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FIGURE 3.27. Dependence of each tree species on mean January temperature.
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4
Generalized Linear Models

In the previous chapter, we described the relationship between an input
vector X and a response Y through the conditional mean and variance
functions

E(Y |X = x) = f(x) and var(Y |X = x) = σ2 ; (4.0.1)

and our interest focused on describing the significant features of f . We
approached this problem by introducing a linear model, or more precisely,
a finite-dimensional linear space G. Given a series of independent obser-
vations, (X1, Y1), . . . , (Xn, Y ), we took as an estimate for f the ordinary
least squares (OLS) projection into G. By choosing linear spaces G based
on their flexibility, or rather, their ability to represent a variety of func-
tional forms, we constructed an estimate of f with favorable empirical and
theoretical properties under relatively weak assumptions about f (requiring
only that f be smooth in some sense). Adaptive methods were introduced
to select from among a number of competing linear spaces G, helping to
further resolve features like peaks and valleys.

The use of OLS as a fitting criterion was derived originally under the
distributional assumption that Y be a normal random variable with the
mean and variance given in (4.0.1). While OLS is applied even in cases when
strict normality is questionable, there is certainly a limit to its effectiveness.
The class of generalized linear models (GLM’s) encompasses a number of
common estimation problems for which OLS is not an appropriate fitting
criterion. The term “generalized” refers first to the fact that the distribution
of Y can be any one of a large class of so-called exponential families. In
addition, f may no longer be a simple conditional mean as in (4.0.1), but
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instead can represent some transformation of the mean of Y . In each case,
however, flexible linear spaces G are introduced to model f , and hence
we retain the term “linear.” We begin this chapter with two applications:
count data, for which Y is taken to be a Poisson random variable; and
binary data, corresponding to a Bernoulli distribution for Y . As we will see,
computational issues become much more important for GLM’s, as estimates
are no longer obtained through simple OLS projections, but instead involve
iterative optimization techniques. Because our adaptive procedures depend
on auditioning a large number of basis funcions, computing a new fit for
each candidate is impractical. Issues concerning estimation and adaptation
can be treated quite generally in the context of GLM’s. In fact, many of
the more elaborate estimation problems we consider in later chapters share
basic properties with GLM’s. The techniques we introduce now will be
applied repeatedly throughout the text.

4.1 Applications

4.1.1 Health effects of particulate matter

Background

Largely through regulatory efforts, air quality in the United States has im-
proved considerably over the past three decades. Despite this improvement,
many researchers have observed significant health effects resulting from
current air pollution levels. Recent epidemiological studies have linked an
increase in particulate matter (PM) with increased mortality among the
elderly. Of primary concern is the impact of airborne particles that are
formed by the combustion of fossil fuels.1 In this section, we will consider
data collected from the city of Philadelphia over a 15 year period from Jan-
uary 1, 1974 through December 31, 1988. Statistics related to mortality, air
pollution levels and weather conditions were culled from publicly available
sources by a group of researchers at Johns Hopkins University and appear
in Kelsall, Samet, Zeger and Xu (1997) as well as Dominici, Samet and
Zeger (2000) and Dominici, McDermott and Hastie (2004). These authors
conducted a careful analysis of the data and proposed an additive smooth-
ing spline model for mortality. Our analysis will instead explore adaptive
schemes for knot placement.

For the 15 year period under study, complete nonaccidental mortality
figures are available. These have been stratified by age and cause of death.
In Figure 4.1 we present total daily mortality counts for the last three years
covered by the data, from December 31, 1985 through December 31, 1988,

1Other “secondary particles” are also formed from the sulfur and nitrogen dioxides
that are released during combustion.
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FIGURE 4.1. Total mortality in Philadelphia for 1985–1988. Peaks denote winter
months.

marking the dates December 31, 1986 and December 31, 1987 with vertical
lines. Notice that the peaks in mortality correspond to winter months. In
Figure 4.2 we divide the nonaccidental mortality data into three categories
based on the cause of death: cardiovascular disease (CVD), respiratory
disease (Resp), and “other.” These counts are then further stratified to
examine seasonal effects across three different age groups: those less than 65
years old, those between 65 and 75, and those older than 75). In Figure 4.2
we present boxplots of daily mortality counts, where each set is ordered by
season (fall, winter, spring and summer). The peak in the winter months
among the oldest members of the population is clear for all three causes of
death. The “other” category involves mainly the youngest age group, and
the seasonal effect is the weakest for this combination of factors. To explore
time trends in mortality, we now consider a spline model in which the total
deaths from all three causes are modeled as a smooth function of time and
separate indicator variables for the three age groups.

Poisson regression

As we are tracking counts, it is common to use a Poisson regression model
to capture the effects of the candidate predictors on mortality. Let Y denote
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FIGURE 4.2. Daily mortality counts stratified by season and cause of death.

daily mortality, and let X denote a vector of covariates. Set

p(Y = k|X = x) =
e−µ(x)µ(x)k

k!
, (4.1.1)

so that the conditional mean and variance of Y are given by

E(Y |X = x) = µ(x) and var(Y |X = x) = µ(x) . (4.1.2)

Following the programme from the previous chapter, we attempt to capture
the important features in µ(x) via (tensor product) splines. In this case,
however, we do not work directly with the mean function, but instead find
it more convenient to construct spline estimates of log µ(x). The major
ingredient of this so-called log-linear model is a linear space G with basis
functions B1, . . . , BJ , where each g ∈ G can be written as

g(x; β) = β1B1(x) + · · · + βJBJ (x)

for some vector β = (β1, . . . , βJ). Then, given data (X i, Yi), i = 1, . . . , n,
we evaluate members of G based on the log-likelihood

`(g) =
n∑

i=1

[− exp g(Xi) + Yi g(Xi) ] , g ∈ G , (4.1.3)

where we have substituted exp g(x) for µ(x) in (4.1.1) and have dropped a
constant that does not depend on g(x). As in the previous chapter, we let
ĝ = argmaxg∈G `(g) denote the maximum likelihood estimate. Writing the
log-likelihood in terms of β,

`(β) =

n∑

i=1

[
− exp

( J∑

j=1

βjBj(Xi)

)
+ Yi

J∑

j=1

βjBj(X i)

]
, (4.1.4)
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Type Variable

Weather1 Daily temperature
Daily dew point

Air Pollution2 Total suspended particles (PM10)
Sulfur dioxide (SO2)
Nitrogen dioxide (NO2)
Carbon monoxide (CO)
Ozone (O3)

Mortality3 Cardiovascular diseases
Respiratory diseases
Other

1 Source: Nation Weather Center
2 Source: Aerometric Information Retrieval Service, US EPA
3 Source: National Center for Health Statistics

TABLE 4.1. Summary of variables available in the JHU dataset. Data provided
by Francesca Dominici, Department of Biostatistics, Johns Hopkins University.

we can again write ĝ(x) = g(x; β̂) where β̂ = argmaxβ∈RJ `(β). Unfor-
tunately, there generally is no closed-form expression for the value of β

that maximizes the (4.1.4). By working with a transformation of µ(x), we
are able to derive a simple iterative scheme for finding β that makes use
repeated least squares fits. For the moment, however, this background is
sufficient to motivate our discussion of the mortality data.

Modeling mortality

In Table 4.1 we present a set of variables included in the JHU dataset.
Meteorological variables like average daily temperature are known to have
considerable impact on mortality, especially among the elderly. In Table 4.1
we also find several kinds of measurements that characterize daily pollution
levels. The most important is PM10, the concentration per cubic meter of
suspended particles with diameter greater than 10µm. Recent studies like
Dominici et al. (2000) have built additive models to isolate the relative
increase in mortality that can be expected from an increase of PM10 by
10 µgm−3. We apply a variant of the adaptive spline methodology discussed
in the previous chapter to identify both the important variables and their
functional form.

We consider the total nonaccidental mortality for the oldest group in
the study, those aged 75 or more. Of the 5479 days between January 1,
1974 and December 31, 1988, we have complete mortality, meteorological,
and air pollution data for n = 5254. We begin with a simple model using
each of the weather and air pollutant variables in Table 4.1 together with
a categorical variable for day of the week (7 levels), and season (4 levels).
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Coefficient SE z P -value

Intercept 3.1 3.0× 10−2 104.2 .00

Weather
Dew 2.3 × 10−3 6.6× 10−4 3.5 .00
Dew (lag) −1.6× 10−3 8.1× 10−4 −2.0 .05
Temp −1.2× 10−3 9.8× 10−4 −1.2 .22
Temp (lag) −3.4× 10−3 1.1× 10−3 −3.2 .00

Pollution
TSP 5.2 × 10−4 2.0× 10−4 2.6 .01
NO2 −6.0× 10−4 3.7× 10−4 −1.6 .11
SO2 1.1 × 10−3 4.6× 10−4 2.3 .02
CO 7.1 × 10−6 5.7× 10−6 1.3 .21
O3 1.4 × 10−3 3.6× 10−4 3.9 .00

Time
Day 1.4 × 10−2 8.3× 10−4 16.5 .00

...

TABLE 4.2. Initial fit to mortality. We have not reported the coefficients from
a 7-level factor representing day of the week and a 4-level factor representing
season.

We also included two lagged variables, averages of the previous three days
values for temperature and dew point. The maximum likelihood estimates
of the coefficients together with their standard errors are given in Table 4.2.
Notice that many of the effects are significant; the P -values were calculated
using approximate distributional results for the standardized coefficients
in a Poisson regression. We will have more to say about this in the next
section.

Much of the recent literature on mortality and particulate matter cen-
ters on correctly capturing weather effects and other slowly-varying but
unmeasured seasonal phenomena. For this reason, these studies often in-
clude a more elaborate effect of time than the simple linear term listed
in Table 4.2. To attempt to assess the possible deficiencies in the fit, we
consider the so-called Pearson residuals from the fit,

ri = [ Yi − exp ĝ(Xi) ] /
√

exp ĝ(Xi) , i = 1, . . . , n . (4.1.5)

The autocorrelation function computed for a time-series of these residuals
reveals significant structure at several lags, the implication being that the
fitted model is not rich enough, leaving out some component of variability
that is related to time. Next, recall that for a Poisson model, the conditional
variance of Y is the same as its mean (4.1.2). To examine this assumption,
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we consider the statistic

σ̂2 =
1

n − J

n∑

i=1

r2
i

where in this case the dimension of the selected spline space is J = 20.
Ideally, for large samples the value of σ̂2 should be close to one.2 In our case,
σ̂2 = 1.14 indicating again that there is an extra component of variability
unexplained by the model. In the literature on GLMs, this effect is known
as over-dispersion.

To try to make up for the time component and to illustrate an initial ap-
plication of splines in this context, we will introduce a natural cubic spline
in time. To be precise, let x be an index for the number of days since the
start of our data set, January 1, 1974. Then, following the simple recipe
given in the previous chapter, we build a space of natural cubic splines by
adding knots sequentially. At each step, we add the knot that creates the
greatest increase in the log-likelihood (4.1.3). In principle, this can be an
expensive operation. Unlike in the regression problems of the previous chap-
ter, introducing a new basis function means having to compute maximum
likelihood estimates, for which there are no closed-form solutions. Ignoring
the complexity of implementation at the moment, we first perform a very
direct search for new knots. As in Section 3.6, we place boundary knots at
the first and last day in our study and then add basis functions one at a
time. In Figure 4.3, we plot the results of our search. The first line consists
of the −2`(ĝt1) where ĝt1 is the MLE in the natural cubic spline space with
knots (0, t1, 5479). We take t̂1 to be the point at which this quantity is
minimized. The dashed line below this curve tracts −2`(ĝt2) where ĝt2 is
the MLE in the natural cubic spline space with knots (0, t̂1, t̂2, 5479). Pro-
ceeding in this fashion, we create nested spaces of splines G1 ⊂ G2 ⊂ · · · .

We can constrain the addition process using the concept of allowable

spaces introduced in Chapter 3. Our observations about variance and knot
spacing hold in the context of Poisson regression as well as for OLS. At
each step in the process we add the candidate basis function that causes
the greatest boost in the log-likelihood (or, equivalently, the greatest drop
in −2`) subject to these constraints. Starting from the simple model in
Table 4.2, we added terms to the natural spline model (again, with an
implicit pair of knots at the endpoints of the data) until we had added
15 knots. Given a sequence of spline spaces Gν with dimension Jν , ν =
1, 2, . . . , K, we select a model using the AIC-type criterion

AICα(ν) = −2`(ĝν) + αJν ,

2The Pearson goodness of fit statistic is given by
P

i
r2

i
and is known to have an

(asymptotically) χ2 distribution with n − J degrees of freedom.
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FIGURE 4.3. Stepwise addition of knots for an natural cubic spline in time. The
spline space was simply added to the fit in Table 4.2.

where ĝν is the maximum likelihood estimate in Gν . We set α = log n,
which corresponds to the Bayesian information criterion, BIC. We will dis-
cuss the derivation of this selection rule in the next section. The model in
Table 4.2 had an AIC MHH: Should AIC be BIC here? value of 6169. The
best model found in terms of AIC MHH: BIC? during the forward selection
process had a value of 6128 and involved 11 knots in time. This is only a
modest improvement. The knots were also somewhat evenly spaced over
the first half of the data, with three pairs very close together (separated by
just over 30 days). The total mortality for the age group we are consider-
ing has greater variability before the spring of 1980, an effect which might
explain the bulk of our added knots entering prior to this date.

In this setup, we have constrained the effect of TSP to enter the model
linearly; that is, our only adaptation has been through adding knots to a
cubic natural spline in the time index. This kind of model is often referred
to as semiparametric in the sense that we fix part of the structure in our
model (all of the variables in Table 4.1) and treat the remaining part as
an unknown function. In this setup, we can judge the impact that our
smooth component in time has on the effect of TSP. To make this precise,
suppose x0 and x1 are two values of our predictors that vary only in the
value of TSP. Given the log-linear structure of our model, we can easily
calculate the relative mortality for these two conditions as MHH: should

TSO be TSP here?

exp [ ĝ(x1) − ĝ(x0) ] = exp [ βTSO(TSO1 − TSO0) ] .
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Variable Type DF Coefficient

Intercept 1 1 3.04
TSP linear 1 0.0007
Dew point linear 1 0.001
Temp, lag spline 2 –

knot at 76
Time spline 7 –

knots at 2021, 2238,
2426, 2509, 2630, 5385

TABLE 4.3. A simple additive fit to the JHU data set.

In Dominici et al. (200,2004), MHH: 200 doesn’t seem right here inter-
est focuses on the percent mortality increase associated with MHH: should

TSO be TSP here? 1000βTSO. For the model in Figure 4.2, the increase in
mortality is 0.5%. As we add knots, this number changes, varying from 0.4%
to 0.7%, with the value for the 11 knot model being again 0.5%. MHH: I

don’t see that these percentages are correct. In particular, if

βTSO = 0.0007, then exp(1000βTSO) = exp(.7)
.
= 2.014, which translates

into over a 100% increase as I see it.

Now that the basic mechanism for knot adaptation is clear, we can extend
the reach of our procedure to include modeling similar to that followed for
the tree example in the previous chapter. That is, we will conduct full
stepwise addition and deletion of spline terms, where candidates are drawn
not just from the time index, but from any of the available variables in
Table 4.1. For simplicity, we again return to spaces of continuous, piecewise
linear spines. Since Dominici et al. (200,2004) MHH: 200 doesn’t seem

right here focus on additive models, we will also only consider additive
models. To guide the addition process, we made sure that a variable entered
linearly before we added spline basis elements; that is, the function xi was
in the model before terms of the form (xi − t)+ were added. Essentially, we
can follow the recipe in the previous chapter.

The final model consists of 12 basis functions and has an AIC MHH: BIC?

value of 5950. The separate components are displayed in Table 4.3. The ef-
fect of the lagged temperature variable changes at 77.7 degrees Fahrenheit.
Kelsall et al. (1997) also make use of a linear spline in lagged temperature,
but choose a breakpoint at 80 degrees after some exploratory fitting with a
cubic smoothing spline. Note that again, the effect of TSP enters linearly,
and the percent mortality increase associated with 1000βTSP is 0.7%. In
this case, the stepwise selection procedure determined that a linear effect of
TSP was sufficient, unlike the previous semiparametric modeling exercise
in which we forced it to be linear. The knots associated with the time com-
ponent has a cluster of knots near a run of missing values in the spring of
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1980. In part, the problem comes from the fact that we forced only 7 points
between candidate knots (following the advice in Section 3.6). Given the
regularity of the design in the time variable in all regions except for this
sequence of missing points, the forward selection method got “lost” follow-
ing spurious structure. We can partially repair this problem by increasing
the separation between candidate knots. Rather than pursue this in detail,
we will consider another solution.

As the time component of our model is meant to stand for seasonal effects
on mortality that are not captured by the other variables, we anticipate
a more “regular” effect. The greedy scheme has difficulty discovering the
effect of time in a bottom-up fashion, leaving unexplored a large fraction
of the space of candidate models. To alleviate this problem, we take as our
initial model a natural cubic spline having knots spaced equally in time:
15 knots corresponds to one knot per year, while 120 would allow for 8
knots per year. Starting from an initial fit in time, we then perform our full
stepwise scheme with the piecewise linear basis functions used in the fit for
Table 4.2. During deletion, we first restricted the removal process to just
the added covariate effects, leaving the initial spline model unchanged.

When we ran this algorithm, we noted that for the most part TSP ap-
peared at most linearly and in some cases was replaced by a different pol-
lution variable. To make consistent comparisons across the different initial
fits with time, we also forced TSP linearly into each of the models. In
Figure 4.4 we present the fitted time effects (including the intercept term,
setting all other variables to zero) for 3, 5, 15, 60, 90 and 180 equally spaced
knots, corresponding to one knot every 5 years, 3 years, 1 year, 3 months, 2
months and 1 month, respectively. The three uppermost curves correspond
to the three lowest density knot sets, while the lower curves correspond to
the highest density knot sets. The models found by stepwise addition and
deletion for the three low-density knot sets all resemble that in Table 4.2.
They involve a linear effect of dew point and a spline in lagged temperature
around 77 degrees. By contrast, the high-density knot sets involve a linear
effect of dew point with a single-knot spline term in lagged dew point, not
temperature. The pollution variable O3 also appears in these models, but
only linearly.

The BIC values for these six fits is smallest when we place one knot
every three years (a value of 5985). Unfortunately, this fit also leaves be-
hind considerable time series structure in the residuals. The largest model
(one knot per month, a total of 186 degrees of freedom in the model) has
relatively clean residuals. The value of σ̂2 for the largest model is 1.02, a
big improvement over our initial fit in Table 4.2. The percentage drop in
mortality associated with 1000βTSP varies for these six models from 0.7%
at its largest (least dense knots) to 0.5% at its smallest (most dense knots).

As a final elaboration of the models we have tried so far, we can consider
performing stepwise addition from an initial model dense with knots in
time, and then perform backward deletion on both the added variables as
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FIGURE 4.4. Comparing six fitted time effects. The upper curves correspond
to low-density knot arrangements, while the lower curves all have at least one
knot every three months. MHH: I find the lower curves too hard to read.

How about deleting the graph for knots every two months?

Variable Type DF Coefficient

Intercept 1 1 3.29
TSP linear 1 0.0008
Dew point linear 1 0.00002
NO2 linear 1 −0.0028
Dew × NO2 linear × linear 1 0.00005
Temp, lag spline 2

knot at 77
Time spline 23

TABLE 4.4. A simple MARS-like fit to the JHU data set.

well as the spline terms. For the model in Table 4.4, we started with 60
initial knots (4 breakpoints per year, and an initial linear effect of TSP),
and based on AIC selected a model with 36 knots. This was taken as our
starting point and then standard addition and deletion on the covariates
was performed.

The model in Table 4.4 has an BIC score of 5880, well below any fit this fit was run using in-
teractions; i need to re-
run it for just the addi-
tive model. sorry.

so far. In terms of covariates, this model introduces the concentration of
NO2 and its interaction with dew point. The percent increase in mortality
associated with 1000βTSP MHH: Something is missing here. 0.8%. The
autocorrelation function for the residuals from this model is between −0.03
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and 0.03 for up to 20 lags, indicating little unexplained structure in time.
In Section ?? we will return to this example and apply a cross-validation
technique to provide some guidance as to which of these models portrays
a reasonable picture of the health risks associated with TSP.

4.1.2 Obesity and urban sprawl

Background

The percentage of adults and children in the U.S. who qualify as either
overweight or obese has become the subject of great concern among health
professionals. Obesity contributes to higher rates of diabetes and cardio-
vascular disease, and it has been linked to an increased risk of cancer.
Technically, obesity is classified by a person’s body mass index or BMI.
This is calculated as the ratio of a person’s weight to the square of their
height

BMI =
Weight in pounds

(Height in inches)2
× 703 .

The Center for Disease Control has determined that people with BMI scores
below 18.5 are underweight, between 18.5 and 24.9 are normal, between 25
and 30 are overweight, and over 30 are obese. For example, for someone
who is 5′10′′, the overweight range is 174–209 pounds.3

Health professionals consider obesity to be a problem that rivals smok-
ing in terms of its overall impact on society. This has spurred a number of
researchers to investigate the underlying causes of obesity and, in partic-
ular, to consider what environmental conditions might be contributing to
the problem. Lopez (2004) suggests that Americans living in areas of urban

sprawl are at greater risk of becoming obese than those who live in more
densely developed areas. Does poor urban planning encourage lifestyles
that lead to obesity? Previously, Ewing, Schmid, Killingsworth, Zlot and
Raudenbush (2003) found that residents in sprawling urban centers tend
to rely more on automobiles and are less likely to walk during leisure time.
Both Lopez (2004) and Ewing et al. (2003) base their studies on data col-
lected by an annual telephone survey of adults conducted by the Center for
Disease Control.

In 2000, the Behavioral Risk Factor Surveillance System (BRFSS) con-
tacted over 180,000 adults in the U.S. and collected information on over 200
different health-related attributes. From each respondent’s (self-reported)
height and weight, their BMI was computed and a binary variable indicat-
ing whether or not this person was obese was derived. Lopez (2004) then
considers the seven possible covariates listed in Table 4.1.2. MHH: My .ps

version here printed out as Table 4.1.2 rather than as Table 4.5

3It should be added that BMI does not measure body fat and hence is only one piece
of information about a person’s health profile.



4.1 Applications 215

Age in years
Sex 0/1, 1=F
Hispanic 0/1, 1=Y
AfAmerican 0/1, 1=Y
Education 1-6, ordinal
Income 1-8, ordinal
Sprawl Index defined in (4.1.6)

TABLE 4.5. Covariates used from the BRFSS survey to predict obesity status.

here. Any clues? Six of these are taken directly from the BRFSS survey
and are known to have a relationship with obesity. While education and
income are categorical variables, their labels represent increasing years of
education and annual income, respectively. Lopez (2004) introduces these
factors as linear terms rather than as separate indicator functions represent-
ing each level. Because we are going to apply a flexible spline methodology,
we have also decided to leave them as single covariates; if certain levels of
these factors turn out to be important, knot adaptation can separate out
the effect.

To quantify the concept of sprawl, Lopez (2004) considers the population
density in census tracts, defining high and low population density regions;
those tracts with more than 3,500 people per square mile are said to have
high density. The cutoff value is set at the point where people in the tract
begin using forms of transportation other than automobiles. With this no-
tion of population density, Lopez (2004) constructed a sprawl index (SI) as
follows:

SI =
Percentage of population in high density tracts

Percentage of population in low density tracts
. (4.1.6)

MHH: This discussion seems inverted to me. In particular, it seems

to me that the most dense urban areas should have high SI scores,

not low SI scores, since their numerators would be high and their

denominators low. The index was then normalized so that it ranged be-
tween 1 and 100. For example, in California the most dense urban areas
include Los Angeles and Orange Counties (scores less than 15); while the SI
was high for Sonoma County (a score over 50). In New York State, the coun-
ties surrounding New York City had the lowest values of SI (roughly 6.7),
while Dutchess County exhibited significantly more sprawl (scoring over
70). Hudson County in New Jersey was the most densely packed region of
the country (with a score of about 4) and Calhoun County in Alabama
was maximally sprawling with a score of 100. Using data from the 2000
Census, Lopez (2004) computed the SI for 330 metropolitan regions in the
U.S. and combined these scores to the 2000 BRFSS survey responses. The
resulting data set will be used to consider the association between obesity
and sprawl.
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Logistic regression

We now create a model for the simple binary outcome classifying people as
either obese or not. In this setting, it is common to employ logistic regres-

sion to assess the effect of variables like sprawl. Let Y denote a person’s
weight status and let X be a vector of the covariates listed in Table 4.1.2.
Then, we express the probability that a person is obese as a function of the
covariates

P (Y = y|X = x) = π(x)y(1 − π(x))1−y , y ∈ {0, 1},

so that the conditional mean and variance of Y are given by

E(Y |X = x) = π(x) and var(Y |X = x) = π(x)(1 − π(x)) .

Our goal is to learn the important features of the risk function π. As
was the case with Poisson regression, we will find it easier to work with a
transformation of π rather than with π itself. Here, we will model

logit(π) = log
π

1 − π
. (4.1.7)

We choose a model for logit(π) again using some linear space G with basis
B1, . . . , BJ , where each g ∈ G can be expressed uniquely as a sum

g(x; β) = β1B1(x) + · · ·βJBJ(x)

for a coefficient vector β = (β1, . . . , βJ). Inverting (4.1.7), we have that

π(x) =
exp g(x)

1 + exp g(x)
.

Then given observations (X1, Yn), . . . , (Xn, Yn), we evaluate members of
G based on the log-likelihood

`(g) =

n∑

i=1

(
Yi log

exp g(xi)

1 + exp g(xi)
+ (1 − Yi) log

1

1 + exp g(xi)

)

=
n∑

i=1

(
Yig(xi) − log [1 + exp g(xi)]

)
. (4.1.8)

As was done for Poisson regression, we let ĝ = argmaxg∈G `(g) denote the
maximum likelihood estimate of logit(π). Expressing the log-likelihood in
terms of β, we have that

`(β) =

n∑

i=1

(
Yi

∑

j

βjBj(xi) − log

[
1 + exp

(∑

j

βjBj(xi)

)])
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Coefficient Relative risk

(Intercept) −0.866
Age 0.006 1.006
Sex −0.086 0.918

Hispanic 0.128 1.137
AfAmerican 0.665 1.944

Education −0.147 0.863
Income −0.048 0.953
Sprawl 0.002 1.002

TABLE 4.6. Coefficients from a simple logistic regression fit to the seven covari-
ates. MHH: Shouldn’t Relative risk be odds ratio here?

and ĝ = g(x; β̂) where β̂ = argmaxβ∈RJ `(β). While there is no closed
form expression for this maximizer, it is possible to derive a simple iterative
scheme to find β. We will describe it in more detail in the next section. As
with Poisson regression, it will consist of a series of weighted least squares
fits.

Modeling obesity

The BRFSS is a complex survey with a stratified sampling plan. The CDC
has a weighting scheme to account for differences in coverage and response
rates. In this first look at the data, we are going to ignore these two effects
and instead highlight the methodology. At the end of this section we will
consider the use of weights in our analysis and indicate how it affects our
underlying adaptive procedure. In terms of the actual results, the effects
change in magnitude but the overall picture, the important variables and
their functional form, remains the same. Do we think introducing

the weighted results now
is too much?

Following Lopez (2004), we first drop all of the records for people liv-
ing outside of the 330 metropolitan areas under study. This yields 108,661
records. We then remove all respondents with missing values leaving us
with 90,639 observations. (In a thorough treatment of these data, we should
consider the impact that so many missing values might have on our fit.)
Roughly 20% of the people represented in this sample are classified as obese.
A larger proportion of African Americans (32%) and Hispanics (22%) were
classified as obese. Next, we fit a simple logistic regression taking g to to
be a linear function of the seven covariates. In Table 4.1.2 MHH: In my .ps

version this shows up as Table 4.1.2, not Table 4.6. Any clues?

, we present the coefficients from this fit as well as the relative risk MHH:

shouldn’t this be odds ratio instead of relative risk?. For each
covariate, we compute the latter by considering conditions x0 and x1 and
evaluating

π(x0)

π(x1)
= exp [ĝ(x0) − ĝ(x1)]
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FIGURE 4.5. Percentage of the population that is obese as a function of SI, the
index of sprawl.

MHH: shouldn’t the left side of the above equation be the odds

ratio instead of the relative risk? For each row of Table 4.1.2 MHH:
This also showed up as Table 4.1.2. (excluding the intercept), we take
x0 and x1 to differ by 1 in a single covariate, and the relative risk MHH:

odds ratio? measures the effect of a unit change in that variable.4 Lopez
(2004) demonstrates that each of these coefficients is strongly significant,
albeit the relative risk MHH: odds ratio? associated with regions of urban
sprawl is quite small MHH: ? . He argues that even small effects are im-
portant when you consider the size of the population at risk. In Figure 4.5
we present a plot of the percentage of the population that is obese as a
function of sprawl. Here we have divided into 25 groups based on evenly
spaced quantiles of SI MHH: Please clarify..

Starting from this simple model, we first consider an additive fit to the
data. Here, we apply the simple additive methodology outlined in Sec-
tion 3.4.3. As with the Poisson regression example, we again work with
linear splines. A greedy algorithm introduces basis functions one at a time,
adding simple linear effects before spline elements. After performing step-
wise addition to a model of size 20 was found MHH: please clarify, we
performed stepwise deletion and chose the best model according to AIC
MHH: BIC?. In Table 4.7 we present the separate effects in the final model.

4These results differ somewhat from those in Lopez (2004) because we have not
incorporated the survey weights. However, each of our risk figures are within 5% of his
weighted estimates, with the single exception of Sex; the coefficient has the right sign,
but the risk is 40% higher with our calculation.
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FIGURE 4.6. The effect of age on the probability of being obese. Estimates from
the simple additive model (solid line) and the fit including interaction terms
(dashed line).

Note that two factors, age and income involve spline terms with 4 knots
and 1 knot, respectively. The actual curve for age is plotted in Figure 4.6
(solid line). The dependence on income is very similar to a straight line
with negative slope and we omit the figure. The effect of age has a slow
increase until the early 20s, a faster rate of increase through the 50s, and
then a decrease through the 60s and beyond. Presumably, the increased
health risks associated with obesity manifest themselves and explain this
drop.

While the additive model is an improvement over the model fit by Lopez
(2004) in terms of AIC MHH: BIC?, the coefficients of the linear terms are
not dramatically different. We have lost some of effect of sprawl, reducing

Type DF Coefficient
(Intercept) 1 1 −1.617

Age spline 5 –
Sex linear 1 −0.095

Hispanic – – –
AfAmerican linear 1 0.608

Education linear 1 −0.159
Income spline 2 –
Sprawl linear 1 0.0014

TABLE 4.7. Fitting an additive model to the BRFSS obesity data.
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Type DF

Age × Education composite 2
Age × Sex simple 1

Income × Education composite 2
Income × Sex composite 2

Income × AfAmerican simple 1
AfAmerican × Sex simple 1

TABLE 4.8. Modeling with pairwise interactions.

the relative risk associated with SI from 1.002 to 1.00144. Further improve-
ments to the model can be made by considering interactions. We next per-
formed the fitting routine outlined in Section 3.4, allowing for interactions
involving at most two factors. Again we fit with linear splines and again
we entertained a model consisting of at most 25 terms (experiments with
larger maximal model sizes did not change the final model fit). In this case,
the model minimizing AIC contained the additive model as a subset; the
only spline terms involved age and income and these had the same knot
sequences as were found for the additive case. The curve associated with
the effect of age is plotted with a dashed line in Figure 4.6. A bivariate plot
of the interaction between Age and Education is given in Figure 4.7.

Notice that every variable except SI is involved in some kind of interac-
tion. This makes it easy to compare the relative risks MHH: odds ratios?

associated with sprawl across all three of the models we have considered so
far: the simple logistic fit and the additive and interaction spline models.
As we better capture the structure of the other covariates, we have reduced
an already small effect. From an initial relative risk of 1.002, we drop it to
1.00144 and finally to 1.00146 for the interaction model. At this point it
seems sensible to question whether these results are practically significant.

4.2 GLMs and approximation spaces

4.2.1 Conditional Likelihood for a GLM

We begin by introducing a large class of likelihoods that will be used to
capture the conditional distribution of Y given some value of the input
vector. In the case of the normal linear model, Y was (conditionally) a
Gaussian random variable. Here, for fixed values of the parameters θ and
φ, we consider univariate densities (or probability functions in the case of
discrete data) of the form

p(y, θ, φ) = exp
(θy − b(θ)

a(φ)
+ c(y, φ)

)
, (4.2.1)
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FIGURE 4.7. Surface estimate of the interaction between Age and Income. MHH:
Here education seems to have a positive effect, but in Table 4.7 it

has a negative effect, which seems more plausible.

where y, θ and φ and the ranges of a, b and c are real-valued. The function
a is taken to be strictly positive over the range of possible values of φ. To
make this concrete, we revisit the two examples from the previous section.
First, the probability function for the Poisson distribution with mean λ can
be written as

λye−λ

y!
= exp(y log λ − λ − log y!), y ∈ {0, 1, 2, . . .}.

After setting θ = log λ and φ = 1, the individual components of (4.2.1) are
easily seen to be given by

a(φ) = 1, b(θ) = eθ and c(y, φ) = − log y!. (4.2.2)

The Bernoulli distribution is our second example from the previous sec-
tion. Let π denote the probability of success on a given trial. Then the
corresponding probability function is given by

πy(1 − π)1−y = exp
(
y log

π

1 − π
+ log(1 − π)

)
, y ∈ {0, 1}

Eyeing expression (4.2.1), we set

θ = log
π

1 − π
and φ = 1,
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so that

a(φ) = φ, b(θ) = log(1 + eθ) and c(y, φ) = 1. (4.2.3)

We refer log[π/(1 − π)] as the logit of π.
In addition to the Poisson and Bernoulli and general binomial distribu-

tions, the family (4.2.1) also includes the gamma, Gaussian, and inverse-
Gaussian densities. We can say quite a lot about this class, and we begin
with some elementary moment results. For fixed values of the parameters
θ and φ, let Y have a distribution of the form (4.2.1). Then

1 =

∫
p(y, θ, φ) dy =

∫
exp

(θ y − b(θ)

a(φ)
+ c(y, φ)

)
dy,

where we take the integral to be a sum if we are dealing with discrete data.
Then, as b(θ) and a(φ) do not depend on y, we can multiply both sides by
exp[b(θ)/a(φ)]. Taking logarithms, we arrive at the equality

b(θ)

a(φ)
= log

∫
exp

( θy

a(φ)
+ c(y, φ)

)
dy. (4.2.4)

Now, assuming we can differentiate both sides with respect to θ, we derive
an expression for the expectation of Y :

b ′(θ) =

∫
y exp

( θy

a(φ)
+ c(y, φ)

)
dy

∫
exp

( θy

a(φ)
+ c(y, φ)

)
dy

=

∫
y exp

(θy − b(θ)

a(φ)
+ c(y, φ)

)
dy

=

∫
y p(y, θ, φ) dy ,

from which we see that
E Y = b ′(θ) . (4.2.5)

Taking another derivative of (4.2.4) and simplifying much as we did above,
we find that the variance of Y is given by

varY = b ′′(θ) a(φ) . (4.2.6)

Using the definitions of θ, b and a for the Poisson and binomial families, it
is straightforward to verify these two moment expressions directly. Because
of (4.2.6), we refer to φ as a dispersion parameter. It is also common to
refer to θ as the natural or canonical parameter.

The densities given by (4.2.1) are said to specify the random component

of a GLM in the sense that this family is used to describe the conditional
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distribution of Y given some value of the input vector X. In a classical
GLM, the dependence of Y on X is captured by letting the parameter θ
vary with x:

θ = θ(x) , x ∈ X . (4.2.7)

Substituting this expression in (4.2.1), we can write the conditional distri-
bution of Y given X = x as

p(y, θ(x), φ) = exp
(yθ(x) − b(θ(x))

a(φ)
+ c(y, φ)

)
. (4.2.8)

To see that this is sensible proposition, we consider a somewhat more fa-
miliar member of the GLM family, the normal linear model. Rewriting the
density of a Gaussian random variable with mean µ and variance σ2, we
arrive at

1√
2πσ2

exp
(
− (y − µ)2

2σ2

)
= exp

(yµ − µ2/2

σ2
− y2/σ2 + log(2πσ2)

2

)

for y ∈ R. Here, θ = µ and φ = σ2, so that the individual components of
(4.2.1) are easily seen to be given by

a(φ) = φ, b(θ) = θ2/2 and c(y, φ) = −y2/σ2 + log(2πσ2)

2
.

Therefore, the parameter θ appears as the mean of the normal family
and φ as its variance. By letting θ vary with x, we create the estimation
setup studied in the previous chapter, where the covariates X influenced
the distribution of the response Y only by shifts in mean. Flexible linear
spaces were used to characterize the effect of the covariates, and functional
ANOVA models provided us with a formalism for exploring the (mean) re-
lationship between Y and collections of functions of X. In the next section,
we extend these ideas to a GLM’s.

4.2.2 Canonical linear regression and approximation spaces

Using the moment relationship (4.2.5), we can write the conditional means
and variances for a GLM as

µ(x) = E(Y |X = x) = b ′
(
θ(x)

)
(4.2.9)

and
σ2(x) = var(Y |X = x) = a(φ)b ′′

(
θ(x)

)
. (4.2.10)

Given these expressions, we have a choice. In the previous chapter, we
modeled the conditional mean of Y directly (in that case µ was denoted by
the unknown regression function f), making use of adaptively determined
linear spaces to highlight its essential features. In the case of a GLM, it
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can be difficult numerically to work directly with the conditional mean.
For example, the structure of the Poisson model requires that µ(x) be non-
negative for all values of x; while for the binomial model π(x) must map to
the open interval (0, 1). These range constraints can complicate analysis.

A computationally attractive alternative to the conditional mean is the
canonical parameter θ(x). Comparing the relationships above with (4.0.1),
we see that unlike the simple linear model, the conditional mean of Y is
related to θ via a transformation. Recalling our assumption that a be a
positive function, we know from the second expression above that b ′′ is
positive, and hence b ′ is strictly increasing. This means that an inverse
(b′)−1 exists. For the Poisson and binomial cases, (b′)−1 is given by

λ = eθ and π =
eθ

1 + eθ
, (4.2.11)

respectively. Therefore, a model for θ can be transformed into a model for
the conditional mean. Notice that in each case, θ is allowed to range over
the entire real line. Therefore, from a numerical perspective, we prefer to
work with θ over the conditional mean.

As in the previous chapter, we introduce a linear approximation space G

for use as a source of possible descriptions for θ(x). Therefore, by substi-
tution into the (conditional) GLM density, we have that

p(y, g(x), φ) , g ∈ G . (4.2.12)

Then, given observations (X1, Y1), . . . , (Xn, Yn), we construct the likeli-
hood

`(g) =

n∑

i=1

log p (Yi, g(Xi), φ) , g ∈ G . (4.2.13)

Let G have a basis B1, . . . , BJ so that any g ∈ G can be written in the
form

g(x) = g(x; β) = β1B1(x) + · · · + βJBJ(x) ,

for some choice of the vector β = (β, . . . , β). Then, maximizing (4.2.13)

over g is equivalent to finding β̂ = argmaxβ `(β) and taking g(x; β̂) as an

estimate of θ(x). Finding β̂ is more difficult than finding an OLS projec-
tion. In fact, we will see in the next section that, under certain conditions,
the maximizer can be obtained by a series of OLS projections. To recover
an estimate for the conditional mean µ(x), we simply apply the inverse

transformation µ̂(x) = b ′
(
g(x; β̂)

)
, which we know must exist given the

discussion above.
The function (b′)−1 is referred to as a link function and is commonly

denoted by the symbol η. It is said to transform the conditional mean of
Y to a scale on which the underlying estimation problem is simpler. To
further connect with standard terminology, we have introduced the linear
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space G as a tool for capturing the features of the structural or systematic

component of a GLM. Recall that the conditional densities (4.2.1) spec-
ify the random component, having a given conditional mean and variance.
The function η then provides a link between the systematic and random
components in a GLM. So far we have only discussed one link function, the
so-called natural link (b′)−1. In general, it is common to either let compu-
tational considerations or the specifics of the problem under study dictate
the appropriate transformation η. In the next section, we will discuss this
approach in more depth, introducing different link functions for the case of
binomial data.

4.2.3 Link functions

The exponential family form (4.2.8) describes the distribution of Y given
some value of the covariates X, with the associated conditional mean µ
(4.2.9) and variance σ2 (4.2.10). We have referred to this as the random
component of a GLM. In the previous section, we identified the canoni-
cal parameter θ(x) as a sensible candidate for modeling. However, given
any link function η, we can define the systematic component of a GLM
to be given by f = η(µ). We then introduce linear approximation spaces
G appropriate for capturing the features evident in f . The motivation for
favoring one link η over another depends on the underlying modeling prob-
lem. For binary data, an alternative to the logit of π is the so-called probit

link

η(π) = Φ−1(π) , (4.2.14)

where Φ(·) is the Gaussian cumulative distribution function. For this type
of data, the inverse of any continuous, cumulative distribution function
having support on the entire real line can be used as a link. As we will see,
the logit can be recommended on the basis of its favorable mathematical
properties, simplifying both theoretical analysis and numerical algorithms.
We will return to these issues in Section 4.3.

The function f defined in (4.2.14) is the target of our analysis, and we
take as an estimate some member of a linear space G. The fitting criterion
will be based on the likelihood of the data rather than OLS. This requires
expressing the conditional distribution of Y in terms of f rather than the
canonical parameter θ. If we choose some arbitrary η, then the density
(4.2.12) is more complicated. The function

η−1
(
(b′)−1 (g)

)

is now on the scale of θ, and substituting this into (4.2.1) yields the rather
clumsy expression

p
(
y, η−1

(
(b′)−1(g)

)
, φ
)

, g ∈ G .
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where p is defined in (4.2.1). Then, given observations (X1, Y1), . . . , (Xn, Yn),
we construct the likelihood according to (4.2.13). Let G have a basis B1, . . . , BJ

so that any g ∈ G can be written in the form

g(x) = g(x; β) = β1B1(x) + · · · + βJBJ(x) ,

for some choice of the vector β = (β1, . . . , βJ ). Then, maximizing (4.2.13)

over g is equivalent to finding β̂ = argmaxβ `(β) and taking g(x; β̂) as an
estimate for f .

It should be clear the simplifications that take place when η = (b ′)−1,
and hence this choice is referred to as the canonical link because the target
of our estimation schemes f becomes the canonical parameter θ. In fact,
such problems are often referred to as canonical linear regression models.
The functions given in (4.2.11) are the canonical links for the Poisson and
binomial families, respectively. These can be obtained by directly comput-
ing (b ′)−1 from the expressions in (4.2.2) and (4.2.3).

4.3 Estimation and adaptation

In the previous section, we specified the dependence of a response Y , with
conditional distribution of the form (4.2.1), by modeling the canonical pa-
rameter for the family as a function g ∈ G. Except in special cases like
the normal distribution (or when G is saturated; that is, when the dimen-
sion of the restriction of G to the design set X ′ = {X1, . . . , Xn} equals
#(X ′)), there is not a closed form expression for the function g that max-
imizes the likelihood (4.2.13). This is true not only for GLMs, but also for
every other modeling context introduced in the remaining chapters of this
text. Therefore, we have decided to collect several generic tools for comput-
ing maximum likelihood estimates and performing stepwise addition and
deletion of variables. We will use this framework to derive the adaptive
fitting schemes employed in the Poisson and logistic regression examples
introduced at the beginning of the chapter.

4.3.1 Quadratic approximations

In both this and the previous chapters, we have introduced linear approx-
imation spaces G, and our attention has focused on first finding a suitable
estimate ĝ ∈ G. Then, through simple stepwise procedures, we construct
chains of candidate spaces in which each approximation space G1 differs
from its predecessor G0 by the addition or deletion of one or more basis
functions. To be computationally feasible, we have to conduct these funda-
mental operations quickly; any single model might include tens of variables,
and at each step in the selection process there are typically many candi-
date basis elements that can be added or deleted. For simple linear models,
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we were able to derive fast updating schemes that let us entertain a large
number of alterations to any single model efficiently.

Maximum likelihood estimation

We now consider working with a generic likelihood function `(g) for g in a
J-dimensional space G. As we have done several times, this likelihood can
also be expressed in terms of the coefficient vector β, where

g = g(x; β) = β1B1(x) + · · · + βJBJ(x) .

Suppose that our log-likelihood function is reasonably smooth in some
neighborhood of β0. We can apply a multivariate Taylor expansion to ap-
proximate `(β) in a neighborhood around β0. The quadratic expansion
around β0 involves first and second partial derivatives of `(β) evaluated at
β0. Define the J-vector ∇`(β) and the J × J matrix H(β) by

[∇`(β)]j =
∂

∂βj

`(β) and [H(β)]jk =
∂2

∂βj∂βk

`(β) .

The matrix H(β) is called the Hessian; its negative I(β) = −H(β is re-
ferred to as the Fisher information matrix. Recall from Chapter 2 that the
quadratic expansion Q0 around β0 is given by

Q0(β) = `(β0) + [∇`(β0)]
T(β −β0)−

1

2
(β −β0)

TI(β0)(β −β0). (4.3.1)

Now, if H(β0) is negative definite (or, equivalently, if I(β0) is positive
definite), the quadratic function Q0 has a unique global maximum. This
occurs at the point

β1 = β0 + [I(β0)]
−1∇`(β0). (4.3.2)

The update from β0 to β1 is the essential ingredient in the Newton–
Raphson method for finding the maximum of the likelihood function `(β).
Given some starting value β0, we iteratively apply these updates creating
a sequence of values β0, β1, β2, . . . , where

βk+1 = βk + [I(βk)]−1∇`(βk). (4.3.3)

If the log-likelihood function is well behaved, then the successive βk should

get closer and closer to the maximum likelihood estimate β̂. For example, if
the log-likelihood is strictly concave and we have a reasonably good starting
value, Newton–Raphson is guaranteed to converge to β̂.5

5With slight alterations to this scheme, we can guarantee that our sequence will
converge to bβ no matter where we start. See the material in Chapter 2 related to step-

halving.
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Addition of a single basis function

In our adaptive methodology, spline basis functions are added sequentially
so as to create the greatest drop in the log-likelihood. The number of candi-
dates we could consider at each step would be severely limited if we had to
conduct Newton–Raphson iterations for each. Instead, we again turn to the
quadratic Taylor expansion to approximate the change in log-likelihood by
introducing another basis function. Using (4.3.1) and (4.3.2), we find that

Q0(β1) = `(β0) +
1

2
[∇`(β0)]

T[I(β0)]
−1∇`(β0) .

Therefore, the increase in the quadratic approximation Q0 in moving from
β0 to β1 is given by

2[Q0(β1) − Q0(β0)] = [∇`(β0)]
T[I(β0)]

−1∇`(β0). (4.3.4)

If β0 is the maximum likelihood estimate β̂0 in a subspace G0, then the
right side of this expression is known as the Rao (score) statistic. It is used
for testing the hypothesis that the “true” value of β lies in G0.

To see why this is helpful for stepwise addition of basis functions, suppose
our candidate model is G1, which consists of a single basis function addition
to G0, and suppose that the coefficient vector associated with G1 places
this basis function in position J + 1. Let β̂0 correspond to the MLE in the

subspace G0, so that [β̂0]J+1 = 0. With this as our starting value, we can
use (4.3.4) to approximate the increase in log-likelihood by considering the
larger space G1. To compute this test statistic, we do not have to perform
any more iterations, but instead compute a few extra inner products. We
will see this more clearly in the context of GLMs in the next section.

Deletion of a single basis function

In the last chapter, we saw that deleting spline basis functions was equiv-
alent to imposing one or more linear constraints on the coefficients. If we
choose to delete a basis function that has the smallest decrease in log-
likelihood, then we are again forced into performing a set of Newton–
Raphson iterations for each candidate. Again, we turn to the quadratic
approximation to help simplify the task.

Let Q be the quadratic approximation to the log-likelihood function
about the maximum likelihood estimate β̂ of the coefficient vector cor-
responding to a basis of G, and let G0 be the subspace of G corresponding
to those coefficient vectors such that Aβ = 0, where A has full rank. Then
the maximum of Q corresponding to G0 occurs uniquely at

β̂00 = β̂ − I−1(β̂)AT[AI−1(β̂)AT]−1Aβ̂ . (4.3.5)

To verify (4.3.5), observe that Aβ̂00 = 0. Moreover, 0 = ∇Q(β̂) =

∇Q(β̂00)−I(β̂)(β̂− β̂00), so β̂− β̂00 = I−1(β̂)∇Q(β̂00). By the Lagrange
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multiplier theorem, there is a vector λ such that ∇Q(β̂00) = ATλ. Thus

β̂ − β̂00 = I−1(β̂)ATλ, so Aβ̂ = A(β̂ − β̂00) = AI−1(β̂)ATλ and hence

λ = [AI−1(β̂)AT]−1Aβ̂ and β̂ − β̂00 = I−1(β̂)AT[AI−1(β̂)AT]−1Aβ̂,
which yields the desired result.

Applying (4.3.5) to (4.3.1) we find that the decrease in the quadratic

approximation Q in going from β̂ to β̂00 is given by

2[Q(β̂) − Q(β̂00)] = (Aβ̂)T[AI−1(β̂)AT]−1Aβ̂. (4.3.6)

The right side of (4.3.6) is known as the Wald statistic. It is used for testing
the hypothesis that β ∈ G0 under the assumption that β ∈ G.

From the standpoint of variable deletion, we see that an application of
Wald’s test for each of the candidate basis functions involves a fixed number
of computations involving A, but no further Newton–Raphson iterations.
Once it is decided which basis function to delete, (4.3.5) can be used to
obtain the starting value for maximum likelihood estimation corresponding
to G0.

4.3.2 Application to GLMs

Recall the conditional probability for a response Y under a GLM based on
a linear model G

p(y, g(x), φ) = exp
(y g(x) − b(g(x))

a(φ)
+ c(y, φ)

)
, g ∈ G . (4.3.7)

Given observations (X1, Y1), . . . , (Xn, Yn), the log-likelihood is given by

`(β) =
1

a(φ)

n∑

i=1

[
Yi

∑

j

βjBj(xi) − b

(∑

j

βjBj(xi)

)]
+ · · · ,

where we have suppressed terms that do not involve β. Clearly, maximizing
over β does not involve φ, and we can temporarily ignore the dispersion
effect. (This happens in the ordinary linear model as well; we can estimate
the coefficients independently of the noise variance. We then have

[∇`(β)]j =

n∑

i=1

[
YiBj(xi) − Bj(xi)b

′

(∑

j

βjBj(xi)

)]

=
∑

i

YiBj(xi) −
∑

i

µ(xi; β)Bj(xi), (4.3.8)

where we have set µ(x; β) = b′(
∑

j βjBj(x)) following (4.2.9). Let B be
the n × J design matrix having entries [B]ij = Bj(xi), Y be the column
vector of observations Y1, . . . , Yn, and µ(β) the column vector of means
µ(x1; β), . . . , µ(xn; β). Then we can rewrite (4.3.8) as

∇`(β) = B
T(Y − µ(β)) , (4.3.9)
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FIGURE 4.8. Comparing the Rao statistic with the actual rise in log-likelihood
for stepwise addition of knots in time for the Poisson regression example.

which starts to resemble some of the components from the normal equations
for simple linear models.

The information matrix I(β) = −H(β) is given by

[I(β)]jk =

n∑

i=1

Bj(xi)Bk(xi)b
′′

(∑

j

βjBj(xi)

)

=
1

a(φ)

∑

i

Bj(xi)Bk(xi)σ
2(xi; β),

where σ2(x; β) = a(φ)b′′(
∑

j βjBj(x)) according to (4.2.10). Let W denote

the n × n diagonal matrix having diagonal entries [W (β)]ii = σ2(xi; β).
Then

I(β) =
1

a(φ)
B

TW (β)B. (4.3.10)

Combining (4.3.9) and (4.3.10), we find that the Newton–Raphson iteration
is given by

βk+1 = βk + a(φ)(BTW kB)−1
B

T(Y − µk)

where W k = W (βk) and µk = µ(βk). The update that carries us from
βk to βk+1 is basically a weighted least squares fit operating on the ob-
servations Y adjusted by the mean at the previous step µk, where the
weights depend on the conditional variances σ2

k, also from the previous
step. Correspondingly, the overall fitting procedure is referred to as itera-

tively reweighted least squares.
We now turn to the Rao and Wald statistics for GLMs. Following (4.3.4)

and (4.3.6), we have that

2[Q(β1) − Q(β0)] = a(φ)[Y − µ(β0)]
T
B[BTW (β0)B]−1

B
T[Y − µ(β0)]



4.3 Estimation and adaptation 231

for the Rao statistic and

2[Q(β̂) − Q(β̂00)] =
1

a(φ)
(Aβ̂)T

(
A[BTW (β̂)B]−1AT

)−1
Aβ̂

for the Wald statistic.
To judge the closeness of these approximations, we consider again step-

wise selection of basis elements for the time effect in the particulate mat-
ter study. In Figure 4.3, we presented the actual rise in log-likelihood for
adding a new cubic spline term. In Figure 4.8, we use the relationship in
Chapter 3 explicitly to enter a single basis function and employ the Rao
approximation.
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4.4 A general methodology


