertical axis, so that we can directly compare how the (squared) bias
(left column) and variance (right column) behave as the number of knots
increases. Because the number of points between knots is constant, the
pointwise variances are roughly constant across the interval. Increasing the
number of knots reduces the squared bias at the peak (x = 6.25) from 4.0
to 0.4, while the variance increases from 0.04 to 0.1. Away from the peak,
the bias drops more quickly and is eventually overtaken by the variance.

By making a more careful accounting of the hidden constants in expres-
sions like (3.2.23) for spline models, Agarwal and Studden (1980) show that
the optimal distribution of knots (in terms of mean squared error) is re-
lated to both the derivatives of f (its local roughness, coming from the local
approximation error given by Jackson’s Inequality) and the placement of
the inputs {X;}. The simulation results of Figure 3.19 support this result.
Consider the fit with three knots (the middle row of Figure 3.19). We have
paid a huge price, in terms of squared bias, for not locating the breakpoints
near the peak. When knots are placed at 5.0, 6.25 and 7.5, the maximum
squared bias is a full order of magnitude smaller than it is for the arrange-
ment in Figure 3.19. This is a problem in general with nonadaptive knot
placement schemes.
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FIGURE 3.18. Abundance values for the American beech under two different
climate scenarios.

When the underlying curve is sufficiently “regular” in some sense, the
nonadaptive knot placement schemes are generally not too bad provided
that we have a rich-enough collection of knots. For example, the fit repre-
sented at the bottom of Figure 3.19 smoothes over the peak at z = 6.25,
leading to a large squared bias at that point. After experimenting with
different knot locations, we found that any single-breakpoint model fails
to capture some feature in the data, so that the resulting fits all have es-
sentially the same overall squared bias. While our immediate goal is to
describe how knot spacing affects the bias-variance tradeoff for a spline
model, implicit in this discussion is the understanding that any adaptive
scheme must determine how many knots to use as well as where they should
be placed.

Friedman and Silverman (1989) and Friedman (1990) characterize the
effect of knot spacing on the variance (3.2.23) by examining the sensitivity
of the estimate to “runs” of positive or negative errors. To explain their
reasoning, write the linear regression model in the form

Yi=f(Xi)+e forl<i<n, (3.6.2)

where we now assume that the errors €; have a symmetric distribution.
Let G be the space of linear splines defined for some knot sequence ¢, and
let g(x;3) denote the OLS estimate of (3.2.12). The fitted curve will be
resistant to a series of L consecutive positive or negative errors €; provided
that the knots are adequately separated. If not, the function g(x; 3) will
follow the run and exhibit spurious features.

Think of any curve g(z; 3) € G as interpolating the data points ¢, g(¢;, 3)
with a broken line (where 1 <1 < m). Viewed in this way, it should be clear
that changing the value of g(¢;, 3) affects the curve only in the neighboring
intervals [t;—1,t;] and [t;,t;41]. As a result, if a series of positive errors
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FIGURE 3.19. The bias-variance tradeoff and knot spacing. The upper leftmost
graph illustrates a sample data set, with the true regression function plotted as a
solid curve. The input data are equally spaced and n = 100. In the lower 3 rows,
we plot the pointwise squared bias (left column) and the pointwise variance (right
column) of OLS estimates using S3(t), where the knot points ¢ are marked by
vertical lines. Each curve is based on 1,000 simulations.
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covers (at least) the three knots ¢;_1, ¢;, and 41, the fitted curve g(z; ﬁ)
will track the run and overshoot f in a neighborhood of ¢;. It is free to
do so because the fit in other regions is not influenced by changes near ¢;.
As a new sample from (3.2.3) will be just as likely to have a similar run
of negative errors, we see that such effects add to the local variability of
g(x; B). Depending on the overall knot configuration, the same problems
can occur (but to a lesser degree) when a run traps only two knots.

The distribution of run lengths L (assuming a symmetric error distribu-
tion) is easily derived by a simple coin tossing argument. Let L, denote
the 1 — a quantile of L, which we can approximate by

1
L, = —log, [—ﬁln(l—a)

for & < 0.1 and n > 10. Friedman and Silverman (1989) suggest that the
knots for a linear spline fit should be positioned with (at minimum) L, /3
data points between neighbors, where L, represents an improbably long
run length. To be conservative, Friedman and Silverman (1989) recommend
separating knots in a linear spline fit with

M =M(n,a)=Ly/25. (3.6.3)

data points, where « is some value between 0.05 and 0.01. This prescription
should provide resistance to all but the most infrequent conspiracies of the
error process. We refer to M as the minimal span acceptable for a spline
smooth. Using the fact that splines of order £ have support on k neighboring
knot intervals, we can easily extend this argument to quadratic and cubic
splines as well.

3.6.2 Boundary conditions

Our discussion has been restricted to approximation spaces defined on a
finite interval [a, b]. In many statistical applications, this assumption is un-
natural, and we would like to make predictions beyond the endpoints a and
b. Let g be our original spline function and denote by g its extrapolation to
R. In the simplest scheme, we carry the leftmost and rightmost polynomial
pieces of ¢ into (—o0o,a] and [b, 00), respectively. In terms of (3.3.5), this
becomes

go(x), x < to;

@) =g,  a<a<b (3.6.4)
Im+1(x), x> tmia.

As we have seen in Figure 3.19, the variance of our estimate grows as we
approach the boundary. Predictions beyond the interval [a,b] suffer from
the same variance inflation.

A surprisingly effective alternative to (3.6.4) can control both effects
at once. Rather than extend g with cubic polynomials, consider linear
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FIGURE 3.20. Quantifying the effect of the natural spline boundary conditions.

extrapolation outside of [a,b] — a so-called tail-linear constraint. To be
more precise, replace the cubic polynomials in (—oo,a] and [b,00) with
linear functions and add the condition that ¢ blend smoothly across the
boundary points @ and b. We achieve this by imposing the constraints
J'(a) = g"(b) = 0 and §"(a) = §"”(b) = 0. The resulting linear space
consists of the so-called natural cubic splines. By extrapolating with linear
functions, we reduce the variance of predictions made outside the central
interval [a, b], while enforcing the smoothness constraint serves to reduce
the variance near the boundaries within [a,b]. To see this in action, we
have repeated a portion of the simulations described in Figure 3.19. The
two panels of Figure 3.20 illustrate the impact that the boundary conditions
have had on our fit. The natural spline boundary conditions are applied to
the leftmost and rightmost knots, so our fits are linear in the leftmost and
rightmost intervals (as marked by vertical lines). Clearly, the large edge
effects in the variance plot (right) are brought down nearly to the level
inside the interval, while the squared bias (left) has seen a slight increase
near the right boundary. In general, the extra bias is to be expected as the

. . . =4
boundary conditions reduce the approximation rate from A~ (??) across

the interval X down to A~ near the edges (de Boor, 1978). Because we are
interested in balancing squared bias and variance, we are willing to pay a
small price for the overall improved accuracy of the constrained fit.

Given that we are imposing 4 constraints on the coefficients (two on
each of the second and third derivatives at a and b), unless we have at least
three knots, our solution space will consist of only the linear functions Ps.
In many applications, it is common to place knots at the boundary points
to = a and tpr41 = b, in which case we can think of placing at least 1 < M
knots inside [a, b]. For example, take M = 1 so that ¢ = (a,t,b). In terms
of the truncated power basis, any function g € S4(¢) can be written as

9= + T+ 12z’ +732° + Bo(x —a)} + Bi(x — )3 + B2z — b). .
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Enforcing the boundary conditions at a has us drop 22 and 2? from the
basis set. The two conditions at b then involve the coefficients 3y, 81 and
(B2 of the truncated polynomials:

Bo+P1+B2=0 and f[o+pFi(l—1t)=0.

Solving these equations yields that we can write any natural cubic spline

g* in the form

g =r+mnz+p[1-t)(z—a)(z—1); —t(x—0b)i]
=7 + Y1 + ﬁh(l’ﬂf),

where h(x,t) is a twice continuously differentiable function of ¢. Therefore,
we see that the space of natural cubic splines with knots at ¢t = (a,t,b)
with tail-linear constraints enforced at the boundaries of the interval [a, b]
differs from the space of linear functions by the addition of a single degree
of freedom. We will encounter this again in Section 3.7.3.

The use of tail-linear constraints to control for the variance at the bound-
aries of the data appears in Stone and Koo (1986a,b), Friedman and Sil-
verman (1988), and Breiman (1993).

3.6.3  Degrees of freedom associated with knot placement

In Section 3.2.3 we discussed model selection criteria for comparing linear
spaces. We introduced a penalty p(n) that could be used to add an addi-
tional cost for each adaptively selected basis function. To make this clear,
consider Sa(t), the space of continuous, piecewise linear functions with just
a single knot ¢. Assume that our inputs are restricted to the interval [0, 1].
Given data points (X1,Y1),...,(Xn,Ys), we can define the residual sum of
squares RSS(¢) for any knot point ¢ by

RSS(t) = Z [Y; — g(Xi;Bﬂ2 for g(z; B) € Sa(t),

i=1

where B is the OLS estimate of 8 in Sa(t). We let t denote the breakpoint
for which RSS(#) is a minimum. Next, let RSSy denote the residual sum of
squares corresponding to the space Pq, the collection of polynomials that
are linear in x:

n

RSSo = Z Y — gO(XiQﬁO)]Q for go(w; By) € Pa.

i=1

Assuming that the error variance o2 is known, the selection criterion AIC
suggests we favor Py over Sy (t) providing RSSg — RSS(¢) > 202.

Under the hypothesis that f € Pa, or that the unknown regression func-
tion is well described by a line, then the difference V() = RSSp — RSS; has
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FIGURE 3.21. In each plot, the solid lines denote tail probabilities for x? distri-
butions with 1, 2, 3 and 4 degrees of freedom (arranged from the lower left to
the upper right, respectively).

a x2 distribution with one degree of freedom. The AIC criterion suggests a
classical hypothesis test with critical value 2 (or a level set at 15.73%). This
holds when comparing any fixed space Sa2(t) to P2. But when we conduct
adaptive knot placement, we are not considering just a single ¢, but the ¢
that minimizes RSS(¢). Put another way, we are seeking ¢ that mazimizes
the drop in residual sum of squares

V= max Vit) = max [RSSo — RSS(¥)] - (3.6.5)

We can approximate the tail probabilities of V using a x?2 distribution, but
the degree of freedom is somewhat larger than 1.

In Figure 3.21 we plot the tail probabilities for four x? distributions; as
we move from lower left to upper right, these lines correspond to 1, 2, 3 and
4 degrees of freedom, respectively. The upper set of points (plotted with
the symbol “3”) are empirical quantiles from the distribution of V. To be
more precise, we generated data (X1,Y7) ..., (X100, Y100) from the model

Yizl—éo—i-ei fori=1,...,100 (3.6.6)
where the error terms ¢; are independent standard normal random vari-
ables. We then computed RSSy and RSS(¢) for ¢ € (0,1) and computed V'
according to (3.6.5). We repeated this 2,000 times and present the empir-
ical quantiles in Figure 3.21. Notice that these points are reasonably well
described by a x? distribution with three degrees of freedom.

The lower set of points in this figure, marked with the symbol “2,” are
also derived from the simulation setup in (3.6.6), but this time we restricted
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the interval over which we searched for our knot location; that is, we set

V = max [RSSy—RSS(?)] .
t€(0.2,0.8)

By restricting our search to the central 60% of the data, the empirical
quantiles of V' are now reasonably described by a x? distribution with
only two degrees of freedom. This is another quantification of the effects
we have noted at the boundaries of the support of the data. This effect as
first cited by Hinkley (1969) in the context of linear switching regressions.
Owen (1991) and Luo and Wahba (1997) present mathematical treatments
that directly quantify the degrees of freedom and the range over which we
search for .

Under the normal linear model, standard asymptotic theory suggests that
if the log-likelihood is a smooth function of (¢, 3), then V should be roughly
x? with two degrees of freedom. Unfortunately, these results do not apply
for Sa(t) because the log-likelihood involves terms of the form (X; — )4
and hence is not differentiable at the inputs X1,..., X,,. Suppose, instead,
that we work with cubic splines S4(¢). In this case, the log-likelihood has
two continuous derivatives (see the surface in Figure 3.10 for an example).
Now, let RSS(¢) denote the residual sum of squares from fitting a natural
cubic spline model (enforcing the tail-linear constraints at the boundaries
of the data 0 and 1) with a single knot at ¢ and again let RSSy denote the
fit from Pq, the space of linear functions. Given the boundary conditions,
the natural cubic spline with a knot at ¢t can be written in the form

Yo + V1% + ﬂh(z, t)

where h(z,t) is given in the previous section. Since this space is a one-basis
function elaboration of Py and it is still appropriate to consider a break
at ¢t using V(t) = RSSy — RSS(¢). The points in the righthand panel of
Figure 3.21 are empirical quantiles of V' simulated using (3.6.6) but this
time comparing the simple linear fit to the space of natural cubic splines
with knots at 0, £ and 1. Notice that in this case, the tail probabilities of V'
is well described by a x? distribution with just over one degree of freedom.
This is true whether we search for ¢ in all of (0,1) or in just the central
60%, (0.2,0.8). Luo and Wahba (1997) explain this fact theoretically, and
contrast it to the case of linear splines above.

This general analysis provides some justification for different values of
p(n) when applying standard model selection criterion like AIC and GCV.
The general message is that the more elaborate the search (the larger the
interval we are scanning for potential knot locations) and the rougher the
spline space (in terms of the number of continuous derivatives), we can be
justified in choosing a larger value of p(n).
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3.7 Representation and computation

Throughout this chapter, we have focused on the methodological aspects
of spline modeling in the regression context. Sample data analysis and
theoretical sketches have been used to illustrate the properties of splines.
We now consider a few of the practicalities. In particular, we discuss the
interplay between our choice of basis and the feasibility of model fitting (for
a fixed spline space) and model selection (for adaptive knot placement).

3.7.1 Selecting a basis
Some history

For decades, numerical analysts have studied the computational issues in-
volved in solving least squares problems. While available computing power
has experienced exponential gains in terms of memory and speed, some of
the fundamental concepts relating to precision and stability are still rel-
evant. Recall our regression setup in Section 3.2.1 with a J-dimensional

space G having basis functions By, ..., By, so that any g € G can be writ-
ten

9(x;8) = H1Bi(x) +--- + BB (). (3.7.1)
Given a sample (X 1,Y7), ..., (X, Ys) of size n, we consider finding a value

of B that minimizes the squared loss

p(B) =D Vi — g(X::8)) = ||Y - BB, (3.7.2)

=1

where B is the n x J design matrix with elements [B];; = B;(X;) and
Y =(Y1,...,Y,)" . Let B denote the true solution to this problem, and 3
the computed solution. There are two kinds of errors that would cause ,B and
B to differ: input error and roundoff error. The first relates to operations
on our data prior to performing the least squares operation. Data collection
and various preprocessing steps may limit the accuracy of the data we have
to work with. In effect, this means that B and Y may include errors that
are much larger than the working precision of our computer. Typically,
there is very little we can do about this kind of error unless we are directly
involved in the data collection.

From the point of view of basis selection, our main concern is roundoff
error. Each computer operation can only be executed with finite accuracy
known as machine precision. While solving the least squares problem, the
accumulation of these errors can result in large differences between 8 and
B. The condition number of the matrix B in (3.7.2), denoted by x(B),

describes the sensitivity of B to roundoff errors. It is defined as the ratio

k(B) =+ (B)/As(B), (3.7.3)
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where \; (B) is the largest and A;(B) is the smallest singular value of B.
If we let epr denote the precision of our computer, then the relative error
in B due to roundoff errors is given by

1B -Blz _
1Bl -

If B and Y are only known to a certain accuracy, say ep > ejr, then the
same bound holds but with €;; replaced by ep.

Consider now a univariate predictor space (the curve fitting problem of
Section 3.3, and in particular, let X;,...,X,, be equally spaced over the
interval [0, 1]. Then, if we represent the polynomials of order &£+ 1 in terms
of the simple power basis, 1, z,z2,..., 2", we can show that the condition
number on the design matrix is O(e3°%). In short, k does not have to be
very big before the system (3.7.2) becomes unstable. The essential problem
is that for even moderate sized k, the basis functions are nearly collinear.
This is not really a fact about sample size as the problem (and the bounds)
hold for all sufficiently large n. (Note that it also does not improve if we
scale the functions in some way.) To clear up this instability when working
with polynomials, most computing packages like S-Plus and R make use of
the so-called (orthogonal) Chebyshev polynomials (Schumaker, 1981). For
a formal definition of the condition number, the reader is referred to Golub
and Van Loan (1996), while complications specific to polynomial regression
are discussed in Seber (1977).

€A4I$2(B) 5

Conditioning and splines

Why should we be concerned with conditioning? In Section 3.3 we found
that from a methodological perspective, the truncated power basis was ideal
for adaptive knot placement: each knot is associated with a single basis
function, and adding or deleting that function was equivalent to inserting
or removing the knot. Unfortunately, directly implementing this approach
can result in badly conditioned design matrices as the order of the spline
space k increases or as the number of knots M increases. In both cases, the
basis functions become increasingly collinear, no matter what the value of n.
We will spell this out in more detail shortly. The competing representation,
the B-spline basis, was designed to avoid these difficulties and has nearly
constant x as a function of M. To make the tradeoffs precise, consider a
piecewise-linear model, or rather the spline space Sa(t). Recall that, given
the knots ¢t = (t1,...,tn), the truncated power basis for this space consists
of the ramp functions (x — t,,,)+; while the B-spline basis is made up of
“tent” functions B(x;tm, tm+1, tmt2), Where

(3.7.4)
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FIGURE 3.22. Two different bases for univariate linear splines: the truncated
power basis (left) and the B-spline basis (right).

The two basis sets are given in Figure 3.22 for a collection of equally spaced
knots. It is not hard to convince oneself that these two sets of functions do
in fact form a basis for Sa(¢).

Computationally, the main advantage of the power basis terms is their
simplicity; each knot t,, is associated with a single basis term B,, =
(x — tm)+, and by introducing or deleting B,, we remove the flexibility
at that point. The main advantage of the B-splines is their local support.
That is, each term takes on nonzero values only in an interval [t,,—1, tm41]-
Associate the basis element B,, with the tent function centered at ¢,,,
m=20,...,M + 1, where ty = a and tp;41 = b are the boundaries of the
interval X'. The design matrix B associated with the OLS problem (3.7.2)
with the B-spline basis is tridiagonal, meaning that all of the entries [B];;
for which |i — j| > 2 are zero. This represents a considerable computational
savings over the power basis for large models. It is also responsible for the
low condition number of the basis.

In Figure 3.23 we present the ratio of the condition number of the trun-
cated power basis to that of the B-spline basis as a function of the num-
ber M of equally spaced knots in the interval [0, 1] for cubic (top curve),
quadratic (middle curve) and linear (bottom curve) splines. Our design ma-
trix is formed from n = 1000 equally spaced points in the interval. While the
growth is not quite exponential in the number of knots, it is considerable,
even for the linear splines. This holds up no matter how large n becomes; it
is more about the similarity (formally, the collinearity) between the basis
elements as the knots get close. Adaptive procedures serve to ameliorate
the problems with conditioning in the sense that knots will not be proposed
if they make the resulting design matrix too ill-conditioned. To make this
idea precise, we first discuss some computational details behind stepwise
addition.
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FIGURE 3.23. The ratio of the condition number for the truncated power basis to
the condition number for the B-spline basis as a function of the number of knots
M. The upper curve corresponds to cubic splines, the middle curve to quadratic
splines, and the lower curve to linear splines.

3.7.2  Implementing stepwise addition
Direct update of the normal equations

Suppose we have an initial model consisting of the basis functions B;(x),
1=1,...,J. Let By denote the design matrix corresponding to this set so
that [Bgl;; = B;(X ;). During stepwise addition, we entertain single-term
additions to this model by adding a new function B;(x) where ¢ might be
a discrete variable (taking values only at order statistics of the input data)
or it can range continuously over a subset of the input space. For example,
Bi(x) might be the linear spline basis element (z — )4 corresponding to a
knot at ¢. Let By denote the new n x (J 4+ 1) design matrix formed from
By by appending a new (n x 1) column vector B, where [B;]; = B:(X;);
that iS7 B1 = (Bo,Bt).

__ To determine the effect of the additional basis function, we first compute
B, the OLS estimate of the new basis function onto the span of the columns
of Bg. If we let B,, denote the OLS coefficient estimate for this fit, then
By, = (BIBy)'BIB, and B; = 3,,Bo. Finally, let R? = ||B, — B||?
denote the residual sum of squares associated with this fit. Then, following
Rao (1973), we have the equality

~ ~T —~
(BgBo) ™' + RLgﬁOtﬁOt _RLgﬁOt

(BIB;) ! = o (3.7.5)
_RA?/BOt RLf
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which partitions (B{ Bo)~! into the J x J block in the upper left, a J x 1
row at the lower left, a 1 x J column at the upper right, and a scalar in
the lower right. Returning to our original problem, if we let 3, denote the

estimated coefficients for the regression model based on By, and ﬁl the
coefficients for By, then the (3.7.5) yields

~ ~ Tyv_B.-3
_ By — By D)
= . 3.7.6
o BY (Y ~BoB,) 370
R?

This well-known formulation is ideal for stepwise computations: adding
a new basis function involves the coefficients at the current step B, the
residuals at the current step ¥ — BOBO, and a single OLS estimate of the
new function onto the span of the existing basis functions.

For model selection, our main interest is in the residual sum of squares
for projecting Y onto B;. Again using (3.7.5), we find that

~ 2
B (Y — BoSy)

2 )
Rt

RSSp — RSS; = (3.7.7)

where RSSy and RSS; are the residual sums of squares associated with the
basis set By and By, respectively. At each stage in stepwise addition, we
examine all the viable candidate basis functions B;(x) by computing the
drop (3.7.7). The function resulting in the greatest drop in the residual sum
of squares is then added to the model and the overall fit is updated using
(3.7.6).

With this approach, we construct a solution to the regression problem
sequentially. This scheme has several advantages: first, while solving the
so-called normal equations usually takes O(.J3) operations, each individual
update involves only O(J?) operations. This means we can audition can-
didate functions B; more quickly. Next, we can control the conditioning
of the least squares problem by avoiding terms that are nearly collinear
with those already in the model. This effect is measured by the term RZ,
the residual sum of squares obtained by projecting the new basis element
B: onto the span of By. By setting an overall tolerance for the this term,
we bound the condition number of the design matrices at each stage. This
bounding is similar to the pivoting scheme mentioned above in connection
with the implementation of OLS in packages like S-Plus and R. We also ob-
serve that these computations are formally identical to the so-called sweep
operations used by Breiman (1993).

Progressive orthogonalization

Stone (1990) suggests an alteration to this scheme that drops the com-
putation for each addition from O(J?) to O(J). Basically, the idea is to
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orthogonalize the variables as they are entered. In terms of the notation
above, this means that instead of entering the basis vector B, we add the
residual B; — B;. In so doing, we guarantee that each term is orthogonal
to those already in the model. Notice that at each stage, the design matrix
is now orthogonal; that is, if we let Bg denote the design matrix formed
by adding J terms under this new scheme, then BOTBO =1Ijxy,the J xJ
identity matrix. That means that the effect of B; onto By is obtained by
the single matrix multiplication BYB;. We note that while the speedup in
computation alone recommends progressive orthogonalization, the method
also simplifies the corresponding programming task.

Cholesky updates

Using the relation in (3.7.5), we have derived a simple scheme for updating
the ingredients necessary to audition a large number of candidate basis
functions B;. The idea was to solve the normal equations in stages. Similar
in spirit, Friedman (1990) suggests forming the Cholesky decomposition
of B{By, and using well-known updating algorithms to audition new basis
functions. The Cholesky decomposition of a symmetric, nonsingular matrix
A is given by the product LLT, where L is a lower-triangular matrix. By
setting A = B{ By, this approach to solving the normal equations means
that we need only invert two triangular systems. Typically, finding the
Cholesky decomposition requires O(J?3) operations. However, it is possible
to update this decomposition by adding a single row and column to A in
only O(J?) steps, a process we describe in the next paragraph. The basic
matrix computations for the Cholesky decomposition and its updates can
be found in Golub and Van Loan (1989).

Specialized computations

So far, we have considered a generic setting where we have not used any
facts about the basis functions being employed. When a fixed number
of candidate knots are to be considered, many of the ingredients for the
schemes above can be computed prior to the selection process. For exam-
ple, the direct and Cholesky updates involve inner-products with candi-
date variables and the response. These can be computed and stored prior
to the adaptive phase of the algorithm, reducing computation time during
the addition process. Friedman and Silverman (1989) and Friedman (1990)
present some quick updating formulae for building up the set of inner prod-
ucts when working with linear splines and the truncated power basis. They
propose visiting the knots in decreasing order and using the fact that for
t <u,

0, z <t

(z—t)r—(z—u)tr=Sz—4t t<z<u,
u—t

;T2
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By structuring the computations in this way and precomputing the inner-
products for a fixed set of candidate knot locations, we need only O(.J?)
operations per Cholesky update rather than (J3).

When working with B-splines, we can reduce computations by taking
into account the fact that these basis functions have small support. In the
case of linear splines, we observed above that the entries [BBg];; are zero
for all [i—j| > 2. In the literature on matrix computations, such a matrix is
referred to as band-limited because the non-zero entries are restricted to a
narrow band around the main diagonal. Golub and Van Loan (1989) discuss
band-limited versions of the Cholesky decomposition and its updates that
improve even further over the O(.J?) operations.

For linear splines, the savings incurred for moderate to large problems
far outweigh the speed-ups suggested by the updating schemes in Friedman
and Silverman (1989) for the truncated power basis. During knot addition,
for example, should we want to enter a knot at point ¢;, we can add a B-
spline basis function from the mesh with ¢; added (one of the basis elements
with support that covers t;) rather than (x — tl)]ffl. Short cuts of this type
are discussed in more detail in Chapter 9 in the context of bivariate linear
splines defined over triangulations in the plane.

3.7.8  Connection to smoothing splines

We close this section with one last basis representation, this time com-
ing from the literature on so-called smoothing splines. For the moment,
we restrict ourselves to 1-dimensional curve fitting where the regression
function is known to be defined in the interval X = [0,1]. Given data
(X1,Y1),...,(Xn,Y,) we formulate a penalized least-squares criterion

n 1
ST - (X)) + /0 (h"(2))? da (3.7.8)

=1

for functions h. The smoothing spline estimate of f is the minimizer h of
(3.7.8). In Section ?? we find that the solution is a natural cubic spline; that
is, a piecewise cubic function with continuous second derivatives satisfying
the tail-linear constraints (3.6.4) specified above. While smoothing splines
have a rich, detailed history, our current interest in the construction is that
it provides us with another basis for the natural cubic splines.

To make this precise, define the functions

ki(z) =2 —1/2, ko(z)= (ki(z)—1/12)/2, (3.7.9)

and
ky(z) = (k{(z) — ki(z)/2 + 7/240) /24. (3.7.10)
Then, given a knot sequence 0 = tg < t1,...,tp < tyr+1 = 1, Craven and

Wahba (1979) show that a natural cubic spline can be written as

hz) = ao + aax + BLR(z, t1) + - + B R(x, tar) (3.7.11)
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where the kernel functions R(-,-) are given by
R(z,t) = ko(x)ka(t) — ka(|z —t]) . (3.7.12)

From the previous section, we recall that the natural cubic splines with the
indicated knot sequence should have dimension M, and yet the expansion
in (3.7.11) involves M 42 functions. Also, notice that because of the leading
term in k4, the kernel functions are in fact quartics.

We obtain the cubic natural splines from expansions of the form (3.7.11)
by imposing two linear constraints on the coefficients 3y, ..., 8. Interest-
ingly, these turn out to be precisely the constraints given in (??). To see
that this works, we can reexpress k4 as

ky(z) = [2* = (2° + 2%k (2) + 2ki(z) + ki () /2] /24.

This means that in the kernel function R(x,t) we have terms like (z — ¢)%.
Taking three derivatives of R(x,t) with respect to x, we have

63

R, t) = (—(v —t) + Lise — Lo>e) /2. (3.7.13)
ox

Now, consider the third derivative of h(x) in (3.7.8) and notice that each

kernel function contributes a term of the form (z — ¢,,). The constraints

act to eliminate these. Note that that for x =1

Zﬁm(l —tm) =0 implies Zﬁm = Zﬁmtm
while for z = 0,

> Bm(0—tm)=0 implies > Bty =0.

Therefore, the sum ) By (x — t,,) is zero for any z € [0, 1].

While the truncated power basis required the two constraints to satisfy
the boundary conditions at the rightmost interval, the kernel functions that
make up this basis all satisfy the tail-linear property given in (??). Instead,
the kernel basis requires the constraints to eliminate the quartic component
that helps each kernel individually satisfy the tail-linear conditions. As
with the truncated power basis, each kernel function is associated with a
single knot. As we see from (3.7.13), the function R(x,t) has a break in its
second derivative at t, and the jump is 1. That means that in the expansion
(3.7.11), the jump at knot t,, is By,.

Luo and Wahba (1997) use these basis functions in a stepwise addition
scheme, ignoring the constraints required to make them cubics. We intro-
duce them here because many generalizations now exist for different kinds
of kernels. In Section 77 we will see how this general approach has taken
shape in the context of support vector machines and other tools coming
from the data mining and machine learning literature.
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3.8 A second look at the examples

3.8.1 Assessing uncertainty in curve fitting

Consider again the fit to the 876 Sr data given in Figure 3.3 near the be-
ginning of the chapter. The fit was in a linear space G of cubic splines with
tail-linear constraints, and it can be represented as

J
9(x) = B;Bj(x),
j=1

for OLS estimates B = (Bl, . ,BJ). In this case, we have a cubic spline
space with five knots (three interior and two at the boundaries, the smallest
and largest age values) and we have enforced two tail-linear constraints
at each of the boundary knots. By imposing 2 x 2 = 4 constraints on
a space of dimension 9 (cubic splines with three knots), our final model
has J = 9 — 4 = 5 degrees of freedom. Since we are working with OLS
estimates, we can apply usual regression theory and estimate the variance-
covariance matrix for 3 as s?2(BTB) ™!, where B is the usual design matrix
and s? = RSS/(n — J). From here, we can define pointwise confidence
intervals. For any point xg, we have

(o) =21 /sb(z0) T (BTB)b(x),

where b(xg) is the vector (Bi(zo),...,Bs(z0))T. If f € G and we have
not done any knot selection, this interval would be correct. In Figure 3.24
we overlay this standard OLS pointwise confidence interval on top of the
bootstrap estimate from Figure 3.3. While similar in some places, we see
that the regression interval is often too narrow, especially in areas with
strong features like the KTB.

The pointwise confidence intervals in 3.3 were derived using a bootstrap
procedure. We constructed bootstrap samples by drawing 45 data points
from the 876 Sr data with replacement. For each bootstrap sample, we rang
the greedy stepwise algorithm, adding knots to a maximum model of 10
breakpoints and then conducting stepwise deletion. BIC was used to select
the best model for this sample. We repeated this for each of 200 samples
and plotted the 97.5 and 2.75 percentiles as curves. These are the black
bands in Figure 3.24.

There has to be more to say here; if we use a model selection criterion to
gauge the amount of smoothing, we’re trading off the bias and variance...
s0...

3.8.2  Test set prediction error

In Section 3.2.3, we motivated the use of selection criterion like AIC and
Cp. While these criteria provide reasonable protection against overfitting
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FIGURE 3.24. Comparing standard pointwise confidence intervals to a bootstrap
procedure.

when tuned properly (through a good choice of p(n)), we will now explore
out-of-sample estimates. Recall that the test set estimate of prediction error
is given by

1

K
PErs(G) = e Y7 —g(X55B))°. (3.8.1)

=1

Let us reconsider the 87§ Sr data and examine model selection using a test
set. Martin and Macdougall (1991) present a follow up study with a series
of observations taken from shell samples having dates very close to the
KTB. We will combine the 39 points from their site 356 (having “quality”
measures of 1 or 2, indicating clean measurements) with their original 45
points to create a dataset with 84 observations. We then divided the dataset
into a training set (two thirds of the available data or 56 observations) and
a test set (one third or 28 observations).

We then conducted stepwise addition with a natural spline basis to 10
knots, followed by backward deletion. In Figure 3.25 we present the best
model suggested by the test set (solid line, 6 knots) compared with the best
suggested by BIC using the full 84 data points (dashed line, 10 knots). In
this case, the BIC fit consists of more knots, and specifically more in the
neighborhood of the KTB. In both cases, the extra data at the KTB has
allowed us to resolve the peak more completely.
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FIGURE 3.25. Two fits based on

3.8.83  Multivariate responses

The abundance score (3.1.1) for a given species is normalized by the preva-
lence of other kinds of trees in the same forest. For regions with just a
small number of species, the abundance scores will be correlated. This im-
plies that there may be some advantage to “borrowing strength” between
species when modeling the IV. To formalize this idea, for each input vector
X ;, we consider a vector of responses (Y1;, Ya;, Ys;) for i =1,...,n. As was
done at the beginning of this chapter, we will model the response vector
using linear spaces, typically the approximation spaces. Let G denote a
J-dimensional linear space with basis

Bi(z), j=1,....J, (3.8.2)
defined for @ € X. Let g = (¢1(x), g2(), g3(x)) denote three functions in

G. We evaluate how well they fit our data using an extension of the OLS
criterion:

3
p(9) =D D [Yomi—gm(X)))*,  g€G. (3.8.3)
Each of the functions g, can be expressed in terms of the basis for G as

g(m;/@m> = ﬂmlBl(m) +-+ ﬂmJBJ(m)

for some parameter vector 3,,. Combining these parameters across the
different models into one vector B = (84, B4, B3), we can rewrite the OLS
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FIGURE 3.26. Raw IV abundance values together with predictions from two
different spline methods. Raw values (left column) for the southern red oak, the
white oak and the virginia pine (top, middle and bottom); predictions from a
cross-validated spline fit; and predictions from a “joint” model that treats the IV
values for all three species simultaneously.

criterion as

and our estimator solves

o~

B = argmingcpsp(B) .
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We obtain the OLS estimate B by solving the usual normal equations
(B"B)3 =B"Y, (3.8.5)

where B is the n x J design matrix with elements [B];; = B;(X;), and
[Y]mj = Yim;. Comparing this with (3.2.11), we see that the estimate of
B,, is simply the OLS estimate using G using the data Y,,1,..., Y, and
Xq,..., X,

When adaptively selecting G, we can leverage the existence of general
structures common to the different tree species by placing knots and in-
troducing interactions using the criterion (3.8.3). That is, at each step in
the addition process, we introduce a basis function that has the greatest
drop in (3.8.3). In this case, we are now estimating 3 more parameters (one
for each element in B¢, By and B34). Similarly, during backward deletion,
we now drop that element from a linear space that creates the least rise in
(3.8.3), again reducing the model by 3 degrees of freedom each time.

In the last column of Figure 3.26, we present the predictions from this
jointly derived model. As was done with the middle column, we again se-
lect between the collection of models using a test set estimate of prediction
error. In Table 3.6 we see the wide range of model sizes obtained by simple
marginal fitting. In terms of parameters, the combined model is only mod-
estly larger than the smallest models, and much smaller than that fit for
the white oak (22 versus 48 degrees of freedom). Even so, the prediction
error estimates are not very far off, although they are consistently better
for the separate fits. In the case of the white oak, we seem to lose very lit-
tle in terms of prediction error for having such a drastically smaller model.
Among the 22 variables in the combined model, only one factor involving
the climate variables appears, namely JANT, the average January temper-
ature for the county. In Figure 3.27 we plot out the linear components of
this model. Note the different effect a warm winter has on tree abundance
for the three species.

J PE | J PE
Southern red oak | 16 5.7 | 22 5.7
White oak 48 43.8 | 22 50.5
Virginia pine 19 124 |22 13.1

TABLE 3.6. Model sizes and test set estimates of prediction error for three tree
species, fitting separate and combined models.

3.9 Conclusion



