
This is page 1
Printer: Opaque this

Statistical Modeling with Spline Functions

Methodology and Theory

Mark H. Hansen

University of California at Los Angeles

Jianhua Z. Huang

University of Pennsylvania

Charles Kooperberg

Fred Hutchinson Cancer Research Center

Charles J. Stone

University of California at Berkeley

Young K. Truong

University of North Carolina at Chapel Hill

Copyright c©2006

by M. H. Hansen, J. Z. Huang, C. Kooperberg, C. J. Stone, and Y. K. Truong

January 5, 2006



2



This is page 277
Printer: Opaque this

6
Density Estimation

6.1 An example

6.1.1 The income data

In Figure 6.1 we show a histogram of a random sample of 7,125 annual
net incomes in the United Kingdom [Family Expenditure Survey (1983);
the data have been rescaled to have mean one as in Wand, Marron, and
Ruppert (1991).] There is a large group of people having almost identical
incomes of about 0.24, due to the national UK old age pension. Depending
on how many bins we choose, this peak can be quite a bit sharper than that
in Figure 6.1. The peak is also somewhat recognizable in the subplot on the
left side of Figure 6.2, which zooms in from the quantile-quantile (QQ) plot
against a normal distribution, keeping the aspect ratio the same as in the
complete plot. We note that when the income is about 0.24 the quantile-
quantile plot is quite flat. It is fairly hard to recognize the peak from either
of these two plots, as the removal of approximately 100–150 “extra” people
between 0.22 and 0.27, or only 2% of the total sample, would remove the
peak.

The plot on the right side of Figure 6.2 is a quantile-quantile plot for
the income data on a log-scale. The line in this plot corresponds to a log-
normal distribution with the same 80th and 90th percentile as the income
data. From this plot we note that the income density has a heavier right
tail than a log-normal distribution.
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FIGURE 6.1. Histogram of the income data.

6.1.2 Background

Suppose that we are interested in estimating the density of incomes in the
UK. This means that we want to identify a density function f so that
the income values Y1, . . . , Y7125 are iid according to f . The easiest way to
identify f is to assume that the density comes from a gamma, Weibull, log-
normal, or other classical parametric family. However, we know that for
the income data this will not give a satisfactory result: all of these families
will fail to model the peak, and they will have trouble accurately modeling
the heavy tail.

While it is trivial to estimate the distribution function F nonparamet-
rically by the empirical distribution function, this does not yield a useful
estimate of the density function. The “derivative” of the empirical distri-
bution function is a collection of point masses at the data points.

We can think of a histogram as a density estimate that models a den-
sity function as a piecewise constant function and estimates the unknown
coefficients of the model by the method of maximum likelihood. Formally
we can define a histogram density estimate fhist as follows: given an origin
a and a binwidth h, set

f̂hist(y) =
1

n

n∑

i=1

I(jh + a ≤ Yi < (j + 1)h + a), j = b(y − a)/hc.

The histogram in Figure 6.1 is f̂hist with a = 0 and h = 1/7.
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FIGURE 6.2. Quantile-quantile plots of the income data. The subplot on the left
side maintains the same aspect ratio as the larger plot.

Probably the most commonly used method of density estimation is ker-
nel density estimation. A kernel density estimate f̂kern with constant band-
width can be defined as follows: given a nonnegative kernel function K with∫

K(x) dx = 1 and given a positive bandwidth h, set

f̂kern(y) =
1

nh

n∑

i=1

K
(Yi − y

h

)
, −∞ < y < ∞.

In Figure 6.3 we show a kernel estimate with the standard normal density
as the kernel and h = 0.4 as the bandwidth.

In practice, the choice of the origin a for the histogram estimate and the
choice of K(·) for the kernel estimate are not crucial. However, the choice
of the bandwidth (binwidth) h for each method is of utmost importance. If
h is chosen too small, the density estimate ends up being too spiky, while
if h is too large, many details are smoothed away. For example, Figure 6.4
gives histogram and kernel density estimates with a bandwidth that gives
a reasonable height for the peak (dotted lines) and with a bandwidth that
gives a fairly smooth tail (solid lines). It is clear that with a fixed band-
width, kernel and histogram density estimates cannot adequately describe
this data. Still, kernel density estimation with a fixed bandwidth is exceed-
ingly popular, and it is often the only density estimation method (other
than histograms) available in statistical packages. Because of its concep-
tual simplicity, there has been an enormous amount of research on kernel
density estimation, which has given rise to various rules for selecting an
“optimal” bandwidth. In addition, various people have proposed transfor-
mations before a fixed bandwidth is chosen, as well as algorithms that let
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FIGURE 6.3. Kernel density estimate for the income data.

the bandwidth vary (i.e. a smaller bandwidth near the peak and a larger
bandwidth in the tail).

There are many density estimation methods that give dramatically bet-
ter estimates than histograms and kernel density estimates with a fixed
bandwidth (for example, Logspline). However, all these methods share the
problem that a smoothing parameter, like h, needs to be chosen.

6.1.3 Logspline density estimation

Motivated by the piecewise constant nature of the histogram density esti-
mate, we can model the density function by a linear spline (continuous,
piecewise linear function), quadratic spline (continuously differentiable,
piecewise quadratic polynomial) or cubic spline (twice continuously dif-
ferentiable, piecewise cubic polynomial). For the Logspline methodology
we model the log-density function instead of the density function and we
use the maximum likelihood method to estimate the unknown coefficients.
For a fixed set of knots, this is a well-behaved estimation problem since the
log-likelihood function is strictly concave. Stepwise addition and deletion
of knots is applied to obtain a final set of knots.

On the left side of Figure 6.5 we show a Logspline density estimate for
the income data discussed in Section 6.1.1. The right side of Figure 6.5
zooms in on the neighborhood of the peak near 0.24. The letters below the
panels of Figure 6.5 indicate the starting knots (s), the knots that were
in the largest model of the stepwise procedure (m), and the knots for the
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FIGURE 6.4. Histogram and kernel density estimates of the income data. For the
solid curves the bandwidth was chosen to provide a smooth estimate of the tail;
for the dotted curves the bandwidth was chosen to provide an accurate estimate
of the height of the peak.

final model selected by BIC (f). Knot selection will be discussed in detail
below. In Kooperberg and Stone (1992) we concluded that the height and
the location of the peak are accurately estimated by Logspline.

In Figure 6.6 we show a probability-probability (PP) plot on a logit
scale for the income data versus the Logspline fit to the density. Since this
plot is virtually a straight line, we conclude that the Logspline estimate
to the density for the income is quite good, giving tails of an appropriate
heaviness.

There are some clear advantages to modeling the log-density function,
rather than the density function. In particular:

• we do not need to be concerned about the requirement that a density
be nonnegative: unconstrained optimization techniques will yield a
density estimate that is positive; and

• the addition of a suitable constant to the estimate of the log-density
will ensure that the density estimate integrates to one.
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FIGURE 6.5. Left: Logspline density estimate for the income data; right: en-
largement of the area near x = 0.24. The letters below the plots refer to the knot
placement.

It is sometimes perceived as a disadvantage of modeling the log-density
that the density estimate is strictly greater than zero, while the true density
may equal zero for some values of y. If there is external information about
the values of y such that the density equals zero, it is trivial to incorporate
this information in the Logspline procedure. Otherwise, an estimate of, say,
exp(−100) ≈ 10−43 will usually be indistinguishable from zero for practical
purposes.

6.2 The Logspline methodology

6.2.1 The Logspline model

Given the integer K ≥ 3, the numbers L and U with −∞ ≤ L < U ≤ ∞,
and the sequence t1, . . . , tK with L < t1 < · · · < tK < U , let G0 be the
space of twice-continuously differentiable functions g on (L, U) such that
the restriction of g to each of the intervals (L, t1], [t1, t2], . . . , [tK−1, tK ],
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FIGURE 6.6. Probability-probability plot for the income data and the Logspline
estimate of the income density.

[tK , U) is a cubic polynomial. The space G0 is (K + 4)-dimensional, and
the functions in this space are referred to as cubic splines having (simple)
knots at t1, . . . , tK . Let G be the subspace of G0 consisting of the functions
in G that are linear on (L, t1] and on [tK , U). The space G is K-dimensional,
and the functions in this space are referred to as natural (cubic) splines.
Set p = K −1. Then G has a basis of the form 1, B1, . . . , Bp. Right now we
assume that the knots t1, . . . , tK are given. In Section 6.2.4 we will examine
stepwise algorithms for selecting the knots.

A column vector θ = [θ1, . . . , θp]
T ∈ Rp is said to be feasible if

∫ U

L

exp
(
θ1B1(y) + · · · + θpBp(y)

)
dy < ∞ (6.2.1)

or, equivalently, if (i) either L > −∞ or limy→−∞

∑
θjBj(y) = −∞ and

(ii) either U < ∞ or limy→∞

∑
θjBj(y) = −∞. We will discuss the choice

of basis functions and feasibility of coefficient vectors further in Section
6.2.2.

Let Θ denote the collection of feasible column vectors. Given θ ∈ Θ, set

C(θ) = log
( ∫ U

L

exp
(
θ1B1(y) + · · · + θpBp(y)

)
dy

)
(6.2.2)
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and

f(y; θ) = exp
(
θ1B1(y) + · · · + θpBp(y) − C(θ)

)
, L < y < U. (6.2.3)

(We refer to C(·) as the normalizing constant.) Then f(·; θ) is a positive
density function on (L, U) for θ ∈ Θ. The corresponding distribution func-
tion F (·; θ) and quantile function Q(·; θ) are given by

F (y; θ) =

∫ y

L

f(z; θ) dz, L < y < U,

and

Q(p; θ) = F−1(p; θ), 0 < p < 1

(so that F (Q(p; θ); θ) = p for 0 < p < 1 and Q(F (y; θ); θ) = y for L <
y < U). If U = ∞, then the density function is exponential on [tK ,∞); if
L = −∞, then the density function is exponential on (−∞, t1].

Let Y be a random variable having a continuous and positive density
function. Let Y1, . . . Yn be independent random variables having the same
distribution as Y . The log-likelihood function corresponding to the Log-
spline family, given by

l(θ) =
∑

log f(Yi; θ) =
∑

i

∑

j

θjBj(Yi) − nC(θ), θ ∈ Θ, (6.2.4)

is strictly concave on Θ. The maximum likelihood estimate θ̂ is obtained
by maximizing the log-likelihood function. Since the log-likelihood function
is strictly concave, the maximum likelihood estimate is unique if it exists.

Let D be the n × K matrix having entry Bj−1(Yi) in row i and column
j for 1 ≤ i ≤ n and 2 ≤ j ≤ K and entry 1 in every row of column 1. If the
matrix D has rank K, then the maximum likelihood estimate θ̂ exists. We
refer to f̂ = f(· ; θ̂) as the Logspline density estimate.

Let H(θ), θ ∈ Θ, denote the Hessian of C(θ), the p× p matrix the entry
in row j and column k of which is given by

∂2C(θ)

∂θj∂θk
=

∫ U

L

Bj(y)Bk(y)f(y; θ) dy

−
∫ U

L

Bk(y)f(y; θ) dy

∫ U

L

Bj(y)f(y; θ) dy, (6.2.5)

which matrix is positive definite. Consequently, the function C(·) is strictly
convex. Let Y1, . . . Yn be a random sample of size n from f and let S(θ) be
the score function; that is, the p−dimensional vector of entries

∂l

∂θj
(θ) = bj − n

∂C

∂θj
(θ), (6.2.6)
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where the sufficient statistics b1, . . . bj are defined by

bj =
∑

Bj(Yi),

while
∂C(θ)

∂θj
=

∫ U

L

Bj(y)f(y; θ) dy. (6.2.7)

Note that ∂C(θ)/∂θj is the expected value of Bj(y) relative to the measure
having density f(·; θ), so that ∂l/∂θj is the difference between n times
the empirical mean of Bj(y) and the fitted mean relative to the indicated
measure. Similarly, the Hessian of C(θ) can be interpreted as the covariance
matrix of the basis functions relative to this measure.

6.2.2 Basis functions

The Logspline space that is spanned by B1, . . . , BK−1 differs in a few as-
pects from the general one-dimensional B-spline basis that is described in
Chapter 2:

• the constant function 1 is not in this space;

• some of the basis functions are nonzero on the intervals [L, t1] and
[tK , U ], even when L is −∞ or U is ∞.

Among bases with these property that span a spline space as described in
Section 6.2.1, the Logspline basis has the fewest number of nonzero basis
functions for any y. The Logspline basis is defined as follows:

• The first basis function B1 is linear and strictly decreasing on [L, t1]
and is 0 on [t3, U ]. It is not hard to establish that, except for a positive
multiplicative factor, this uniquely defines B1. Curiously,

B1(y) = a1

∫ t3

y

∫ t3

u

Bl(v; t1, t2, t3) dv du

for some a1 > 0, where Bl(y; t1, t2, t3) is the linear B-spline defined
by the three knots t1, t2 and t3.

• The second basis function B2 is linear and strictly increasing on
[tK , U ] and is 0 on [L, tK−2]. Except for a positive multiplicative
factor, this defines B2. Explicitly,

B2(y) = a2

∫ y

tK−2

∫ u

tK−2

Bl(v; tK−2, tK−1, tK) dv du

for some a2 > 0.
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FIGURE 6.7. The Logspline basis.

• If K > 3 the third basis function B3 is 0 on [L, tK−3] and constant
on [tK , U ]. Except for a positive multiplicative factor this defines B3.
Explicitly,

B3(y) = a3

∫ y

tK−3

Bq(u; tK−3, tK−2, tK−1, tK) du

for some a3 > 0, where Bq(x; tK−3, tK−2, tK−1, tK) is the quadratic

B-spline defined by the four knots tK−3, . . . , tK).

• If K > 4 the jth basis function Bj is the cubic B-spline defined by
the five knots tj−3, . . . , tj+1, for j = 4, . . . , K − 1.

Figure 6.7 shows the Logspline basis for a situation with K = 6. For the
Logspline basis, a column vector θ is feasible if θ1 < 0 or L > −∞ and
θ2 < 0 or U < ∞. For computational reasons it is convenient that feasibility
depends only on two of the parameters θj . Note that the Logspline basis
does not have the B-spline property that

∑
j Bj(y) = 1 for all y.

We can also define a Logspline basis for K = 2 in which case the basis
is 1-dimensional. The basis function should be linear on [L, t1] and [t2, U ],
which implies that B1(y) = y. Thus for K = 2 feasible Logspline models
exist only if L > −∞ or U < ∞, and the Logspline densities are exponential
densities restricted to [L, U ].
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6.2.3 Fitting Logspline models

Since the log-likelihood function for Logspline strictly is concave and Log-
spline models have only a moderate number of parameters, finding the max-
imum likelihood estimate θ̂ using a Newton–Raphson algorithm is straight-
forward (see Chapter 4). There are two complications:

1. to compute the normalizing constant, the Hessian, and the score vec-
tor requires numerical integration (see Section 6.7.3); and

2. when L = −∞ or U = ∞ there are constraints on θ1 or θ2. See
Section 6.7.4 for a detailed discussion.

6.2.4 Knot selection

The knot selection methodology involves initial knot placement, stepwise
knot addition, stepwise knot deletion, and final model selection based on
AIC.

Initially we start with Kinit knots. Stone, Hansen, Kooperberg, and
Truong (1997) use Kinit = min(2.5n.2, n/4, N, 25), where N is the num-
ber of distinct Yi’s (see Section 5.5.1 for a motivation for having a rule of
this form). While for many of the methodologies discussed in this book we
start with the minimal model (which in case of Logspline would be three
knots), we have found that for Logspline a somewhat larger number is
needed to give the initial model sufficient flexibility and prevent numerical
problems during the first few knot additions. The initial knots are placed
according to the rule described in Section 6.7.1. This rule places knots at
selected order statistics of the data. The extreme knots are placed at the
extreme observations and the interior knots are positioned such that the
distances (on an order statistic scale) between knots near the extremes of
the data are fairly small and almost independent of the sample size, while
the knots in the interior are positioned approximately equidistantly.

The knot addition and knot deletion procedure that is employed for Log-
spline is essentially the procedure described in Section 3.3.3. In particular,
at each addition step of the algorithm we first find a good location for a
new knot in each of the intervals (L, t1), (t1, t2), . . ., (tK−1, tK), (tK , U) de-
termined by the existing knots t1, . . . , tK . To do this we maximize in each
interval the Rao statistic for potential knots located at the quartiles of the
data within each interval. The location is then further optimized, which
may involve computing a few more Rao statistics [see Section 5.5.2 for an
implementation that is used for a number of methodologies and Section
6.7.2 for a couple of details relevant for Logspline]. The search algorithm
selects among the best candidates within the various intervals. After a max-
imum number of knots Kmax is reached [Stone, Hansen, Kooperberg, and
Truong (1997) uses Kmax = min(4n.2, n/4, N)], we continue with stepwise
knot deletion. (For some examples where we knew a priori that there were
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many modes, we have used Kmax = min(2.5n.5, n/4, N).) During knot dele-
tion we successively remove the least significant knot, where Wald statis-
tics are used to measure significance. We continue this procedure until only
three knots are left.

Among all models that are fit during the sequence of knot addition and
knot deletion we choose the model that minimizes AIC with default penalty
parameter a = log n (BIC), as described in Chapter 4.

The default values for Kinit and Kmax were developed by Kooperberg and
Stone (1991) based on a simulation study. In this study a trade-off was made
between how often a Logspline density estimate based on a random sample
from a true unimodal density ended up being multimodal and how often a
Logspline density estimate based on a random sample from a true bimodal
density ended up being unimodal. This rule was then further modified by
Kooperberg and Stone (1992) and Stone, Hansen, Kooperberg, and Truong
(1997). Kooperberg and Stone (1991) and Kooperberg and Stone (1992)
both employed algorithms that involved only stepwise deletion, in which
context the size of the largest model is considerably more important than
for the algorithm involving stepwise addition and deletion that is described
in this chapter. The power (n.2) can be motivated to some extent from
theory in that the number of knots clearly needs to increase as a small
power of n, and this power should equal 1/5 under the assumption that
the true density function has bounded second derivative.

6.3 How much to smooth: more examples

We now return to the income data to examine more closely the process of
stepwise addition of knots. As it turns out, the density estimate for this
data set, even with the initial 15 knots, looks quite reasonable. However,
in Figure 6.8 we show part of the sequence of models obtained during the
process of stepwise addition when we initially fit a model with 7 knots.
The first panel shows the fit with 7 knots and five of the initial knots
(the remaining two knots are outside the plotted area), and for the other
five panels we show the location of the additional knot. For all but the
addition of the 9th knot, which has a Rao statistic of 875, all Rao statistics
are between 15 and 60. Note that three of the knots that are added are
close to the sharp peak. The third added knot is not close to that peak,
but the nonlocal effect of cubic spline knots results in this knot noticeably
increasing the height of the peak.

As mentioned earlier, an important issue in density estimation is “how
much to smooth?”, which, for Logspline, means “how many knots?”. When
Logspline models are selected using AIC (3.2.29), this translates into “which
value of the penalty parameter to use?” As it turns out, for the income data,
the fits obtained by Logspline are surprisingly insensitive to the choice of



6.3 How much to smooth: more examples 289

 7 knots  8 knots  9 knots

 10 knots  11 knots  12 knots

FIGURE 6.8. Logspline density estimate the income data for five steps of knot ad-
dition starting with a model with 5 knots. The dashed lines indicate the location
of the (new) knots.

the penalty parameter a. In particular, the value of a that was used was
the default value log 7125 ≈ 8.87. The same fit would have been obtained
for any value of a between 5.39 and 9.91; moreover, all values of a between
0.25 and 83.11 yielded very similar Logspline estimates. These estimates
have at least three knots close to the sharp peak, with the heights of the
peak being very close to that in Figure 6.5. The only difference between
these fits is whether some tiny bumps in the tail are present and whether
a small bump in the trough between the sharp peak and the second mode
is present. This robustness of the methodology is typical for Logspline,
especially when applied to larger data sets.

When it is less clear whether modes are present, the penalty parameter
may have a larger Influence. A data set that illustrates this issue particu-
larly well is the Mexican stamp data, which has been used extensively in
the density estimation literature. What makes this data set interesting is
the potentially large number of modes: some references suggest as many as
seven modes (Minnotte and Scott 1993; Marron and Chaudhuri 1999). The
data set consists of the thicknesses of 485 Mexican stamps printed in 1872–
1874 from the 1872 Hidalgo issue. It was first published in Wilson (1983)
and brought to the attention of the statistical community in Izenman and
Sommer (1988). To allow for Logspline models with many modes, we de-
cided to increase the maximum number of knots Kmax from the default
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FIGURE 6.9. Logspline density estimates for the stamp data for various values of
the penalty parameter a, which we refer to as special models. The special model
with solid thick lines uses the default value of a.

value of 15 to 20, and we reduced the minimum distance between knots
(dmin in equation (5.5.1)) from the default value of three to two. The thick
solid line in Figure 6.9 is the Logspline density estimate with the default
penalty parameter a = log 485 ≈ 6.18, which has 7 knots and 3 modes.
Depending on our choice of a, we could have obtained several other mod-
els. In particular, Table 6.1 summarizes the models that were fit during
stepwise deletion. As it turned out, with this data set, for every number of
knots, the model that was obtained during stepwise deletion had a higher
log-likelihood than the model with the same number of knots that was ob-
tained during stepwise addition. Table 6.1 indicates for which values of the
penalty parameter a a particular model is optimal.

As we see from Table 6.1, the model with 7 knots would have been
selected for any value of a between 5.05 and 42.38, but for smaller values
of a models with more knots and for larger values of a models with fewer
knots would have been obtained. In Figure 6.9 we also show the density
estimates for the models that are indicated by / with 3, 5, 13, and 15 knots;
these estimates have 1, 2, 6 and 7 modes, respectively. The densities with
more than 15 knots have 7 modes and look very similar to the one with 15
knots.

To get a better feeling about the appropriate number of modes, we carried
out a small simulation study. We simulated 250 independent samples of size
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minimum maximum
number log- AIC penalty for which
of knots likelihood a = log 485 this model is selected

3 1406.57 −2800.78 66.23 Inf /
4 1423.55 −2828.55 NA NA
5 1472.81 −2920.87 42.38 66.23 /
6 1472.81 −2914.69 NA NA
7 1515.18 −2993.26 5.05 42.38 ≺ /
8 1515.91 −2988.53 NA NA
9 1518.71 −2987.95 NA NA

10 1519.28 −2982.90 NA NA
11 1523.95 −2986.06 NA NA
12 1525.43 −2982.84 NA NA
13 1530.32 −2986.43 4.46 5.05 /
14 1530.36 −2980.32 NA NA
15 1534.78 −2982.98 3.53 4.46 /
16 1536.55 −2980.33 1.60 3.53
17 1537.35 −2975.75 0.49 1.60
18 1537.59 −2970.05 0.44 0.49
19 1537.81 −2964.30 0.00 0.44
20 1537.81 −2958.12 0.00 0.00

TABLE 6.1. Summary of the Logspline models for the stamp data. The symbol
/ indicates the special models shown in Figure 6.9. The symbol ≺ indicates the
model selected by BIC.

485 from each of the five densities shown in Figure 6.9, which we refer to as
the special models. To each of these 250 simulated samples we fit Logspline
models with penalty parameters 2, 4, 5, log(485) ≈ 6.18, 10, 50, and 100,
which we refer to as the simulated estimates corresponding to the special
model and specified penalty parameter. For each such simulated estimate
we then counted the number of modes. Table 6.2 summarizes how often a
simulated estimate has fewer modes or more modes than the Logspline fit
to the stamp data with the same penalty parameter.

From this table we note that it is extremely unlikely that the “true” den-
sity of the stamp data behaves like the the special model in Figure 6.9 with
1 mode (3 knots), the reason being that simulated estimates corresponding
to this special model with various penalty parameters do not look like the
Logspline fit to the stamp data with that penalty parameter. In particular,
although the Logspline fit to the stamp data with the default penalty pa-
rameter a = log(485) has 3 modes, all but two of the simulated estimates
with that penalty parameter have fewer than 3 modes; the fitted density
with a = 50 has 2 modes, but all of the corresponding simulated estimates
have fewer than 2 modes; the fitted density with a = 5 has 6 modes, but
all of the corresponding simulated estimates have fewer than 6 modes; and
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penalty parameter a 2 4 5 log 485 10 50 100
modes for stamp data 7 7 6 3 3 2 1
Simulated from Simulated estimates have fewer nodes
the special model than the fitted density to the stamp data
having with the same penalty parameter
1 mode (3 knots) 250 250 250 248 249 250 0
2 modes (5 knots) 249 250 250 215 243 76 0
3 modes (7 knots) 248 249 250 0 0 55 0
6 modes (13 knots) 216 248 194 0 0 48 0
7 modes (15 knots) 181 218 158 7 13 52 0

Simulated from Simulated estimates have more nodes
the special model than the fitted density to the stamp data
having with the same penalty parameter

1 mode (3 knots) 0 0 0 0 0 0 0
2 modes (5 knots) 0 0 0 2 0 0 6
3 modes (7 knots) 0 0 0 26 7 35 6
6 modes (13 knots) 1 0 2 149 42 47 1
7 modes (15 knots) 16 3 20 150 60 57 2

TABLE 6.2. Number of times out of 250 that Logspline estimates with a specified
penalty parameter based on data sets simulated from the special models in Figure
6.9 contain fewer (top half) or more (bottom half) modes than the Logspline
estimate with the same penalty parameter based on the stamp data.

so on. The same reasoning rules out the true density from behaving like
the special model with 2 modes (5 knots). The special model obtained by
applying the default penalty parameter log 485 to the stamp data has 3
modes (7 knots). The numbers of modes of corresponding simulated esti-
mates are consistent with those based on the stamp data when a ≥ log 485,
but inconsistent (too few) for smaller values of a. The special model with
6 modes (13 knots) is not consistent with the corresponding simulated es-
timates for a = 4, but it is consistent or reasonably so for the other values
of a. Thus, perhaps the true density of the stamp data behaves like the
special model with 7 modes (15 knots). On the other hand, the Logspline
fit to the stamp data with penalty parameter a = 2 or penalty parameter
a = 4 has 7 modes. However, in 181 out of 250 simulations for a = 2 and
218 out of 250 simulations for a = 4, the corresponding simulated estimates
have fewer than 7 modes. These numbers do not rule out the true density
from having 7 modes, but they are definitely worrisome. In addition, we
have observed that changing some of the options of Logspline can yield
substantial changes in the fit to the stamp data. Our conclusion is that
there is not enough stamp data for Logspline accurately to determine the
number of modes of the true density.

In our experience it is fairly unusual for the Logspline estimate to depend
so strongly on the penalty parameter and for the default value of a not to
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seem to give a good estimate. Further examination of the stamp data set
reveals that the data are severely rounded (they have only three significant
digits), so they certainly could be considered as interval censored. Among
the 485 points in this data set, there are only 62 distinct values, and some
of the modes and valleys in the fits with 13 and 15 knots describe features
that may model observations only in the neighborhood of two consecutive
distinct values in the data set. More generally, this example illustrates the
desirability of examining Logspline estimates for different values of the
penalty parameter.

6.4 Free knot splines and inference

A problem with polynomial spline methods as described in this monograph
is that traditional inferential procedures (using the inverse of the Hessian
matrix as the covariance matrix) carry out inference conditional on the form
of the basis functions and the location of the knots. As such, the adaptivity
in selecting the form of these basis functions, which arguably is a strength
of polynomial spline methodologies, is ignored. There are roughly two ways
around this: use the bootstrap and/or simulation approach (see later in this
section, as well as the examples in Sections 7.2.5, 7.3.1, and 7.3.2); use free
knot splines.

6.4.1 Free knot splines

In free knot spline methodology, the locations of the knots are treated as
additional parameters to be estimated by maximum likelihood along with
the other parameters. Logspline density estimation with free knots is dis-
cussed in Kooperberg and Stone (2001b). Computing the maximum likeli-
hood estimates is a highly nontrivial problem since the likelihood function
(6.2.4) is severely multimodal when the knots t1, . . . , tK are parameters,
and degenerate solutions exist when too many of the knots tj get close
together. Kooperberg and Stone (2001b) discuss these numerical issues in
detail. Chapter 12 discusses theoretical properties of function estimation
with free knot splines. Lindstrom (1999) discusses linear regression using
polynomial splines with free knots. In the approaches of both Lindstrom
(1999) and Kooperberg and Stone (2001b), the use of the Jupp (1978)
transform is critical. This transformation replaces the knots t1, . . . , tK by
new parameters

hj = log
tk+1 − tk
tk − tk−1

, 1 ≤ j ≤ K.

Here t0 = L, and tK+1 = U . For Logspline density estimation it is still
necessary to select K. Kooperberg and Stone (2001b) use AIC (Chapter 4)
with penalty parameter a = 2 for this.
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With the use of free knot splines, it is straightforward to obtain ap-
proximate (pointwise) confidence intervals using the inverse of the Hessian
(which is now of dimension 2K+1) as the covariance matrix. Unfortunately,
however, Kooperberg and Stone (2001b) conclude, based on a simulation
study, that the coverages of nominal 95% confidence intervals using the
free knot algorithm, while closer to 95% than the coverages ignoring knot
selection, are still well below 95%.

6.4.2 The bootstrap

Alternatively, we can employ the bootstrap in combination with either the
stepwise knot deletion algorithm of Kooperberg and Stone (1992) or the
stepwise addition and deletion algorithm of Stone, Hansen, Kooperberg,
and Truong (1997) to obtain confidence intervals corresponding to Log-
spline density estimates. Here we use the former algorithm and examine
the coverage of bootstrap percentile intervals (Efron and Tibshirani 1993)
for both the log-density and the distribution function. Thus, we take B
(we need B ≥ 1000) samples Yi with replacement of size n from the data
Y1, . . . , Yn, and for each sample Yi we obtain the Logspline density esti-
mate. The 95% pointwise confidence interval for log f̂(y) is then from the
2.5th to the 97.5th percentile of the B bootstrap estimates for the log-
density.

Clearly, the bootstrap is a computationally time consuming procedure
for getting confidence intervals, since we need to fit B Logspline densi-
ties. However, it is still slightly faster than using the algorithm developed
in Kooperberg and Stone (2001b) for fitting Logspline densities with free
knots.

A considerably cheaper approach is to hope that the Logspline estimates
of the log-density have approximately a normal distribution, but that the
estimates of the standard errors that are obtained using standard tech-
niques are too small. If so, we can get by with a much smaller number B
of bootstrap estimates (say B = 25) by using these estimates to obtain

pointwise bootstrap estimates of SEB(log f̂(y)) and transform those back
to obtain confidence intervals for f .

6.4.3 A comparison

We now summarize the simulation results from Kooperberg and Stone
(2001a,2001b) , in which we generated 250 samples of size 250 and 250
samples of size 1000 from each of four distributions:

Normal 2 A mixture of two normal distributions, so that the true density
of Y is given by

f(y) = c
(1

3
fZ1

(y) +
2

3
fZ2

(y)
)
ind(−4, 8),
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where Z1 has a normal distribution with mean 0 and standard de-
viation 0.5, Z2 has a normal distribution with mean 2 and standard
deviation 2, ind(·) is the usual indicator function, and c is the multi-
plier to correct for the truncation to (−4, 8).

Normal 4 As in example 1, but the mean of Z2 is 4 and Y is truncated
to (−2, 10).

Normal 6 As in example 1, but the mean of Z2 is 6 and Y is truncated
to (−1.5, 12).

Gamma 2 A gamma distribution with shape parameter 2 and mean 1,
with Y truncated to the interval (0, 9).

The Normal 2 density has one mode, but a clear second hump; Normal 4
has two, not very well separated, modes; Normal 6 has two well separated
modes; and the Gamma 2 density is unimodal.

In Table 6.3 we compare the coverages of four approaches for getting
confidence intervals. Two columns use the free spline methodology. These
columns are the coverages obtained by using the (2K + 1) × (2K + 1)
Hessian that treats knots as free parameters, labeled “SE”, and the one
using the (K+1)×(K+1) Hessian that assumes the knots are fixed, labelled
“SEFX”. As can be seen from this table, the coverages are well below the
nominal 95% level. The last two columns are using bootstrap samples for
the logspline density estimation procedure of Kooperberg and Stone (1992).
The third column is based on 1000 bootstrap samples, and the confidence
intervals are from the 2.5th through the 97.5th (pointwise) percentiles. For
the fourth column we generated only 25 bootstrap samples, computed the
pointwise standard errors for the log-density, and then transformed those
to obtain the confidence intervals.

It is clear from this table that the confidence intervals based on the free
knot spline standard error or the fixed knot spline standard error have
too low coverage. Surprisingly, the coverages for the bootstrap percentile
intervals are consistently too high. It is our impression that this is due to
some instability in the stepwise logspline algorithm when there are many
repeat observations, causing the intervals to be occasionally too large. This
is in line with what we will see for the income data in the next section.
Interestingly, the coverages in the last column of Table 6.3 corresponding
to the bootstrap SE approach, are not only very close to 95% on average,
but also show little variation. Thus, our current approach to inference for
Logspline density estimates would be to use this last approach.
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Free Knots Bootstrap
Density SE SEFX Percentiles SE

n = 250 Normal 2 84.0 77.4 97.4 95.2
Normal 4 88.8 82.5 97.4 96.4
Normal 6 89.0 84.0 96.5 94.6
Gamma 2 86.2 81.2 97.8 97.3

n = 1000 Normal 2 89.2 79.6 96.8 94.4
Normal 4 89.3 82.7 98.0 94.7
Normal 6 86.2 81.4 96.3 92.9
Gamma 2 84.0 77.3 97.4 95.4

Average 87.1 80.7 97.2 95.1

TABLE 6.3. Coverages for four different approaches to obtaining confidence in-
tervals for a log-density, estimated using logspline.

6.5 Censoring and truncation

6.5.1 The Fyn diabetes data

The Fyn diabetes data, which is extensively discussed in Andersen, Borgan,
Gill, and Keiding (1993) consists of data on the 1499 diabetes patients that
lived on July 1, 1973, in the County of Fyn in Denmark. The data was
collected by Green, Hauge, Holm, and Rasch (1981). For all patients it was
known whether they were still alive and living in Fyn on December 31,
1981, and, if not, whether and when they died or moved. We also know the
age of each patient, as well as the age at which diabetes for this patient
was diagnosed. There are 783 men, of whom 254 died, and 716 women, of
whom 237 died. It is of interest to see how the survival distribution for
the Fyn diabetics differs from the general Danish population. Therefore we
would like to estimate the density of the age at dying of the Fyn diabetics.
There are two complications that we need to deal with before we can apply
Logspline.

• At the end of the study the majority of the patients were still alive.
Clearly, when someone is still alive on December 31, 1981, and is, say,
73 years old, we know something: the age of this person at dying is
at least 73 years. This phenomenon is called (right-)censoring.

• Not all patients enter the study at the same age. In particular, po-
tential participants who have died before the study started are not
included. Thus, if we consider the year when a participant was born as
random, among all diabetics ever alive in Fyn, patients who achieve
old age have a larger probability of actually being part of the study
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than those who die at young age. Ignoring this sampling mechanism
induces bias in our estimate. This type of selection of participants is
called (left-)truncation.

6.5.2 Implications for Logspline

The regular Logspline approach

Before we continue our analysis of the Fyn diabetes data, we first discuss
the extensions of Logspline needed to deal with censored and truncated
data. Censoring and truncation are discussed in more detail in the chap-
ter about survival analysis (Chapter 7). A brief discussion is provided in
this section, but readers unfamiliar with these concepts may want to read
the more detailed discussion in Section 7.1.2. Logspline density estimation
with censored data has previously been discussed in Kooperberg and Stone
(1992); this is the first published discussion for an extension to Logspline
for truncated data.

A random variable Y is said to be censored if the exact value of Y
is unknown, but it is known that Y ∈ A for some interval A ⊂ R. In
survival analysis it is not uncommon that at the end of a study some of
the participants are still alive, as is the case for the Fyn diabetics study. If
this is the case for a particular participant, we know that the participant
has at least survived until the end of the study, which is at, say, time C.
Since we know that eventually this participant would have died, we know
that Y ∈ A = (C,∞). This particular form of censoring is called right-

censoring, and we usually will say that Y is censored at C. For interval-

censoring we know that Y ∈ A = [A1, A2] (or, maybe Y ∈ A = (A1, A2]).
Interval censoring occurs, for example, when participants in a medical study
are examined periodically, and at some examination it is known that a
participant did not have a certain disease at the previous examination,
but that the participant does have the disease at the current examination,
thus the participant contracted the disease sometime between these two
examinations. Rounding of data is also a form of interval-censoring1

Truncation occurs when a random variable Y (which may or may not
be censored) is only included in the sample if it is in some interval B. The
most common form of truncation is left-truncation. This happened for the
Fyn diabetics study, where only those diabetics who were alive when the
study started could be included. If a person had age T at the beginning of
the study then B = [T,∞), and we say that Y is (left-)truncated at time
T .

1The stamp data, discussed in Section 6.3 can be analyzed as an interval-censored
data set by Logspline. Since the censoring intervals are quite narrow, the results for
Logspline are very similar to those described earlier.
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If a random variable Y is censored to be in A and truncated to be in
B the likelihood of Y is

∫
A∩B fY (y)dy/

∫
B fY (y)dy if A ∩ B has positive

length, fY (A)/
∫

B
fY (y)dy if A consists of a single point, which is in B,

and 0 if A ∩ B = ∅. In particular, the contribution to the log-likelihood of
a random variable Y that may be censored and is truncated at time T is
identical to the contribution of an untruncated random variable Y minus
the contribution of an independent untruncated random variable that is
right-censored at time T .

In principle it appears straightforward to design a Logspline procedure
that can deal with censored and truncated data. In practice there are a
number of complications.

• When there is censoring or truncation, the log-likelihood function for
Logspline is not guaranteed to be concave. In our experience this is
usually not a problem. We suspect that the log-likelihood function is
often close to being concave. In addition, when we add a basis func-
tion, we already start from the maximum of the likelihood function
in a one-dimensional smaller subspace, usually a pretty good start-
ing value. Nevertheless, to deal with possible nonconcavity, we rec-
ommend checking regularly during the Newton–Raphson iterations
whether H is negative definite, and, if at some stage H fails to be
negative definite, replacing it by H′ = H − aI, where a is slightly
larger than the largest eigenvalue of H if this eigenvalue is positive
(see Kennedy and Gentle 1980, Section 10.2.2, and Kooperberg and
Clarkson 1997), or to use an off-the-shelf optimizer that does not
require the Hessian to be concave at every iteration, such as the S-
Plus function nlminb(), which is based on the trust-region approach
developed by Gay (1983).

• When a large amount of data is censored, it is not clear whether the
(effective) sample size, as used for such parameters as the maximum
number of knots Kmax and the AIC penalty parameter a, is really
still n. For example, a right-censored observation at L contains no
information about f . We defer discussion of this issue to Chapter 7,
but remark that in some survival analysis applications (e.g. power
calculations) the driving force is the number of uncensored observa-
tions.

• With censored and truncated data the expressions for the Hessian and
the score function become considerably more complicated and many
more numerical integrals need to be computed. See Kooperberg and
Stone (1992).

Using the Kaplan–Meier estimate

Another approach to Logspline density estimation with possibly right-
censored and left-truncated data was discussed in Koo, Kooperberg, and
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Park (1999). The main idea behind this approach is that for complete (un-
censored and untruncated) data the score equations (6.2.6) that are solved

to obtain the MLE θ̂ can be written as

∫ U

L

Bk(y)f(x; θ̂)dy =

∫ U

L

Bk(y)dF̂ (y), (6.5.1)

where F̂ (y) is the usual empirical distribution function. When some of
the data is right-censored or left-truncated, we can use the product-limit
(Kaplan–Meier) estimator F̃ (y) to obtain an estimate of the distribution
function2(Andersen, Borgan, Gill, and Keiding 1993).

Assume that we observe (Xi, δi, Ti), i = 1, . . . , n, such that if δi = 1
then Yi = Xi is an independent sample of F (y|y > Ti), while if δi = 0 Yi

is censored at Xi and truncated at Ti. The product limit estimator then
takes the form

F̃ (y) =
∑

i:δi=1

viI(y ≥ Yi),

with vi > 0 with
∑

vi ≤ 1. Note that if all Y are uncensored and untrun-
cated then vi = 1/n. The idea is to replace (6.5.1) by

∫ U

L

Bk(y)f(x; θ̂)dy =

∫ U

L

Bk(y)dF̃ (y), (6.5.2)

which means that we can fit a Logspline model using the algorithm for
uncensored data, by using case weights vi for the Yi.

Since for data sets that contain many truncated or censored observations
the vi may be very different (although typically vi and vj are similar when
Yi and Yj are close) the Rao and Wald statistics as well as the model
selection using AIC need to be modified. For example, an increase in the
log-likelihood of 1 for the addition of a knot in a region where the typical
vi is 0.1 is much more impressive than an identical increase in the log-
likelihood for the addition of a knot in a region where the typical vi is 10.
See Koo, Kooperberg, and Park (1999) for details.

Comparison

Clearly, both approaches to Logspline with censored data have their advan-
tages. The regular Logspline approach is applicable with interval-censoring
or forms of truncation other than left-truncation. This approach also does
not require any “fudging” with the model selection, as the approach using
the Kaplan–Meier estimate does. On the other hand, the approach using
the Kaplan–Meier estimate is much faster, since it does not require that all

2If all observations are left-truncated, this is formally only an estimate of the condi-
tional distribution function F (y|y > Tmin), where Tmin is the minimum of the truncation
times; we ignore this distinction.
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the additional integrals involved with censoring or truncation be computed.
Users with a more traditional survival analysis background might find the
relation with the Kaplan–Meier estimate appealing. Koo, Kooperberg, and
Park (1999) establish some theoretical rates of convergence, which are not
available for regular Logspline with censored data.

6.5.3 The Fyn diabetes data analyzed

For each person the data set contains, among other information, the age
at which the person enrolled in the study (Ti) and the age at which the
person left the study (Yi), either because the participant moved (censor-
ing), the study ended (censoring) or the participant died (uncensored). The
participants who stayed in the study until the end were followed for seven
and a half years. For each participant we know the gender and whether the
participant was censored (δi = 0) or died (δi = 1). The survival data Yi is
left-truncated by the age at which the participant entered the study Ti.

It is of interest to assess how different the survival functions for the Fyn
diabetics are from the general Danish population. On the left side of Figure
6.10 we show the Logspline density estimate of the survival function of Fyn
diabetics based upon the left-truncated sample (Yi, δi, Ti) using the regular
Logspline methodology, as well as the estimate using the Logspline method-
ology with the score equations based on the Kaplan–Meier estimate. As a
comparison, we have drawn the survival function based upon the Danish
vital statistics for 1975 and the Kaplan–Meier estimate for the survival dis-
tribution among the Fyn diabetics. The youngest death in the Fyn data is a
19 years old woman. Formally we can thus only estimate the survival distri-
bution of the Fyn diabetics, conditional on surviving until age 19. However,
since few people die before that age, we ignore this distinction. Still, we
note that at about age 20 years the survival function based on the Danish
vital statistics is indeed slightly lower than those corresponding to the Fyn
diabetics - implying that a small percentage of the population indeed does
die before age 19. We also notice that the three survival functions based
on the Fyn data appear almost identical, suggesting that both Logspline
procedures provide good fits to the data. The Logspline estimate using the
Kaplan–Meier estimate follows, not surprisingly, the Kaplan–Meier curve
more closely. Moreover, the survival function based on the Danish vital
statistics is clearly very different from those based on the Fyn diabetics
data.

On the right side of Figure 6.10 we show density estimates for the Fyn
diabetes data using both approaches for Logspline to dealing with censored
and truncated data. Interestingly, we note that each estimate yields a bi-
modal distribution, suggesting that certain diabetics (e.g. some of those
having juvenile diabetes) tend to die at a younger age than the other dia-
betics. We note that the two Logspline estimates are fairly similar.
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FIGURE 6.10. Logspline density estimate and survival function estimate for the
Fyn diabetics data.

To show that ignoring either truncation or censoring leads to erroneous
estimates, we applied the regular Logspline procedure to the Fyn data
ignoring either the censoring (by assuming that patients die at the censoring
time), the truncation, or both. The estimates of the survival function and
the density function are given in Figure 6.11. As we can see, ignoring the
proper sampling mechanism gives erroneous results, where accidentally the
effect of the censoring and truncation roughly offset each other for this data
set.

6.6 Multivariate density estimation

Multivariate Logspline density estimation brings with it a number of com-
plications. A first approach to multivariate density estimation, compatible
with other extended linear models, would be to use either linear or cubic
splines, and to use an ANOVA decomposition type algorithm to build a
Logspline model. For bivariate density estimation this would lead to the
following model:

f(y1, y2; θ) = exp
(
θ1B1(y1, y2) + · · · + θpBp(y1, y2) − C(θ)

)
,
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FIGURE 6.11. Logspline density estimate and survival function estimate for the
Fyn diabetics data ignoring the correct sampling scheme.

with the normalizing constant

C(θ) = log
( ∫ U1

L1

∫ U2

L2

exp
(
θ1B1(y1, y2) + · · · + θpBp(y1, y2)

)
dy1 dy2

)
.

Even for linear splines this integral can no longer be computed analytically,
but it can be reduced to a univariate integral that is closely related to the
exponential integral (Abramowitz and Stegun 1965). For cubic splines this
is no longer possible, and genuine multidimensional numerical integrals
need to be computed.

The requirement that θ be feasible (6.2.1) may now result in constraints
on all basis functions that do not vanish on a bounded interval. For bivari-
ate density estimation this may lead to as many as 2k1+2k2 constraints and
for trivariate density estimation as many as O(2k1k2 +2k1k3 +2k2k3) con-
straints, where ki is the number of knots in the ith dimension. In practice
this means that for anything but bivariate Logspline density estimation,
we need to fix integration bounds.

Probably for these reasons, the methodological development of multivari-
ate Logspline density estimation has been limited. Koo (1996) discusses
bivariate Logspline density estimation using cubic splines with finite in-
tegration bounds. Kooperberg (1998) uses linear splines to estimate the
bivariate density when some of the data may be censored. As neither of



6.7 Technical details 303

these two approaches has publically available software, and implementa-
tion of these methods is nontrivial, we omit further discussion. In Chapter
9 we discuss an entirely different approach to bivariate Logspline density
estimation, using a triangular spline basis.

6.7 Technical details

6.7.1 Initial knot placement

Kooperberg and Stone (1991) discuss a number of requirements for auto-
matic knot placement for Logspline models. Some of these requirements
come from the fact that we want f̂ to behave appropriately when the data
is transformed linearly. In particular:

• knots should be placed at or near selected order statistics;

• the corresponding indices should be symmetrically distributed about
(n + 1)/2;

• there should be knots at the first and last order statistics;

• the pattern of extreme knots should be approximately independent
of sample size, so that the tails are estimated with the same accuracy,
independently of sample size;

• the middle knots should be approximately at equally spaced indices,
since when we are estimating the middle of the density, it should
make no difference whether we are at, say, the 20th percentile or the
60th percentile of the data.

We provide details of the initial knot placement for the situation in which
all Yi are distinct and uncensored. Let K denote the number of knots that
we wish to position. The knot placement will be determined by a sequence
of numbers r1, . . . , rK such that 1 ≤ r1 < · · · < rK ≤ n. Let 1 ≤ k ≤ K
and let m denote the greatest integer in rk , so that m ≤ rk < m + 1. Then
the kth knot will be placed at

(m + 1 − rk)Y(m) + (rk − m)Y(m+1) .

(In particular if rk = m, the kth knot is placed at Y(m).) Our symmetry
condition is that

rk + rK+1−k = n + 1 , 1 ≤ k ≤ K,

which implies that

rk+1 − rk = rK+1−k − rK−k , 1 ≤ k ≤ K.
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In order that there be knots at the first and the last order statistics, we
choose r1 = 1 and rK = n.

Set gk = rk+1 − rk for 1 ≤ k ≤ K − 1. In order to satisfy the remaining
features, we ended up by requiring that

gk = 4 · [(4 − ε) ∨ 1] · . . . · [(4 − (k − 1)ε) ∨ 1] , 1 ≤ k ≤ K

2
,

where ε ∈ R; here a∨b = max(a, b). The constant ε is determined as follows:
if K is an odd integer, then 2r(K+1)/2 = n+1; if K is an even integer, then
rK/2 + rK/2+1 = n + 1.

We will now give some examples of our knot placement rule, in which rk

has been rounded off to the nearest integer.

Example 1

n = 150, K = 7 and ε
.
= .1881. The rounded-off values of rk are as follows:

k 1 2 3 4 5 6 7
rk 1 5 20 75 131 146 150

Example 2

n = 150, K = 12 and ε
.
= 1.2329. The rounded-off values of rk are as

follows:

k 1 2 3 4 5 6 7 8 9 10 11 12
rk 1 5 16 33 50 67 84 101 118 135 146 150

Example 3

n = 500, K = 10 and ε
.
= .5300. The rounded-off values of rk are as follows:

k 1 2 3 4 5 6 7 8 9 10
rk 1 5 19 60 158 343 441 482 496 500

When several of the Yi are identical, this rule needs to be modified slightly
to prevent knots from coinciding.

6.7.2 Stepwise addition for Logspline

The algorithm for finding the location of a potential new knot for Logspline
is described in Section 5.5.2. Note that for Logspline when we compute the
Rao statistic for a new knot, we do not recompute the complete basis; in-
stead, we consider a new basis function that is similar to B2(y) (see Section
6.2.2), and which depends on the new knot, tK−1, and tK . This way, for
each candidate for a new knot only one column of the Hessian and one
element of the score function need to be computed, all other elements hav-
ing already been computed during the most recent set of Newton–Raphson
iterations.
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6.7.3 Numerical integration

All of the integrals to compute the normalizing constant, Hessian and score
function (6.2.2, 6.2.5, 6.2.7) are easily seen to be sums of integrals of the
form ∫ b

a

p1(x) exp p2(x) dx,

where a is L or one of the knots t1, . . . , tK , b = t1 if a = L, b = tj+1 if
a = tj , for j = 1, . . . , K−1, b = U if a = tK , p1(x) is a polynomial of order 1
for the normalizing constant and at most of order 4 or 7 for every element
of the score vector or the Hessian, and p2(x) is a polynomial of order 1
on the intervals [L, t1] and [tK , U ] (thus the integrals can be computed
analytically on these intervals) and a polynomial of order 4 on each of the
intervals [tj , tj+1]. In addition, for all integrals over each of the intervals
[tj , tj+1] the polynomial p2(x) is the same for the normalizing constant and
all elements of the score function and Hessian for fixed θ. Thus, to compute
the normalizing constant and all entries of the score vector and the Hessian,
it suffices to compute the integrals

cij =

∫ tj+1

tj

xi exp
(
θ1B1(x) + · · · θpBp(x)

)
dx

for 0 ≤ i ≤ 6 and 1 ≤ j ≤ K − 1. The integrals cij are efficiently computed
for all i simultaneously using Gaussian quadrature (Abramowitz and Ste-
gun 1965). We use a limited number of integration points on each interval
during the Newton–Raphson iterations, followed by one or two iterations
with higher precision when convergence is almost achieved.

6.7.4 Constrained optimization

Depending on L and U , there may be one or two constraints on parameters
during the optimization of the form θi < 0. These constraints differ from
the usual constraints available in commercial optimization routines, which
tend to be of the form θi ≤ 0 (e.g. nlminb() in S-PLUS). Based on our
experience we currently use a combination of the following two approaches.

1. Initially we reparameterize the coefficients on which there are con-
straints as θ′j = log(−θj), j = 1, 2. There are now no constraints on
θ′j , and new expressions for the score vector and the Hessian are im-
mediately obtained using the chain rule for differentiation. We find
this approach easy to use, in particular, since it can be used in com-
bination with off-the-shelf optimization routines. However, when θ1

or θ2 is very close to zero, and θ′1 or θ′2 are thus very small, numerical
problems sometimes prevent convergence. If this happens, we use the
second approach, which we have found to be more robust.
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2. For the second approach, we replace infinite values for L and U tem-
porarily by finite ones. We describe this algorithm for the situation
with two constraints, L = −∞ and U = ∞, the situation with one
constraint is dealt with similarly:

(a) Set L(1) = 2t1 − t2 and U (1) = 2tK − tK−1.

(b) Replace L by L(1) and U by U (1) in (6.2.2, 6.2.5, 6.2.7). Compute

θ̂ using the (unconstrained) Newton–Raphson algorithm.

(c) If θ̂1 < 0 and θ̂2 < 0 after the previous step,

i then carry out step (d), using θ̂ of step (b) as starting value;

ii else, set L(2) = 2L(1) − t1 and U (2) = 2U (1) − tK . Return to
step (b).

(d) Compute θ̂, integrating over the whole real line. If, at some

intermediate stage θ̂
(m)
1 ≥ 0 or θ̂

(m)
2 ≥ 0, go back to step (c-

i), thereby using for L and U the values last used during step
(b). If the algorithm converges without this happening, we have

obtained θ̂.

Note: a cheap alternative to correctly dealing with a constraint θi < 0
is to replace this constraint by θi ≤ −ε for some small ε > 0.

6.8 Notes

Literature

Silverman (1986) is an excellent introduction to density estimation in gen-
eral and kernel density estimation in particular. Other books on density
estimation include Tapia and Thompson (1978).

One of the earliest uses of splines for density estimation is the histospline
(Boneva, Kendall, and Stefanov 1971; Wahba 1976). Histosplines are not a
true nonparametric density estimation procedure. Rather the histospline is
a spline that is fit to a histogram, which then appears to be a smooth density
estimate. Boneva, Kendall, and Stefanov (1971) and Wahba (1976) use
a penalized likelihood (smoothing spline) approach to histosplines. Later
papers (Morandi and Costantini 1989; Minnotte 1998) enforce that the area
under the histospline matches the corresponding area under the histogram.

At approximately the same time as the introduction of the histospline,
Good and Gaskins (1971) proposed the use of penalized likelihood methods
(smoothing splines) for density estimation. Good and Gaskins (1971) uses

a penalty of the form
∫ [

(
√

f )′′
]2

. O’Sullivan (1988a) uses a penalty on
the second derivative of the log-density. This would lead to a smoothing
spline with a knot at each data point. To circumvent the computational
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problems he uses a smaller number of knots and B-spline basis functions.
A cross-validation argument yields an automatic choice of the smoothing
parameter. Gu (1993) uses a similar form of the penalty as O’Sullivan
(1988a). He does, however, put a knot at every data point. In our expe-
rience that makes his code impractical to use (see the rejoinder of Stone,
Hansen, Kooperberg, and Truong 1997). Eilers and Marx (1996) reinvents
the procedure of O’Sullivan (1988a). However, where O’Sullivan (1988a)
allows knots to be located anywhere, the procedure of Eilers and Marx
(1996) requires knots to be equidistant, which makes the algebra (but not
the computations!) easier.

Abrahamowicz, Ciampi, and Ramsay (1992) uses polynomial splines for
density estimation in an approach that is somewhat similar to Logspline.
The main differences are that Abrahamowicz, Ciampi, and Ramsay (1992)
fit a polynomial spline to the density, rather than the log of the density,
as is done for Logspline. They select the number of knots using AIC. The
knots are always equidistant on an order statistics scale. The procedure
of Abrahamowicz, Ciampi, and Ramsay (1992) can also deal with right-
censored data.

The locfit methodology of Loader (1996), which uses local polynomials
with adaptively selected bandwidths, displays similar spatial adaptation as
Logspline. There is an enormous literature on kernel density estimation,
any list of references would only be incomplete.

History

Stone and Koo (1986) were the first to propose Logspline density estima-
tion. In this paper Logspline models with a few fixed knots, positioned at
order statistics of the data, were used. Kooperberg and Stone (1991) used a
stepwise deletion algorithm to select knots. They use a preliminary transfor-
mation to transform data from [0,∞) to R. Kooperberg and Stone (1992)
abandon this transformation. This paper extends the Logspline method-
ology to censored data. Stone, Hansen, Kooperberg, and Truong (1997,
Sec 5) discusses a Logspline procedure that involves stepwise addition and
deletion of knots.

Stone (1989) and Stone (1990) discuss theoretical properties of Logspline
models; see also Chapter (11).

Software

There is code available for several versions of the Logspline method. The
version that is described in this chapter has been written in C and an
interface based on R and S-Plus has been developed. This programs are
currently available as part of the polspline package from CRAN

http://cran.r-project.org/src/contrib/PACKAGES.html
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and from Kooperberg’s website

http://bear.fhcrc.org/∼clk/soft.html

This version does not deal with censored or truncated data. Insightful Corp.
has developed a version of Logspline that does include these capabilities. A
link to the appropriate Insightful website is on Kooperberg’s website. The
polspline package also contains a C-program and an interface to S-Plus
for the version of Logspline of Kooperberg and Stone (1992). This version
uses stepwise deletion of knots from an initial set of starting knots (but no
stepwise addition of knots), and it can deal woth censored data but not
with truncated data.


