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5
Polychotomous Regression and
Multiple Classification

The previous two chapters discussed polynomial spline methodologies for
linear models and generalized linear models. In the next several chapters
we discuss such methodologies for several other models. While Chapters 3
and 4 provided ample methodological details, they were not focused on one
particular implementation. This is in part because on the one hand there
is no single publically available implementation on which we have worked
ourselves, and on the other hand it is fairly straightforward to design one’s
own routine in a statistical language such as R or S-Plus.

That situation is somewhat different for the problems discussed in Chap-
ters 5–9: the problems in these chapters (multiple classification, density
estimation, hazard regression, spectral density estimation, and bivariate
function estimation) are more specialized. Over the years we have devel-
oped a variety of methodologies for these problems, and consequently our
discussion focuses on our implementations. As a result, these chapters pro-
vide somewhat more implementation details and somewhat less general
discussion. It is possible to read any of these chapters independently of the
other chapters.

5.1 An example

5.1.1 The vowel data

One of the goals in speech recognition is accurately to identify the text
that is spoken, based on a processed set of acoustic signals. Typically, an
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vowel word vowel word

i heed O hod
I hid C: hoard
E head U hood
A had u: who’d
a: hard 3: heard
Y hud

TABLE 5.1. Vowels occurring in the vowel recognition data set.

intermediate step in this recognition process is to predict which phoneme
is spoken at which time. Phonemes are basic sounds that, informally, corre-
spond to something like a letter. The English language has approximately
fifty phonemes (the exact number depends on which phonetic alphabet is
used). Predicted phonemes can be combined into words and phrases, often
using methods like hidden Markov chains. Bourlard and Morgan (1994)
describes a speech recognition system that, for each time instance, uses for
each phoneme the probability of its being spoken. Kooperberg, Bose, and
Stone (1997) and Kooperberg and Stone (1999) analyze a large database
from the area of speech recognition using the Polyclass and PolyMARS
methodologies to estimate these probabilities. Both methodologies are de-
scribed in this chapter; Polyclass is a polychotomous (multiclass logistic)
regression methodology, and PolyMARS is a multi-response implementa-
tion of the multivariate regression approach discussed in Section 3.4.

While actual speech recognition data sets are often too large to be useful
as examples, smaller data sets, where the goal is to predict which sounds
is spoken at a particular instance, are good practice problems for many
classification algorithms. We now focus on one data set from the area of
speech recognition that has often been used as a practice problem. The
data are due to Robinson (1989). They have also been analyzed by Hastie,
Tibshirani, and Buja (1994). Fifteen different speakers (eight males, seven
females) each spoke 11 different vowel sounds 6 times, for a total of 990
records. The 11 different vowels are summarized in Table 5.1. The speech
signals were low pass filtered at 4.7kHz and then digitized to 12 bits with a
10kHz sampling rate. Twelfth-order linear predictive analysis was carried
out on six 512 sample Hamming windowed segments from the steady part
of the vowel. The reflection coefficients were used to calculate 10 log-area
parameters, giving a 10 dimensional input space.

In the analysis of the data that is presented later in this chapter, we
will use the data for four of the male speakers and four of the female
speakers as training data and the data for the remaining four male and
three female speakers as test data. For the initial data analysis presented
here we combined all data. In Figure 5.1 we show boxplots for four of the
features for each of the eleven vowels. From this plot it is immediate that
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feature 1 feature 2

i I E A a: Y O C: U u: 3:

feature 3

i I E A a: Y O C: U u: 3:

feature 10

FIGURE 5.1. Boxplots for four of the features for the vowel data.

features 1 and 2 will probably be very useful in distinguishing the different
phonemes as the values of these features differ considerably from vowel to
vowel. The usefulness of features 3 and 10 is less clear. The boxplots for the
remaining six features look much like those for features 3 and 10. For many
of the boxplots there seems to be a group of “outliers”; see, for example,
the feature 2 boxplots for “i”, “O” and “C:”. More often than not, such a
group of outliers consists of the six repetitions of that vowel by one of the
speakers.

Figure 5.2 shows the cases for five of the vowels as a function of features
1 and 2. From this figure it is already clear that a simple combination of
these two features will likely not be sufficient for good discrimination, as
“A” and “Y” seem very mixed up. It would appear that “i” and “u” are
more easily distinguished from these other two vowels.

5.1.2 Background

The multiple classification problem is well studied in statistics. Typically,
there is a qualitative random variable Y that takes on a finite number K
of values, which we refer to as classes. We want to predict Y based on
a random vector X ∈ RM . Many methods have been proposed for this
problem. See Mardia, Kent, and Bibby (1979) for a discussion of “classi-
cal” discriminant analysis methods. One of the popular modern multiple
classification techniques is CART (Breiman, Friedman, Olshen, and Stone
1984), which approaches the multiple classification problem using recursive
partitioning techniques that have strong links to nonparametric regression.
Hastie, Tibshirani, and Buja (1994) introduce flexible discriminant analy-
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FIGURE 5.2. Scatterplot for five of the classes as a function of features 1 and 2.

sis, which combines nonparametric regression techniques with discriminant
analysis. In computer science and engineering, neural networks (see Ripley
1996 and Cheng and Titterington 1994 for overviews). and Support Vector
Machines (Vapnik 1995; Vapnik 1998) seem to be the methods of choice.

As is well known, the optimal classification rule predicts Y to be the
class with the largest posterior probability: arg maxk P (Y = k|X). Most
of the popular classification methods try to find this class without pre-
cise estimation of the conditional class probabilities. However, there are
many problems in which direct classification does not suffice. For example,
Kooperberg, Bose, and Stone (1997) discuss the approach by Bourlard and
Morgan (1994) to the phoneme recognition problem, which requires accu-
rate estimation of the probability of a phoneme being in any particular
class. Clearly, pure multiple classification methods are not useful in such
applications.

On the other hand, multiple logistic regression (polychotomous regres-
sion) techniques have been used for a long time (see Hosmer and Lemeshow
1989). In a polychotomous regression model we do obtain an estimate of
all the conditional class probabilities. In Chapter 4 we discussed the use
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of splines for logistic regression. In this chapter we will extend the logis-
tic regression model to polychotomous regression problems with K > 2.
In particular, the Polyclass model, which we discuss in this chapter, uses
linear splines and their tensor products for fitting a regression model to
data involving a polychotomous response variable. An advantage of this
approach is that Polyclass yields not just a predicted class, but also esti-
mates of the conditional class probabilities for each possible value of X .
Many of the issues that were relevant in the application of polynomial
splines to generalized regression, as discussed in Chapter 4, are also rele-
vant for Polyclass. In addition, we discuss a variety of issues that are unique
to the multiple classification problem, and we also discuss computational
issues involving polychotomous regression models with large data sets and
very many parameters.

5.1.3 A Polyclass model for the vowel data

In this section we present a Polyclass model that was fit to the vowel
data for eight of the speakers (training set). Validation of this model is
obtained by evaluating the predictions of the Polyclass model on the data
for the seven remaining speakers. In Figure 5.3 we show how test cases for
which the values of features 3 through 10 are at the median of the value of
these features for the training set would be classified. Figure 5.4 shows the
estimated probabilities of selected classes for these values of the covariates.

In Table 5.2 we show how the cases in the test set are predicted. Overall,
222 out of 462 (48%) instances were predicted incorrectly, but the results
differ dramatically over the classes: “i” and “O” are incorrectly classified
25% of the time, while “E”, “a:”, “Y”, and “3:” are misclassified 60% of
the time. Interestingly, it appears to depend on the method of classification
which vowels are hard and which are easy. We generated the same table
as Table 5.2 for linear discriminant analysis (LDA). While this method
had an overall misclassification error on the test set of 56% the second
worst vowel for LDA was “O”, which was misclassified 74% of the time.
Hastie, Tibshirani, and Buja (1994) lists test set error rates for a number
of classification methods, the better of which have error rates of between
42% and 52%1

When a particular case was misclassified, often the class with the second
highest estimated probability was the correct one. Table 5.3 shows that in
90% of the cases the correct class was among the three with the highest
probability. From Table 5.4 it appears that there is a substantial difference
in how Polyclass performs on the cases of particular individuals in the test
set, suggesting that there may be a substantial speaker effect. In Section

1The appropriate comparison excludes the methods that were listed by Hastie, Tib-
shirani, and Buja (1994) as Best reduced-dimension We did not standardize features.
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FIGURE 5.3. Classification map as a function of features 1 and 2 when all other
features are equal to their median value.

5.3 we will see that this is a prime reason why the training set error rate
(5%) is so much lower than the test set error rate.

5.2 The Polyclass methodology

5.2.1 The Polyclass model

Consider a qualitative random variable Y that takes on a finite number K
of values. We may think of Y as ranging over K = {1, . . . ,K}. Suppose the
distribution of Y depends on features x1, . . . , xM , where x = (x1, . . . , xM )
ranges over a subset X of RM . Let x now be distributed as a random vector;
that is, consider the random pair (X, Y ), where X is an X -valued random
vector and Y is a K-valued random variable. Suppose that P (Y = k|X =
x) > 0 for x ∈ X and k ∈ K. Let ψ(x) be any function on X and set

θ(k|x) = logP (Y = k|X = x) − ψ(x), x ∈ X and k ∈ K.
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FIGURE 5.4. Probabilities as a function of features 1 and 2 when all other features
are equal to their median value for four of the classes.

Then

P (Y = k|X = x) =
exp θ(k|x)∑
k exp θ(k|x)

, x ∈ X and k ∈ K. (5.2.1)

Thinking of θ(1|x), . . . , θ(K|x) as unknown functions, we refer to (5.2.1) as
the Polyclass model; when K = 2 it is referred to as the logistic regression
model, which was discussed in Chapter 4. Observe that the model in (5.2.1)
is nonidentifiable in that it does not involve the function ψ. In order to
obtain an identifiable model, we add the restriction that

θ(K|x) = 0, x ∈ X . (5.2.2)

With this restriction, (5.2.1) is now an identifiable model; indeed,

θ(k|x) = log
P (Y = k|X = x)

P (Y = K|X = x)
, x ∈ X and k ∈ K.

Let p be a positive integer and let G be a p-dimensional linear space of
functions on X with basis B1, . . . , Bp.
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true predicted class
class i I E A a: Y O C: U u: 3:
i 76 21 2 0 0 0 0 0 0 0 0
I 0 50 48 0 0 0 0 0 0 0 2
E 0 0 38 33 12 0 0 0 0 0 17
A 0 0 7 69 0 24 0 0 0 0 0
a: 0 0 0 0 38 36 21 0 0 0 5
Y 0 0 0 10 31 38 0 0 0 0 21
O 0 0 5 0 14 0 79 0 0 0 2
C: 0 0 0 0 0 0 48 52 0 0 0
U 2 0 2 2 0 0 10 14 50 12 7
u: 12 33 0 0 0 0 0 5 7 43 0
3: 0 0 5 5 5 24 5 0 17 2 38

TABLE 5.2. Classification results (in percents) for the initial Polyclass model on
the test set of the vowel recognition data.

rank 1 2 3 4 5 6 7 8 9 10 11
percent 51.9 27.9 10.0 2.4 5.2 2.4 0.0 0.2 0.0 0.0 0.0

TABLE 5.3. Rank of the probability of the correct class for the initial Polyclass
model on the test set of the vowel recognition data.

speaker 1 2 3 4 5 6 7
gender male male male male female female female

percent wrong 39 39 33 58 53 61 53

TABLE 5.4. Percent of misclassified vowels per speaker in the test set.

Consider the model

θ(k|x) = θ(k|x; β) =

p∑

j=1

βjkBj(x), x ∈ X and k ∈ K; (5.2.3)

here βk = (βk1, . . . , βkp)
T for 1 ≤ k ≤ K − 1, βK = 0, and β is the p(K −

1)-dimensional column vector consisting of the entries of β1, . . . ,βK−1,

which ranges over B = Rp(K−1). Setting βK = 0 enforces the identifiability
restriction (5.2.2).2 Correspondingly, we set

P (Y = k|X = x; β) =
exp θ(k|x; β)

exp θ(1|x; β) + · · · + exp θ(K|x; β)

= exp
(
θ(k|x; β) − c(x; β)

)
(5.2.4)

2Except for floating point roundoff errors the Polyclass and PolyMARS methodologies
discussed in this chapter are invariant under permutations of the values of Y .
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for β ∈ B, x ∈ X , and k ∈ K, where

c(x; β) = log[exp θ(1|x; β) + · · · + exp θ(K|x; β)], β ∈ B and x ∈ X .

Now
logP (Y = k|X = x; β) = θ(k|x; β) − c(x; β)

for β ∈ B, x ∈ X , and k ∈ K. Thus

∂

∂βk1j1

logP (Y = k|X = x; β)

= Bj1(x)
[
δk1k − exp

(
θ(k1|x; β) − c(x; β)

)]

for β ∈ B, x ∈ X , k ∈ K, 1 ≤ k1 ≤ K − 1, and 1 ≤ j1 ≤ p, where δk1k = 1
for k1 = k and δk1k = 0 for k1 6= k. Consequently

∂2

∂βk1j1∂βk2j2

logP (Y = k|X = x; β)

= Bj1(x)Bj2(x)
[
− δk1k2 exp

(
θ(k1|x; β) − c(x; β)

)

+ exp
(
θ(k1|x; β) − c(x; β)

)
exp

(
θ(k2|x; β) − c(x; β)

)]
(5.2.5)

for β ∈ B, x ∈ X , 1 ≤ k1, k2 ≤ K − 1, and 1 ≤ j1, j2 ≤ p. Since∑
k exp

(
θ(k|x; β)−c(x; β)

)
= 1, it follows easily from the Cauchy–Schwarz

inequality that the Hessian matrix of logP (Y = k|X = x) is negative semi-
definite for β ∈ B, x ∈ X , and k ∈ K.

5.2.2 Fitting Polyclass models

For fixed G, β can be estimated using the method of maximum likelihood.
In particular, let (X1, Y1), . . . , (Xn, Yn) be independent random pairs, with
each pair having the same joint distribution as (X , Y ). The log-likelihood
function corresponding to the Polyclass model (5.2.3) is given by

`(β) =
∑

i

[θ(Yi|Xi; β) − c(Xi; β)], β ∈ B, (5.2.6)

which is a concave function on B.
For numerical reasons, we add a small penalty term to the log-likelihood

function (5.2.6). Specifically, set

`ε(β) = `(β) − ε
∑

i

K∑

k=1

u2
ik, (5.2.7)

where

uik = θ(k|X i; β) −
1

K

K∑

k′=1

θ(k′|Xi; β), k ∈ K. (5.2.8)
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The penalized log-likelihood function, in which we have typically used ε =
10−6, is guaranteed to have a finite maximum. Without the penalty term,
however, it is possible that, when the likelihood function is maximized,
some β̂kj equals ±∞. This can happen, for example, if Bj(Xi) = 0 for all
i such that Yi = k.

The effect of this penalty term is usually negligible when |β̂kj | < ∞ for
all j and k; that is, in our experience the estimates of the parameters with
and without the penalty parameter are extremely close, while the estimates
of the conditional class probabilities are indistinguishable.

The maximum (penalized) likelihood estimate β̂ can be found using, for
example, a Newton–Raphson algorithm, as described in Section 2.5.3.

5.2.3 Model selection

For Polyclass we use the same allowable spaces as in the Two-factor interac-
tion models in Section 3.4; the basis functions are linear splines and depend
on at most two variables. In particular the candidate basis functions are:

• xk , k = 1, . . . , d;

• (xk − tk,m)+ if xk is already a basis function in the model;

• xk1xk2 if xk1 and xk2 are already basis functions in the model;

• xk1 (xk2 − tk2,m)+, if xk1xk2 and (xk2 − tk2,m)+ are in the model;

• (xk1−tk1,m1)+(xk2−tk2,m2)+ if xk1 (xk1−tk1,m1) and (xk1−tk1,m1)+xk2

are in model.

As in the multiple regression approach described in Section 3.4, we get a
sequence of models using stepwise addition followed by stepwise deletion
of basis functions. During the stepwise addition stage, for Polyclass, it is
infeasible to compute Rao statistics for each possible location of a new knot,
so we use a heuristic algorithm to find a good location for a new knot (see
Section 5.5.2). In Section 5.5.1 we discuss a default rule for the maximum
number pmax of basis functions in a model.

During the combination of stepwise addition and stepwise deletion, we
get a sequence of models indexed by ν, with the νth model having pν(K−1)
parameters. For Polyclass the methods of selecting one model from this
sequence that we consider are the (generalized) Akaike information criterion
(AIC), an independent test set, and cross-validation.

AIC

Let l̂ν denote the fitted log-likelihood for the νth model, and let AICα,ν =

−2l̂ν + αpν(K − 1) be the Akaike information criterion with penalty pa-
rameter α for this model. We select the model corresponding to the value
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ν̂ of ν that minimizes AICα,ν (see Chapter 4). As before, we recommend
choosing α = logn as in the Bayesian information criterion (BIC) due to
Schwarz (1978).

Test set

Consider an independent test set (XTS
i , Y TS

i ), 1 ≤ i ≤ nTS. For the νth

model let β̂ν be the maximum likelihood estimate of β and set Ŷ TS
i,ν =

argmaxk P (Y = k|X = XTS
i ; β̂ν) (see 5.2.4) as the most likely class for

case i out of the test set. We can now estimate the risk (probability of

misclassification) by R̂TS
ν =

∑
i ind(Ŷ TS

i 6= Y TS
i )/nTS.

Given a finite number of estimates of the optimal classifier, we choose the
model having the smallest estimated risk. The minimum value of R̂TS

ν is
an estimate of the risk for classifying a new object using the final Polyclass
model. This estimate is slightly biased downwards, since the test set is used
to minimize the risk.

Cross-validation

Alternatively, cross-validation can be used to estimate the risk. Here we first
randomly divide the cases into c ≥ 2 approximately equally-sized subsets.
Then the following procedure is carried out for j = 1, . . . , c (see Breiman,
Friedman, Olshen, and Stone 1984):

• Fit a sequence of Polyclass models, as described in Section 5.2.3, to
all cases not in the jth subset.

• For each α > 0 select the model ν̂jα that minimizes AICα,ν .

• For each α compute the loss rj(α) =
∑

ind(Ŷi 6= Yi), where the sum
is over the cases in the jth subset (which were not used to fit these
models).

For every α we compute the cross-validated loss R(α) = n−1
∑c

j=1 rj(α).
Let α̃ be the geometric mean of the endpoints of the interval of values of α
that minimizes R(α). We proceed by fitting a sequence of Polyclass models
to all data, using AIC with penalty parameter α̃ to select the model.

Note that minR(α) is a slightly optimistic (downward biased) estimate
of the risk for classifying a new object using the final Polyclass model.

5.3 Further analysis of the vowel data

The Polyclass model for the vowel data that was discussed in Section 5.1.3
was selected using AIC based on the data for the eight training set speakers.
The model involved 12 basis functions, which are summarized in Table 5.5.
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B1(x) = 1 B7(x) = (x1 + 2.930)+
B2(x) = x1 B8(x) = (x2 − 1.492)+
B3(x) = x2 B9(x) = (x4 − 0.574)+
B4(x) = x4 B10(x) = (x8 − 0.676)+
B5(x) = x5 B11(x) = x1x2

B6(x) = x8 B12(x) = x5x8

TABLE 5.5. Basis functions for the Polyclass model for the vowel data that was
selected using AIC.

This model was optimal for α between 4.98 and 6.45; since n = 528, the
default value of α was log 528 = 6.27.

When we use ten-fold cross validation, R(α) is minimized for α between
0.25 and 0.29, for which R(α) = 42, a cross-validation loss estimate of
about 8%. With α this small Polyclass selected the largest model that was
fit. This model had 20 basis functions and a test set loss of 221 or 48%.
The fitted average test set log-likelihood for the cross validated model is
−4.49, which is much worse than the fitted average test set log-likelihood
for the AIC model of −2.88.

Given the data structure, a more sensible way to do cross-validation for
this example would be each time to leave out one of the eight speakers in
the training set and fit a Polyclass model to the remaining seven speakers,
otherwise proceeding as if this is regular eight-vold cross validation. Now
R(α) is minimized for α between 2.82 and 2.87, for which R(α) = 246, a
cross-validation loss estimate of about 47%. With this value of α, Polyclass
selected a model with 17 basis functions. This model performs marginally
better than the other two in test set misclassification (46%), and it is
halfway between the other two in average test set log-likelihood (−3.87). It
is more remarkable that for this model the cross-validated estimate of the
loss is very close to the actual test set loss.

Finally, we can “cheat” a little and select the model that has the small-
est test set loss. This turns out to be the model with 18 basis functions.
However, the average test set log-likelihood is not very good (−4.34). Ac-
tually, if we used the test set to select the model with the best test set
log-likelihood we would pick a model with only four basis functions, a mis-
classification rate of 52% and an average test set log-likelihood of −1.39.
All models are summarized in Table 5.6.

As we mentioned several times, when analyzing the vowel data we are left
with the impression that the enormous discrepancy between the training
set and the test set results, as well as the very low average test set log-
likelihood, is caused by the large speaker to speaker variation. To verify
this, we randomly redivided the 990 cases into a training set of 528 cases
and a test set of 462 cases, allowing some records from a speaker to end
up in the training set and the others to end up in the test set. We then
refit the Polyclass models using the four different selection mechanism used
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number average
selection of basis misclassification error log-likelihood
mechanism functions training CV test training test

AIC 12 4.9% – 48.0% −0.17 −2.88
10-fold CV 20 0.0% 8.0% 47.8% −0.02 −4.49
8-fold speaker CV 17 0.2% 46.8% 46.1% −0.04 −3.87
test set misclass. 18 0.0% – 44.8% −0.03 −4.34
test set log-lik. 4 46.8% – 51.8% −1.34 −1.39

TABLE 5.6. Summary statistics for Polyclass models that were selected for the
vowel data.

number average
selection of basis misclassification error log-likelihood
mechanism functions training CV test training test

AIC 10 16.7% – 21.2% −0.38 −0.60
10-fold CV 16 3.2% 15.9% 17.7% −0.13 −0.55
test set misclass. 16 4.7% – 11.9% −0.13 −0.38
test set log-lik. 16 4.7% – 11.9% −0.13 −0.38

TABLE 5.7. Summary statistics for Polyclass models that were selected for the
rerandomized vowel data. Note that the 16 basis function model for the 10-fold
CV selection was fit during the stepwise deletion, while those for the test set
selection were fit during the stepwise addition.

before: AIC, 10-fold CV, using the test set to minimize misclassification
rate, and using the test set to maximize log-likelihood (the 8-fold speaker
based cross validation no longer makes sense). The results are summarized
in Table 5.7. As can be seen when comparing this table with Table 5.6, the
speaker to speaker variation indeed influences the results considerably. The
differences between training and test set are now much more reasonable,
as is the average test set log-likelihood.

A feature that sets Polyclass apart from many other classification meth-
ods is that it gives not only an estimate of the class, but also estimates
of the conditional class probabilities that are positive and add up to 1.
Figure 5.5 plots the estimated probability that a case is a particular vowel
grouped in bins of size 0.1 on the horizontal axis and the fraction of cases
with that probability that correspond to the correct vowel on the vertical
axis. Note that every case contributes 11 observations to this graph: one
per candidate vowel. We note that the graph for the rerandomized data on
the right-hand side is close to the ideal straight line (fraction true class) =
(estimated probability) for both the test and the training set. However, for
the original data the estimates of probabilities that are larger than, say, 0.8,
seem to be upwards biased, as the fraction in the true class is considerably
lower than the estimated probability.
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FIGURE 5.5. Fraction of vowels that correspond to the true class versus the
estimated probability. The data have been binned in bins of size 0.1

5.4 Applying Polyclass to large data sets

5.4.1 The fruit data

At the check-out counters of grocery stores, clerks typically have to type
in a code to indicate which types of fruit or vegetables are being bought.
NCR, a leading manufacturer of check-out machines, is developing tools to
assist clerks by suggesting which type of produce is lying on the scale. A
technique they explored makes use of the color reflection of the produce.
In brief, a light source is installed under the scale in the check-out stand,
and the power-spectrum of the reflected light is captured. Based on this
spectrum (as well as possible additional information regarding the shape of
the produce), the goal is to indicate which produce is likely to be currently
laying on the scale.

We received power spectra from NCR on approximately 100 different
types of produce. Spectra were computed on produce that were bought
during three different shopping trips at grocery stores in Atlanta, GA. The
spectra were computed using two different devices. For our analysis we use
only the data that was collected on one of the two devices, as the two devices
differed considerably in their characteristics. Spectra were computed at 51
different wavelengths from 450 to 700nm, wavelengths that are all in the
visible range. Each power spectrum was normalized, as the overall level of
the spectrum primarily reflects the amount of light present.

The number of spectra that we have for each type of produce ranges from
16 to 144, with about two thirds of the classes having over 100 spectra. We
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FIGURE 5.6. Median power spectra for ten different types of produce.

randomly divided the data into a test set containing one third of the data for
each shopping trip and each produce type and a training set containing the
remainder. In Figure 5.6 we show the pointwise medians over the training
set of the spectrum for ten different types of produce, six of which are
primarily green, three of which are primarily red, and one which is primarily
yellow. In Figure 5.7 we show the individual spectra for the 96 samples of
red delicious and 96 samples of mustard greens in the training set. Based on
these graphs it seems clear that it will not be hard to distinguish between
primarily red, primarily yellow, and primarily green types of produces, but
that it may be much harder to distinguish among the types of the same
color. We also notice that at least one power spectrum of a red delicious
went astray. Such cases have been removed from the data set.

Analysis of the data on ten types of produce

The subset of ten types of produce summarized in Figures 5.6 and 5.7 is
a particularly hard subset of types of produce; distinguishing between the
six green types of produce is almost impossible, while many of the types of
produce that are not among the ten selected are fairly easily distinguished
from each other.

Before applying Polyclass to a larger part of the fruit data, we stud-
ied its behavior on the ten types of produce for which the median curves
were shown in Figure 5.6. As the 51 predictors for this data are extremely
highly correlated and there is no particular interest in the predictors them-
selves, it makes sense to consider transformations of the predictor space
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FIGURE 5.7. Power spectra for the red delicious and the mustard greens in the
training set.

before applying Polyclass (or, for that matter, any classification algorithm).
Transformations that we considered were:

• using as predictors a smaller number of averages of the spectrum over
consecutive wavelengths, and estimates of the derivative of the power
spectrum based on differences of untransformed predictors;

• projecting the 51 predictors on a smaller number of B-spline functions
in wavelength;

• projecting the predictors on the principal components of the predic-
tors of the training set.

We found that the first transformation improved the Polyclass results
slightly over using the untransformed predictors while the second possi-
bility did not improve results at all. The largest improvement over using
the raw predictors was achieved when the predictors were projected on the
principal components. Fig 5.8 shows the first four principal components;
clearly these are related to different primary colors.

We applied Polyclass with 10-vold cross-validation to the training data.
The selected model had ten basis functions. Only the first six principal
components were involved in the Polyclass model. Overall 360 out of 478
(75.3%) pieces of produce in the test set were correctly classified. Table
5.8 shows the classification results on the test set. It is obvious from this
data that distinguishing between the various green vegetables is indeed the
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FIGURE 5.8. The first four principal components for the training set on ten types
of produce.

challenge in this data set. As the intended application of this technology
is to alert clerks when they mistyped a produce code, it may be sufficient
if the correct class is not the most likely posterior class, but if it is one of
the most likely classes, For our model, the correct class is in 92.5% of the
cases among the three classes with the highest fitted probabilities, and in
93.1% of the cases, the fitted probability of the correct class is above 0.1.

A larger subset of the fruit data

In the remainder of this section, we will focus on the subset of the 66 types
of produce that have 125 samples or more. The resulting training set has
ntr = 6188 cases, the resulting test set has nts = 3092 cases. This is not

a particularly large data set, but still it poses considerable computational
difficulties as there are K = 66 classes, so that for every basis function
we need to estimate 65 parameters. For a model with, say, p = 40 basis
functions this yields a coefficient vector β of length 2600, and a Hessian
with 3.4 million unique elements. To evaluate the Hessian once, we need
O(p2K2ntr) operations, which is approximately 1010 for the problem size
mentioned.

As mentioned before, this is not a particularly large data set. In Kooper-
berg and Stone (1999) we discuss a data set from the area of speech recog-
nition with 153,426 cases, 81 predictors and 45 classes (further referred to
as the “phoneme data”). For this data set models with as many as 1000
basis functions were considered. In this situation, the Hessian would have
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yellow squash 48 0 0 0 0 0 0 0 0 0
red delicious 0 45 0 1 0 0 0 0 0 0
red bell pepper 0 0 47 0 0 0 0 0 1 0
rome apple 0 3 0 47 0 0 0 0 0 0
broccoli 0 0 0 0 46 0 1 3 0 0
green leaf lettuce 0 0 0 0 0 28 5 2 2 6
turnip greens 0 0 0 0 0 6 17 9 8 2
mustard greens 0 0 0 0 1 5 8 24 5 3
parsley 0 0 0 0 1 5 9 8 27 6
spinach 0 0 0 0 0 4 8 1 5 31

TABLE 5.8. Test set classification results of applying Polyclass to a subset of ten
types of produce for the fruit data.

approximately 1 billion unique elements, and computing the Hessian would
require 1014 operations. The fifth international conference on data mining
and knowledge discovery in 1999 (KDD99), had a data mining competition
for which the data set (related to computer security) had approximately
5,000,000 training records and 3,000,000 test records, 40 predictors and five
classes. In general, modern data bases make it possible to generate huge
data sets. In this section we will focus on the fruit data, as the relatively
modest size of that data set allows us to compare various approaches to
dealing with larger data sets.

The larger fruit data set is still sufficiently small that we can apply
Polyclass to it. The resulting model, selected using AIC, contained 18 basis
functions, while the largest model that was fit had 20 basis functions. This
required 30 hours of CPU time on the computer on which we carried out
the computations3 Selection of the model using cross-validation is clearly
out of the question since this would require us to run the basic Polyclass
algorithm 11 times (for ten cross-validation runs and a final run). The fact
that the largest model that was considered contained only two more basis
functions than the selected model clearly suggests that we should have
considered models with more basis functions. Clearly, this was not really
feasible.

3A Sun ULTRA-II with a 250 mhz processor and 1.8 gigabyte RAM.
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We postpone discussing the results on the fruit data until Section 5.4.5,
as we will be able to compare different approaches to dealing with this data
set at that time.

5.4.2 Analysis of cpu-time required for large data sets

The two activities in the “standard” Polyclass algorithm that require the
most cpu time are parameter estimation using maximum likelihood, im-
plemented via a Newton–Raphson algorithm, and computation of the Rao
statistics during the stepwise addition stage of the algorithm. There are
several factors that influence the number of floating point operations, and
thus the cpu time, that are required to apply the Polyclass algorithm to
large data sets:

ntr the number of cases in the training set;
K the number of classes;
M the number of predictors;
pmax the maximum number of basis functions fit.

The computations that, for large problems, require the largest number of
operations are the computation of the Hessian during the Newton–Raphson
iterations and the computation of the K extra columns of the Hessian
for the Rao statistics. In particular, the number of operations that are
required per element of a Hessian is approximately 2ntr: one multiplication
to compute the contribution of one case (5.2.5) based on earlier computed
terms, and one addition over all cases in the training data set.

A full Hessian during the Newton–Raphson iterations has approximately
p2K2/2 unique elements, and typically the number of Newton–Raphson
iterations that is required to fit a model is approximately 44. Thus, we
require about

4 ×
p2K2

2
× 2ntr = 4p2K2ntr (5.4.1)

operations to fit a model with p basis functions. During the process of
stepwise addition and deletion we need to fit each model of size p =
1, . . . , pmax−1 twice, and we need to fit the model of size pmax once. Thus,
in total we require approximately

pmax−1∑

p=1

8p2K2ntr + 4p2
maxK

2ntr ≈
8

3
p3
maxK

2ntr

floating point operations to fit all models.
The additional columns of a Hessian for Rao statistics have approxi-

mately pK2 unique elements. In our experience, the number of Rao statis-
tics that is computed when the current model has p basis functions is O(p).

4This is the number of iterations required to get fairly close to the MLE. To get really
close quite a few more iterations would be needed.
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In particular, over a range of problems M + 4p appears to be a reasonable
approximation to the number of Rao statistics that is being computed.
Thus, for computing all Rao statistics for the addition of a basis function
to a model with p basis functions, we require approximately

(M + 4p) × pK2 × 2ntr

operations. As we need to compute Rao statistics for the addition of a basis
function to models with p = 1, . . . , pmax−1 basis functions, the computation
of all Rao statistics requires approximately

pmax−1∑

p=1

(Mp+ 4p2)K2ntr ≈

(
M

2
+

4pmax

3

)
p2
maxK

2ntr

floating point operations.
In Table 5.9 we summarize how long this would take on the same single

processor computer on which we ran the large fruit data. As can be seen
from this table, for problems like the phoneme data or the KDD99 data
using Polyclass directly is infeasible.

Quasi-Newton optimization

Clearly, one possibility for reducing the amount of cpu time required is to
use another optimization algorithm. The two other algorithms that imme-
diately come to mind are quasi-Newton methods and conjugate gradient
methods. Conjugate gradient methods, discussed further in Section 5.4.4,
are not appropriate when Rao statistics need to be computed, since the con-
jugate gradient method does not yield a Hessian matrix, which is needed
for the computation of Rao statistics.

Quasi-Newton methods do yield an approximate Hessian matrix. For the
quasi-Newton method second derivatives are not computed, but are approx-
imated by differences between the first derivatives at consecutive iterations
of the algorithm. Essentially, during the iterations a working Hessian ma-
trix is maintained, which at each iteration is altered by adding a rank two
matrix to the inverse of the working Hessian. The two most commonly
used algorithms are the Davidon-Fletcher-Powell (DFP) and the Boyden-
Fletcher-Goldfarb-Shanno (BFGS) updating formulas (Kennedy and Gen-
tle 1980). A disadvantage of quasi-Newton algorithms is that they still
require storage of the O(p2K2) working Hessian matrix, which can become
substantial, especially when K is large, as is the case for the fruit data and
the larger phoneme data.

Using a quasi-Newton method would be attractive if we could also use
a simple updating formula to compute the extra columns of the Hessian
needed for the Rao statistics. Unfortunately, in our experience, this does not
work, probably because the extra columns can be updated only once, which
is not enough to attain a high enough precision. An alternative approach
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number of operations for approximate
data set ntr M K pmax Rao statistics NR iterations total cpu time
fruit data 6188 51 66 20 6 × 1011 6 × 1011 1 × 1012 8 hours

40 5 × 1012 3 × 1012 8 × 1012 3 days
phoneme data 153426 81 45 350 4 × 1016 2 × 1016 5 × 1016 50 years

1000 8 × 1017 4 × 1017 1 × 1018 1000 years
KDD99 data 5000000 40 5 100 3 × 1014 2 × 1014 5 × 1014 6 months

500 4 × 1016 2 × 1016 6 × 1016 60 years

TABLE 5.9. Required cpu time for applying Polyclass to some large problems (cpu time reflects approximately a Linux machine with
a 2.4gHz processor).
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is to use the working Hessian part of the larger Hessian matrix for the
computation of Rao statistics, but to compute the additional columns of the
Hessian using exact second derivatives. The disadvantage of this approach
is that there is no reduction in the amount of cpu time required for the Rao
statistics. This means that while a reduction of the cpu time is possible,
this reduction will not be an order of magnitude, since about 50% of the
cpu time is spent on computing the Rao statistics. In addition, the number
of iterations required for a quasi-Newton algorithm is much larger than
that required for a full Newton–Raphson algorithm. Thus, this approach
would not allow us to use Polyclass on substantially larger problems. In
addition, even this smaller reduction of cpu time comes at the price of less
accurate Rao statistics.

We thus note that both the computation of Rao statistics and the es-
timation of the parameters. require a lot of cpu time. In the rest of this
section we will consider alternatives both to the selection of basis functions
using Rao statistics and to the fitting of models using Newton–Raphson
that require less cpu-time.

5.4.3 PolyMARS: A least squares approximation of the

addition process

Using least squares regression with a 0-1 response variable is often seen as
a poor man’s version of logistic regression. Clearly the nonlinear binomial
error structure is not taken into account properly and the fitted “probabil-
ities” may not be between 0 and 1. But it is easy and fast. PolyMARS, a
least squares approximation to the addition process of Polyclass, based on
the Two-factor interactions model described in Section 3.4 is similarly quick
and dirty. We have two computational advantages: the nonlinear problem
becomes a linear problem, and, the design matrix is not of order p2K2, but
only of order p2.

To be able to apply Polyclass to large data sets we considered the fol-
lowing least squares approximation to the stepwise addition process when
dealing with such data sets: Let Zi, 1 ≤ i ≤ n, be the column vector
of length K, whose kth element is ind(Yi = k). The estimate β̂ of β is
obtained by minimizing

V (β) =
∑

i

∑

k

[Zik − θ(k|Xi; β)]2, (5.4.2)

where θ(k|Xi; β) =
∑p

j=1 βjkBj(X i). The selection of the new basis func-

tion is carried out by finding a function Bp that minimizes V (β̂) given the
existing basis functions B1, . . . , Bp−1. This approximation of the stepwise
addition part of Polyclass model selection reduces the cpu time required by
several orders of magnitude for large problems. See below for details. Note
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that if in (5.4.2) K = 1 and the Zi1 are not binary we are exactly left with
the Two-factor interactions algorithm in Section 3.4.

To speed up the calculations for large problems, we modified the stepwise
addition algorithm by, at each stage, considering only a limited number
of candidate knot locations in each variable. The resulting least squares
version of the stepwise addition and deletion algorithm, whether or not
K = 1 and whether or not the Zik are binary, is referred to as PolyMARS.
This algorithm is similar to the MARS algorithm in Friedman (1991), but
it is substantially faster. MARS is discussed in Section 3.4.3.

As part of the least squares approximation to Polyclass, we need to solve
many equations of the form β̂k = (XTX)−1XTY k for 1 ≤ k ≤ K. Here
XTX is a p × p matrix having a previously inverted (p − 1) × (p − 1)
submatrix. Inverting XTX now requires only O(p2) flops. Assuming that
all necessary inner products among predictors and between predictors and
responses are known, computing all β̂k requires O(p2K) flops.

In the context of deciding which basis function to enter next, we need to
compute numerous quantities of the form Qk(βk) = −||Y k − Xβk||

2. To
evaluate the corresponding Rao statistics, we need to compute

[∇Qk(β̂k0)]
TI−1∇Qk(β̂k0).

Here I = XTX and ∇Qk(βk) = 2XT(Y k − Xβk). Only one entry of

∇Qk(β̂k0) is nonzero, corresponding to the candidate basis function. Since

Xβ̂k0 does not depend on the new basis function under consideration, it

can be assumed known. Thus to compute ∇Qk(β̂k0) we need to compute
the component of XT(Y k − Xβk) corresponding to the candidate basis
function.

We also need to compute the lower-right entry of I−1, having already
computed the inverse of the (p − 1) × (p− 1) submatrix corresponding to
the existing basis functions. For each k this requires O(p2) flops once the
p entries (inner products) corresponding to the new basis functions are
determined. Thus the number of flops required for each candidate basis
function is O(p2K).

If pmax is the largest number of basis functions that we consider, there
are pmaxK inner products between basis functions in the model and the
responses and 1

2p
2
max between basis functions in the model. Note that the

candidate basis functions that are not selected for addition at one particular
step of the addition process are still candidates at the next step of the
addition process. If we thus limit the number of candidate basis functions
that we consider (without compromising the quality of the fit) we can
considerably reduce the amount of cpu time required by storing all inner
products between candidate basis functions and the basis functions that
are in the model and the responses. We can further reduce the amount of
cpu time required when we limit the number of candidate knots in each
variable. If we fix the number of candidate knots in each variable at N0,
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number of approximate
data set ntr M K pmax operations cpu time
fruit data 6188 51 66 20 1 × 108 4 seconds

40 3 × 108 10 seconds
phoneme data 153426 81 45 350 2 × 1011 1.5 hours

1000 2 × 1012 16 hours
KDD99 data 5000000 40 5 100 5 × 1011 4 hours

500 1 × 1013 3 days

TABLE 5.10. Required cpu time for applying PolyMARS with N0 = 10 to some
large problems (cpu time reflects approximately a Linux machine with a 2.4gHz
processor).

the number of candidate basis functions (knots and interactions) remains
limited to at most N0M+p2

max/2. Typically, we take N0 between 5 and 20.
In our experience, the total number of candidates is in practice only about
M+N0pmax. Thus approximately (N0pmax+M)×(pmax+K) inner products
need to be computed between candidate basis functions and basis functions
in the model and responses. Note that each inner product requires ntr

operations. In Table 5.10 we summarize the required cpu time for applying
the PolyMARS algorithm to a number of large data sets. Note that for the
smaller data sets the cpu time involved with overhead may be larger than
the amount reported in Table 5.10!

PolyMARS is now much faster than the standard version (Friedman
1991). As an illustration, we generated a subset of the phoneme data with
10000 cases, 2 classes and 63 predictors, and applied both PolyMARS with
N0 = 50 and Friedman’s program. With pmax = 40 in both programs,
our program took 177 seconds of cpu time, while Friedman’s program took
2196 seconds on the same machine. With 80 basis functions the correspond-
ing cpu times were 474 seconds and 12636 seconds. We save considerable
cpu time by storing old inner products, which MARS does not and must
recompute. Note that the standard version of MARS takes O(Mp3

maxntr)
flops (Friedman 1991, p. 127), while PolyMARS requires O(N0p

2
maxntr)

operations. Our illustrative cpu results agree with this order-of-magnitude
comparison.

There are other differences between PolyMARS and standard MARS:
the stepwise addition schemes are different: we add first a linear term and
perhaps later a knot, while in MARS two basis functions, essentially cor-
responding to a linear function and a knot, are added at the same time;
in MARS, but not in PolyMARS, a piecewise cubic approximation to the
piecewise linear function is applied after a basis function is added.
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5.4.4 Fitting Polyclass models with large data sets and many

basis functions

After selecting the basis functions, we need to obtain a reasonably accu-
rate approximation to the maximum likelihood estimate β̂ of the coefficient
vector β5. For a given collection of basis functions the corresponding log-
likelihood function is concave, so this numerical approximation problem is
conceptually straightforward. There is a large literature about optimiza-
tion of concave functions. A reference that we found particularly useful is
Kennedy and Gentle (1980). When basis functions are selected with Poly-

class, the approximation to β̂ could be obtained using a Newton–Raphson
algorithm. While fitting a whole sequence of Polyclass models takes about
the same amount of cpu time as computing the Rao statistics, fitting just
one model for a set of basis functions that have been selected otherwise (e.g.
by PolyMARS) clearly is an order of magnitude faster. However, when we
fit one single Polyclass model we do not have the benefit of inheriting very
good starting values from the fitting of the previous model, so we would
need many more iterations of the Newton–Raphson algorithm. While we
have no experience in fitting such large models using this approach, we
think that it is not unreasonable to expect that we may need as many as
20 iterations, rather than the four that usually suffice when we take the
stepwise approach. Thus, fitting a Polyclass model this way would require
approximately 20p2K2ntr operations. Among the six examples in Tables
5.9 and 5.10 this would be feasible for the two fruit data examples (ap-
proximately 6 hours cpu time for the smaller model and 1 day for the
larger model), barely feasible for the smaller model on the KDD99 data
(one month cpu time) and infeasible for all other models (years of cpu
time).

An alternative to using Newton–Raphson would be to use quasi-Newton
optimization to estimate the parameters. The quasi-Newton method (see
Section 5.4.2) and the conjugate gradient method (discussed below) both
require O(pKntr) operations per iteration since for each method the cpu
intensive activity is the computation of the gradient. In our experience a
quasi-Newton algorithm requires somewhat fewer iterations than a conju-
gate gradient algorithm to fit the same large Polyclass model, though both
may need as many as a hundred iterations, many more than a Newton–
Raphson algorithm. In practice, the fact that for a quasi-Newton algorithm
we need to store a quasi-Hessian with p2K2 elements, while for a conjugate
gradient method we do not need to do this, will typically be the deciding
factor in choosing between these two approaches.

5Note also that all methods discussed in this section separately fit each model (collec-

tion of basis functions) under consideration. We proceed as if we only consider one single
model, the basis functions of which have been selected using, for example, PolyMARS.
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Before we go into the details of the various optimization methods, we
summarize in Table 5.11 the amount of storage needed for the Hessian
for quasi-Newton and Newton–Raphson methods and the amount of cpu
time needed for one pass through the data for the Newton–Raphson method
and one pass through the data for the gradient based optimization methods
(quasi-Newton, conjugate gradient, stochastic gradient, and stochastic con-
jugate gradient). Note, however, that while the cpu time per pass through
the data differs among the various methods, the number of passes that are
needed for reaching the same accuracy of the parameter estimates differs
dramatically. We will address this later.

The conjugate gradient method

The conjugate gradient method for numerically approximating the maxi-
mum likelihood estimate β̂ = arg max `(β) is an iterative method. At the
beginning of the (ν + 1)th iteration, where ν is a nonnegative integer, we

know the approximation β(ν) determined during the νth iteration, the value
g(ν+1) of the gradient of the log-likelihood function at β

(ν), and the search
direction γ(ν) used during the νth iteration (γ(0) = 0). The search direc-
tion used during the (ν + 1)th iteration is given by γ(ν+1) = g(ν+1) + bγ(ν)

for some number b, and the corresponding approximation to β̂ is given by
β(ν+1) = β(ν) + aγ(ν+1), where a is determined by a line search. (In a
minimization problem, γ(ν+1) = −g(ν+1) + bγ(ν).)

Dixon (1975, eq. 6–9) lists four choices of b. We experimented with all of
these choices, but found that, for our current problem, the choice of b has
little influence on the results. We eventually settled on

b =
g(ν+1)T(g(ν+1) − g(ν))

g(ν)Tg(ν)
,

which Dixon (1975) attributes to Polak and Ribiere (1969). Some authors
advocate resetting the search direction to the steepest ascent direction (that
is, setting b = 0) after every so many iterations. In our experiments, how-
ever, such a modification did not yield a significant improvement in perfor-
mance.

Briefly, the motivation for the conjugate gradient method is that for a
convex (concave) quadratic optimization problem with p parameters, the
minimum (maximum) of the objective function is found in exactly p it-
erations, when exact line searches are used. The p search directions γ(ν),
ν = 1, . . . , p are all conjugate with respect to the Hessian matrix H of the
objective function; that is,

[γ(ν1)]
T
Hγ(ν2) = 0, for all ν1 6= ν2. (5.4.3)

For exact quadratic problems all four proposals of Dixon (1975) yield con-
jugate directions satisfying 5.4.3. See Kennedy and Gentle (1980) for more
details about conjugate gradient methods.
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# elements one pass NR one pass gradient
data set ntr K p of Hessian operations cpu time operations cpu time

fruit data 6188 66 20 9 × 105 1 × 1010 15 minutes 2 × 107 2 seconds
40 3 × 106 4 × 1010 1 hour 3 × 107 4 seconds

phoneme data 153426 45 350 1 × 108 4 × 1013 6 weeks 5 × 109 7 minutes
1000 1 × 109 3 × 1014 1 year 1 × 1010 20 minutes

KDD99 data 5000000 5 100 1 × 105 1 × 1012 1 day 5 × 108 1 minute
500 3 × 106 3 × 1013 4 weeks 2 × 109 3 minutes

TABLE 5.11. Storage requirements and cpu requirements per pass for several optimization methods and some large problems.
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In many references about optimization it is suggested that good line
searches are particularly important for conjugate gradient methods. In
our setting this does not appear to be the case. While more accurate line
searches do reduce the number of required passes through the data some-
what, the cpu time spent on each individual pass increases sufficiently to
completely offset any gains. A reason for this may be that our problems
are not quadratic and that sometimes it is not necessary to get very close
to the exact parameter vector that maximizes the log-likelihood function.

We ended up by using the following algorithm to approximate the value
ã of a that maximizes `(β + aγ), where γ is the search direction found, for
example, by the conjugate gradient method described above:

1. Rescale γ to have the same norm as aγ at the end of the previous
step (so that a = 1 may be a reasonable choice for a).

2. Find three numbers a0, a1, a2 in the set

{0} ∪ {±2i : i is a nonnegative integer}

such that a0 < a1 < a2 and `(β+a1γ) > max
(
`(β+a0γ), `(β+a2γ)

)
.

3. Find ã using quadratic interpolation.

For Polyclass, computing `(β + aγ) requires computing P (Y = k|X =
x; β +aγ). This can be done very rapidly for many values of a. To see this,
note that

exp θ(k|x; β + aγ) = exp

( p∑

j=1

βjkBj(x)

)[
exp

p∑

j=1

γjkBj(x)

]a

.

Thus, if we store exp θ(k|xi; β) and exp θ(k|xi; γ) for all i and k, we can
compute `(β + aγ) for every integer a in O(Kntr) flops without additional
exponentiations.

For exact maximization of a quadratic function, a conjugate gradient
method would need as many computations of the gradient as there are
variables, which in our situation would mean pK iterations. As each of
these iterations requires O(pKntr) flops this would yield an algorithm that
takes the same order of magnitude cpu time as a Newton–Raphson algo-
rithm (no free lunch!). In practice, far fewer iterations are needed to ob-
tain a reasonable solution, but, as in the quasi-Newton method, the initial
convergence may be very slow. An important advantage of the conjugate
gradient method over the quasi-Newton method when pmaxK is large is
that the former method does not require the storage of a Hessian matrix.

Stochastic optimization

During any iterative optimization algorithm, when the current estimates
for the parameters are already fairly close to the values of the parameters
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that maximize (minimize) the objective function, it is important that all
calculations, such as the computations of the gradient and the Hessian, be
done very precisely. However, during the initial steps of the optimization
algorithm, an approximation to the gradient may be good enough to move
the parameter estimate in the right direction while requiring much less
cpu time. Below we discuss two stochastic optimization methods that use
approximations to the gradient that are based on a random sample of the
data. The stochastic conjugate gradient method is a modification of the
conjugate gradient method where initially the gradient is computed on a
subset of the data. During the iterations this subset is increased, so that
later on the stochastic conjugate gradient method behaves like the regular
conjugate gradient method. We first discuss a more radical approach: in the
stochastic gradient method the gradient is computed based only on a single
observation, and line searches are completely abandoned. The stochastic
gradient method has been popularized in the neural network literature.

The stochastic gradient method

Recall that

θk =

p∑

j=1

βjkBj(k), for k = 1, . . . ,K.

Set πk = (exp θk)/(1 + exp θk) for k = 1, . . . ,K. The coefficients βjk , k =
1, . . . ,K and j = 1, . . . , p, are to be determined. Given the data (x, y) for
a single case in the training set, set δy = 1 and δk = 0 for k 6= y. The
corresponding (contribution to the) log-likelihood is given by

` =
∑

k

δkθk − log(1 +
∑

k

exp θk).

Think of the log-likelihood as a function of the coefficients. Since

∂`

∂θk
= δk − πk,

the gradient of the log-likelihood function is given by

∂`

∂βjk
= (δk − πk)Bj(x).

In the stochastic gradient method, we successively update the coefficients
on a case-by-case basis according to the formula

β
(i+1)
jk = β

(i)
jk + ri

∂`

∂βjk
, (5.4.4)

where ` is the log-likelihood at β(i) = (β
(i)
jk ) based on a single case. We go

through the cases in the training set in random order and make a number
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of passes through the data, choosing a fresh random order on each pass.
Note that each pass requires O(pKntr) flops.

The stochastic gradient method has been popularized in the neural net-
work literature, although the neural network world seems to be divided
about the benefits of the method. See Ripley (1996) for one opinion. It
is possible to think of Polyclass models as corresponding to a single-layer
network (no hidden layers) having inputs Bj(x), j = 1, . . . , p, and outputs
θk, k = 1, . . . ,K.

In order to apply the stochastic gradient method we need to address
several issues:

• How should we adjust the learning rate ri?

• Do the parameter estimates based on the stochastic gradient method
“converge” and, if so, do they get close to the maximum likelihood
estimates β̂?

• How do we assess the convergence?

• How many passes through the data do we need?

These issues are simpler for Polyclass than for neural networks (Kooperberg
and Stone 1999), since for Polyclass the log-likelihood function is strictly
concave and hence there is a unique maximum of the log-likelihood function.

For selected sets of basis functions we fit a Polyclass model to the corre-
sponding linear spaces using the stochastic gradient method. Initially, we
set βjk = 0 for all j and k. (Since the log-likelihood for Polyclass is con-
cave, the initial values used in the stochastic gradient method are largely
irrelevant.)

We tried a number of schemes for adjusting the learning rate on the
phoneme data. If this rate is reduced too slowly, the algorithm converges
too slowly; although it appears that the misclassification error and log-
likelihood have stabilized, the parameter estimates remain unstable and
they do not get close to the corresponding maximum likelihood estimates.
If the learning rate is reduced too rapidly, the change in the parameters
may become too small, so that the log-likelihood does not get close to its
maximum.

Eventually, we settled on starting with an initial rate r0 and dividing
this rate by two after every ten full passes through the data. We found a
reasonable, simple rule for determining the initial rate in our examples (see
Kooperberg and Stone 1999), but we also noticed that the accuracy of the
approximations after a few passes through the data is very indicative of
the accuracy after a much larger number of passes.
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The stochastic conjugate gradient method

Let us refer to any subset of the training set as a block. Given such a block,
we can write the corresponding normalized log-likelihood as

¯̀
block(β) =

1

blocksize

∑

i∈block

`i(β).

We can think of ¯̀
block as an estimate of Λ(β) = E[`(β)], where `(β) is the

log-likelihood based on a single random case. The maximum likelihood es-
timate β̂ = argmax ¯̀

training set(β) can thereby be viewed as a Monte Carlo
estimate of β∗ = arg maxΛ(β). If n is large, it may be computationally

attractive to use β̂block = argmax ¯̀
block(β) as an estimate of β∗.

Consider now the conjugate gradient method for finding the MLE. It
may be worthwhile to use a different block at each iteration. This leads to
a modification of the conjugate gradient method in which, at the (ν +1)th
iteration, the gradient g(ν+1) and the line search are based on ¯̀

block(ν+1) .
Suppose we want to make a single pass through the data. A natural ap-

proach would be to partition the data randomly into S blocks of prespecified
size and then iterate, starting with a prespecified β(0). In practice, however,
we need to make repeated passes through the data. With this in mind, it
is reasonable to let each block size in a given pass be approximately n/S
and to let S increase from pass to pass, as more accuracy is needed at later
passes. On each pass, we use a fresh random partition of the training set.
In practice it is beneficial to organize each partition such that the number
of cases of any particular class k is approximately the same in each block.
When some classes occur much less often than other classes in the training
data, it may be beneficial to have each case of one of the rarer classes in
several partitions but with a smaller weight, as this will reduce the variance
of g(ν) considerably.

The problem remains of choosing the initial value S(0) of S and of coming
up with a rule for increasing S. Based on some experimenting with the
phoneme data and the fruit data, we propose using S(i) = 2L0 for i = 0, 1, 2
and S(i) = 2min(0,L0+2−i) for i > 2. If L0 is too small, the initial block size
is very large and the method is not much faster than a (nonstochastic)
conjugate gradient method. If L0 is too large, the initial passes could have
an adverse effect on accuracy; in particular, β(1) could be further away
from β than is β(0). Fortunately, we have found that even a single pass
through the data is almost always indicative of the best choice of L0. When
i increases S(i) eventually equals 1, after which the method essentially
coincides with a nonstochastic conjugate gradient method.

We refer to this method as the stochastic conjugate gradient method, as
does Møller (1993), where a similar method is proposed in the context of
fitting neural networks (see also Ripley 1996, p. 154). The motivation for
using such a method is that it can perform numerous iterations and get
close to convergence with only a moderate number of passes through the
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data. The larger the sample size n, the more redundancy there is in the data
and hence the more attractive is this approach. Still, even for a moderately
small data set as the fruit data (with only 96 cases per class in the training
data) we have found that the stochastic conjugate gradient method can
reduce the number of iterations required by the conjugate gradient method
by as many as 30 to 40. See below for a detailed analysis of the fruit data.

5.4.5 Further analysis of the fruit data

As it is (just) possible to analyze the complete fruit data using the Poly-
class algorithm, we will present results coming from a direct application
of this algorithm, and we will compare these results with those obtained
from the least-squares approximation of PolyMARS to Polyclass, and the
Polyclass fits of the basis functions selected by PolyMARS. The amounts of
computing required for these two approaches differs dramatically. However,
before turning to the computational issues, we first discuss the fits.

As in the analysis of the smaller subset of the fruit data, we did not use
the original predictors, but projected both the training data and the test
data on the principal components of the training data. We recall the sizes
ntr = 6188 of the training data and nts = 3092 of the test data. There are
K = 66 classes and M = 51 predictors.

We used Polyclass with a maximum number pmax = 20 of basis functions.
The stepwise addition and deletion algorithm and AIC with the default pa-
rameter logntr = log 6188 ≈ 8.73 yielded a model with 18 basis functions.
For PolyMARS the maximum number of basis functions pmax was set at
150. A PolyMARS model of that size for a problem with K = 66 classes
has 150 × (66 − 1) = 9750 parameters. For models that had more basis
functions, we not unexpectedly encountered numerical problems caused by
singularities in the design matrix. Surprisingly, the various model selection
criteria suggested in Chapter 3, as well as model selection using the test-set
to minimize the residual sum of squares or the test-set misclassification, all
yielded model sizes of between 140 and 150. For simplicity we decided to
fit a Polyclass model to the 150 basis functions selected by PolyMARS. In
addition, to facilitate the comparisons with model selection carried out by
Polyclass, we also fitted a Polyclass model to the first 20 basis functions
selected by PolyMARS.

Table 5.12 summarizes the types of basis functions selected by Polyclass
and PolyMARS. As can be seen, both algorithms select principal compo-
nent (predictor) number 14 before selecting number 12 and 13. In general,
there seems to be some similarity between the sequence in which predictors
enter the model. Both methods start with predictors 1 and 2, and while
they differ after that, both enter predictors 4 and 5 before 3, and predic-
tor 8 before 6. That is, however, where the similarities stop. Clearly the
PolyMARS algorithm enters more knots and interactions early on.
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Selected by Polyclass PolyMARS PolyMARS

Number of basis functions
Total 18(20) 20 150
Intercept 1 1 1
Linear (xi) 11 6 12
Knot ((xi − tik)) 4(5) 8 25
Linear × linear 2(3) 4 26
Linear × knot 0 1 61
Knot × knot 0 0 25

Predictors involved X1–X9, X11, X14 X1–X5, X8 X1–X11, X14

TABLE 5.12. Types of basis functions selected for the fruit data. The two ad-
ditional basis functions between parenthesis for Polyclass were removed by the
stepwise algorithm.

In Table 5.13 we display the results after 40 and after 2000 passes through
the data using a stochastic conjugate gradient algorithm. When fitting
Polyclass models to basis functions selected by PolyMARS, we notice that
for this data set after about 40 passes through the data using the stochastic
conjugate gradient method, the test-set log likelihood reaches a maximum
and decreases during further passes, while the training-set log-likelihood
and the training data misclassification error continue to improve. The
test data misclassification error is minimized at approximately 40 passes
through the data, and it remains constant after that. The reason is that,
because of the large number of parameters in these models, Polyclass is
able to improve the fitted probability to nearly 1 for some cases. If, among
the test data, the fitted probability is nearly 1 for a wrong class for some
cases, then the fitted probability for the right class for these cases will be
extremely small, thus considerably reducing the test data log-likelihood.

Note that when we use the PolyMARS fit for classification, “probabili-
ties” (fitted values) are not guaranteed to be between 0 and 1. As such, we
cannot provided a log-likelihood. As it turns out, the median fitted value
is between 0 and 1. This is the number reported between parenthesis for
the PolyMARS fit.

We note from Table 5.13 that refitting basis functions selected by Poly-
MARS using Polyclass substantially improves the percentage of correctly
classified cases in both the training and the test set. Basis functions se-
lected using Polyclass are substantially better than those selected by Poly-
MARS, as the numbers for the Polyclass fit to the model with 20 basis
functions selected by PolyMARS are considerably worse than those for
the pure Polyclass model. The model with 150 basis functions selected by
PolyMARS after 40 passes of fitting using the stochastic conjugate gradi-
ent method yields uniformly better summary statistics than the straight
Polyclass model. In addition, the combined PolyMARS/Polyclass method
takes considerably less cpu time, as we will see below. This would there-
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Number of basis functions 18 20 20 20 150 150 150
Fitting method Polyclass PolyMARS Polyclass Polyclass PolyMARS Polyclass Polyclass
Stoc. conj. gradient passes – – 40 2000 – 40 2000
Training data
Percentage correct class 75.7 42.4 64.2 69.7 70.0 79.8 91.0
Percent correct class among the six classes with the

highest fitted probability 96.5 86.1 93.1 95.4 95.3 97.6 99.6
Average exp(log-likelihood) 0.445 – 0.294 0.384 – 0.513 0.761
Median exp(log-likelihood) 0.722 (0.133) 0.448 0.644 (0.391) 0.810 1.000

Test data
Percentage correct class 70.9 41.8 61.6 64.3 67.3 74.1 73.1
Percent correct class among the six classes with the

highest fitted probability 95.2 84.8 91.9 93.2 93.4 95.6 95.8
Exp(mean log-likelihood) 0.339 – 0.252 0.182 – 0.374 0.014
Exp(median log-likelihood) 0.684 (0.132) 0.419 0.573 (0.366) 0.774 0.998

TABLE 5.13. Performance of Polyclass and PolyMARS on the 66 class fruit data with ntr = 6188 and nts = 3092.
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selection fitting # of basis # of passes cpu time
functions

Polyclass Polyclass 18(20) NA 20 hours
PolyMARS PolyMARS 20 NA 14 seconds
PolyMARS Polyclass 20 40 2 minutes
PolyMARS Polyclass 20 2000 1.3 hour
PolyMARS PolyMARS 150 NA 9 minutes
PolyMARS Polyclass 150 40 17 minutes
PolyMARS Polyclass 150 2000 7 hours

TABLE 5.14. Amount of cpu time involved with obtaining fits for the fruit data.

fore be our model of choice. If no test data set is available, this approach
would still outperform Polyclass if a cross-validation approach is used to
determine when to stop the optimization algorithm.

We now further examine the phenomenon of the early stopping in the fit-
ting algorithm. In Figure 5.9 we show histograms of the fitted probabilities
for the correct class for the model with 150 basis functions selected by Poly-
MARS after 40 and after 2000 passes through the data using a stochastic
conjugate gradient algorithm. We note that, for the training data, increas-
ing the number of passes through the data for the fitting algorithm leads
to many more fitted probabilities close to 1. For example, after 40 passes
8.7% of the probabilities are larger than 0.999 while after 2000 passes this
percentage is 52.8. For the test data the probabilities also increase, and ac-
tually the fraction of large probabilities is extremely similar to that for the
training data: after 40 passes 9.7% are larger than 0.999, and after 2000
passes this percentage is 48.5. At the same time the percentage of cases
with probabilities smaller than 0.01 decreases for the training data from
0.2% to 0.1%, but it increases for the test data from 1.5% to 8.6%.

As mentioned earlier, the amounts of computing involved for the various
approaches to fitting Polyclass or PolyMARS models differ considerably.
In Table 5.14 we summarize how much cpu time was involved for each of
the seven fits presented in Table 5.13. As can be seen, the differences are
substantial.

Since for each of the methods the cpu time and the performance (in
log-likelihood or classification) both depend considerably on the number
of basis functions, we show in Figure 5.10 how for each of the methods
the performance as a function of the number of basis functions and in
Figure 5.11 the required cpu time as a function of the number of basis
functions. For the fits in which basis functions were selected using Poly-
MARS and fitted using Polyclass we used 40 passes through the data of a
stochastic conjugate gradient algorithm for the fitting. As can be seen from
Figure 5.10, fitting coefficients of basis functions selected with PolyMARS
using Polyclass substantially improves the performance, in particular when
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FIGURE 5.9. Histograms of the fitted probability for the correct class for the
fruit data with 66 classes and the model with 150 basis functions selected by
PolyMARS.

the number of basis functions is larger than about 10. For that many ba-
sis functions, using Polyclass directly gives even better results. On the
other hand, Figure 5.11 shows that the cpu requirements for the better ap-
proaches are considerably larger. (Note that in Table 5.14 and Figure 5.11
the time involved with selecting the PolyMARS basis functions is included
for the combined procedure.) To accommodate for the differences, a fairer
comparison is one where we compare the log-likelihood or misclassification
rate as a function of the required cpu time, as is done in Figure 5.12. As can
be seen from this figure, for any performance level using Polyclass is less
efficient than selecting basis functions using PolyMARS and fitting models
using Polyclass. If only classification results are needed, and fast, but not
super-accurate, results suffice, PolyMARS yields acceptable results using
less cpu time than the alternative approaches. However, when more accu-
rate results are needed, the results of the combined procedure are better.
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FIGURE 5.10. Misclassification and exponent of the mean log-likelihood as a
function of the number of basis functions for three approaches of the Polyclass
and PolyMARS methods to the fruit data.

In addition, using PolyMARS by itself does not yield valid probabilities, as
estimated probabilities are regularly smaller than 0 or larger than 1.

We will now focus more on the different approaches to optimization of the
log-likelihood function after selection of basis functions using PolyMARS.
We present results for the model with 150 basis functions. Figure 5.13
shows the exponent of the average log-likelihood for the training data, on
the left side as a function of the required cpu time, and on the right side as a
function of the number of passes through the data. While on the right side a
quasi-Newton algorithm appears competitive, we notice on the left side that
it is not. The reason is that for the larger fruit data with 150 basis functions
the size of the quasi-Hessian is almost 10000 × 10000, so that, although no
matrix inversions are required, the other matrix operations for the quasi-
Newton algorithm require substantial cpu time. On some computers the size
of this matrix may also require a lot of “swapping” in and out of memory,
further slowing down the program. Conceivably, for problems with large
data sets but a smaller number of parameters (e.g. the KDD99 data), quasi-
Newton algorithms perform better. We did not include a stochastic quasi-
Newton algorithm in the comparison, as such an algorithm would involve
a considerably increased number of matrix operations of the quasi-Hessian
per pass through the data compared to the regular quasi-Newton algorithm.
However, for problems with fewer parameters such an algorithm may be
competitive. We note that, for the stochastic conjugate gradient method,
the likelihood increases somewhat faster than for the regular conjugate
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FIGURE 5.11. Required cpu time as a function of the number of basis functions
for three approaches of the Polyclass and PolyMARS methods to the fruit data.

gradient method. These methods both require somewhat more cpu time
per pass through the data than the stochastic gradient method, as both
conjugate gradient methods involve a line-search. However, after the first
few iterations it is very hard to determine a good step-size for a stochastic
gradient algorithm. The algorithm that we present, with a slowly decreasing
step-size, seemed to work best on the current problem.

The stochastic conjugate gradient method that we used employed 16
blocks during the first three passes through the data, after which the num-
ber of blocks was reduced by half after each pass, until only one block was
left. The improvement of the stochastic conjugate gradient method over
the regular conjugate gradient method is fairly modest in this case. This is
due to the fact that there is relatively little redundancy in the fruit data.
To illustrate what happens in a more redundant data set, we created a
new fruit data set by repeating the original fruit data 16 times. We now
used a stochastic conjugate gradient method with 128 initial blocks. The
comparison of the stochastic and the regular conjugate gradient method is
shown on the left side of Figure 5.14. For both this problem and the orig-
inal problem we can compute how many passes through the data we gain
using a stochastic algorithm, by figuring out how many passes later that
for the nonstochastic conjugate gradient method the log-likelihood reaches
the same level as the stochastic version reached. This is effectively the hor-
izontal distance between the two curves in the left side of Figures 5.13 and
5.14. From the right side of Figure 5.14 we thus see that a stochastic version
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function of the required cpu time for three approaches of the Polyclass and Poly-
MARS methods to the fruit data.

saves us about 60 passes through the data for the replicated data set and
about 15 passes for the original data.

5.5 Technical details of the Polyclass algorithm

A number of the technical details about the algorithms that are discussed
in this chapter and some of the later chapters have already been discussed
in Chapters 3 and 4. In particular, these chapters contain details about
the stepwise algorithm, AIC, Rao and Wald statistics and the Newton–
Raphson algorithm. In this section we give a few details about the Polyclass,
Logspline, Heft, and Hare methodologies, that are discussed in this chapter
and the next two chapters.

5.5.1 Maximum number of basis functions

The theoretical results (Chapter 11) suggest that the maximum number of
basis functions should increase with a low power of the sample size of the
(training) data set. Default rules for the implementations that we discuss
have typically been set by trial and error. There are a number of other
considerations in setting the maximum number of basis functions, such as:

• in particular, if more than one parameter is involved per basis func-
tion (as is the case for Polyclass) or when there are many repeat obser-
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FIGURE 5.13. Exponent of the mean log-likelihood on the training data as a
function of the number of passes through the data and as a function of the
required cpu time for a variety of optimization methods.

vations, it is wise to reduce the maximum number of basis functions
to assure a minimum number of unique observations per parameter;

• the computational complexity of stepwise polynomial spline algo-
rithms typically increases more than linearly with the number of ba-
sis functions, so that it may make sense to have an overall maximum
model size for the default;

• when basis functions are entered one at a time, if for several additions
in a row there is very little improvement in the fit (e.g. there is very
little increase in the fitted log-likelihood), it may make sense to stop
adding basis functions before the original planned maximum number
of basis functions is reached.

The default maximum number of basis functions for Polyclass, Logspline
(Chapter 6), Hare and Heft (Chapter 7), and Lspec (Chapter 8) are all
based on these principles. In particular, we stop the addition of basis func-
tions for Polyclass when one of the following conditions is satisfied:

• the number p of basis functions equals pmax, whose default value is
min(4n1/3, n/(2K), 50);

• l̂p − l̂q <
1
2 (p − q) − 0.5 for some q with q ≤ p − 3, where l̂q is the

log-likelihood for the model with q parameters (so the addition of
more basis functions is not likely to improve the fit);

• the search algorithm yields no possible new basis function.
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FIGURE 5.14. Exponent of the mean log-likelihood as a function of the number
of passes through the data for the replicated data and the number of passes
through the data gained by using a stochastic conjugate gradient method.

Clearly, in practice there are other issues that may be reasons for users to
override these defaults. For example, for large data sets on fast computers
the maximum of 50 may be unnecessary. In addition, when the final selected
model using AIC has a number of basis functions p larger than, say, 0.8pmax,
a larger value of pmax may be advisable.

5.5.2 Optimizing the location of a new knot.

One problem that repeatedly comes up in stepwise polynomial spline algo-
rithms is finding a location for a new knot. Typically, during the process
of stepwise addition of basis functions, at each step we find the basis func-
tion that has the largest Rao statistic among the candidate basis function
whose addition to an allowable space would still render the larger space
to be allowable. While the exact details differ among the different multi-
dimensional procedures (Polyclass, PolyMARS, Hare) this typically means
finding the basis function with the largest Rao statistic among

1. linear functions in variables that are not yet in the model;

2. functions that involve a new knot in a variable that is already in the
model;

3. tensor products of two basis functions that depend only on one vari-
able and keep the new space allowable.
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See Section 3.4 for the details about multivariate regression. For the uni-
variate procedures (Logspline, Heft, and Lspec), where no tensor product
basis functions exist, and linear functions (if applicable) are in the minimal
model, this means finding the best knot.

Since it is possible to come up with simple updating formulas to compute
score functions and Hessians for PolyMARS(MARS) and Lspec, finding a
new knot location is not a major issue. However, for Polyclass, Logspline,
Heft, and Hare this is not possible, so we need to limit the number of knots
for which we compute the Rao statistic.

In this section we describe the algorithm for finding the location of a
potential new knot in a particular variable. For the multivariate procedures
(Polyclass and Hare) we would typically carry out this algorithm for each
variable that is in the model.

To find a new knot let t1 < t2 < · · · < tK be the corresponding knots
presently in the model, to which we want to add one more knot, and let
X(1), . . . , X(m) be the data written in nondecreasing order. Define li and
ui by l0 = 1, uK = n,

li = dmin + max{j : 1 ≤ j ≤ n and X(j) ≤ ti}, i = 1, . . . ,K, (5.5.1)

and

ui = −dmin + min{j : 1 ≤ j ≤ n and X(j) ≥ ti+1}, i = 0, . . . ,K − 1.
(5.5.2)

Here dmin is the minimum distance between consecutive knots in order
statistics. Typically we take dmin = 3 in procedures employing cubic splines,
and a slightly larger value for linear splines. For i = 0, . . . ,K we compute
the Rao statistic ri for the model with X(ji) as a new knot, where ji =
[(li + ui)/2]. (If any index is not an integer, we interpolate between data
points.) Because of the dmin in (5.5.1) and (5.5.2) it is possible that ui < li
for some i; if so, then no knot can be added between ti and ti+1. This
forces knots to be at least dmin order statistics apart, which improves the
numerical and statistical stability. If there is no i for which ui ≥ li, then
no knots can be added to the model.

We place the potential new knot in the interval [X(li∗ ), X(ui∗ )], where
i∗ = argmax ri. Within this interval we further optimize the location of
the new knot. To this end, we proceed by computing the Rao statistic rl

for the model with X(l) as the knot with l = [(li∗ + ji∗)/2] and ru for
the model with X(u) as the knot with u = [(ji∗ + ui∗)/2]. If ri∗ ≥ rl and
ri∗ ≥ ru, we place the new knot at X(i∗); if ri∗ < rl and r| ≥ ru, we
continue searching for a knot location in the interval [X(li∗), X(ji∗ )]; and
if ri∗ < ru and rl < ru, we continue searching for a knot location on the
interval [X(ji∗ ), X(ui∗ )].
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This procedure needs some modifications for variables with many re-
peated observations and for variables that involve censoring. We omit these
(ad hoc) details.

5.6 Notes

Literature

There is an enormous literature on classification (discrimination, supervised
learning) methods. See Mardia, Kent, and Bibby (1979) for an overview of
“classical” discriminant analysis. Rather than remain incomplete, we only
provide references on approaches to classification that involve splines.

Anderson and Blair (1982) and Villalobos and Wahba (1983) are two
early papers that uses smoothing splines in logistic regression and classi-
fication. Because of the limited computing available at the time of these
papers, Anderson and Blair (1982) gives no examples, and Villalobos and
Wahba (1983) only presents small two class examples, and even for those
examples many approximations need to be made.

Classification trees, e.g. CART (Breiman, Friedman, Olshen, and Stone
1984), can be seen as piecewise constant splines. While the adaptive model
selection strategy of CART has similarities with Polyclass, the type of mod-
els that are selected by CART, which involve high order interactions, are
quite different from those considered by Polyclass, which favors simpler
additive models. Tibshirani and LeBlanc (1992) proposes a procedure for
classification that can be seen as a special form of MARS, using stepfunc-
tions as basis functions. This method also borrows much from the CART
methodology.

Hastie, Tibshirani, and Buja (1994) proposes flexible discriminant anal-
ysis, which combines nonparametric regression techniques, such as smooth-
ing splines and MARS, and discriminant analysis. Bose (1996) uses additive
B-Splines and least squares regression to develop a classification rule.

There is a rich and voluminous literature on stochastic approximation,
starting with Robbins and Monro (1951), which includes the one-pass ver-
sion of the stochastic gradient method as a special case. In particular, in the
context of fitting Polyclass models with a fixed collection of basis functions
(or neural network models with a fixed number of hidden units) White
(1989) applied results of Ljung (1977) to obtain conditions under which
convergence should occur as n→ ∞. In these conditions the random pairs
(X1, Y1), (X2, Y2), . . . should be independent and have a common distri-
bution with compact support and the learning rate rn should be (say) of

the form A/(B + n). With probability one, the successive iterates β(n) for

β̂ then either converge to a local maximum of the log-likelihood function
or diverge (|β(n)| → ∞). In particular, when the log-likelihood function is
strictly concave, as in the fitting of a Polyclass model, the successive iter-
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ates either converge to β̂ or diverge. We are unaware of similar theoretical
results that deal with repeated passes through the data or with models
whose size (e.g., the number of basis functions of Polyclass or the number
of hidden units of a neural network model) depends on n.

Software

Programs for implementing Polyclass and PolyMARS as described in this
chapter have been written in C and an interface based on R and S-Plus
has been developed. These programs are currently available as part of the
polspline package from CRAN

http://cran.r-project.org/src/contrib/PACKAGES.html

and from Kooperberg’s website

http://bear.fhcrc.org/∼clk/soft.html

The PolyMARS interface through S-Plus works well for data sets with
several tens of thousands of cases if there are not too many classes. For data
sets with many classes, memory use increases. Several others have ported
this S-Plus and C code for easy installation on other platforms and under
the R language. See Kooperberg’s website for current links. The agml()

function, developed by Insightful Corp., implements an extended linear
modeling approach to logistic regression, a two-class version of Polyclass.
A link to the appropriate Insightful website is on Kooperberg’s website.

Programs implementing the various optimization approaches were never
written as general purpose programs.


