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7

Survival Analysis

7.1 An example

7.1.1  The bone marrow transplant data

Bone marrow transplantation is a procedure that is sometimes given to pa-
tients that have certain types of cancer, in particular, the so-called blood
cancers such as leukemia, lymphoma, and multiple myeloma. Bone marrow
transplantation can be either autologous, in which bone marrow from the
patient is reinjected after treatment, or allogenic, in which bone marrow
from another, healthy, person is inserted in the cancer patient. Our example
uses data on allogenic bone marrow transplants. There are many complica-
tions with such bone marrow transplants. For example, the cancer patient
may reject the transplanted material or, after some time, the cancer may
reoccur. One particular well known form of rejection is Graft Versus Host
Disease (GVHD). To reduce the chance of such rejection occurring, if the
donor is not the patient, the bone marrow of the donor has to match that
of the patient to a high degree. The chance that such a match occurs is
considerably larger when the donor is a sibling than when the donor is an
unrelated individual.

Bone marrow transplantation was first carried out in the late 1960s and
was at that time highly experimental. Originally, virtually all transplants
used siblings who matched at certain HLA loci, the so-called major histo-
compatibility or MHC loci. Since then bone marrow transplantation, while
still a very complicated procedure, has become more standard.
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survival of bone marrow transplant patients
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FIGURE 7.1. Survival of matched sibling bone marrow transplant patients at the
Fred Hutchinson Cancer Research Center.

In Figure 7.1 we show survival data for 3887 bone marrow transplant
patients, for whom the donor was a matched sibling and who received their
transplant at the Fred Hutchinson Cancer Research Center (FHCRC) in
Seattle between 1969, when bone marrow transplantation was first carried
out, and September 1998. Our data set includes follow-up data through
November 1998. At that time 2405 patients were known to be dead; the
other patients were either known to be alive or lost to follow up. The
diagonal in Figure 7.1 is clearly an artifact: it represents patients who were
known to be alive as of a last contact, which typically was shortly before
November 1998.

However, Figure 7.1 does not tell the complete story. In particular, not all
patients have the same type of cancer. Our data set contains patients with
a variety of leukemias, lymphomas, and myelomas. For our analysis we have
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FIGURE 7.2. Disease types of the matched sibling bone marrow transplant pa-
tients at the Fred Hutchinson Cancer Research Center.

divided the patients into four groups: those with more advanced disease,
those with aplastic anemia or myelodysplastic syndrome (AA/MDS, a less
advanced disease category), those with chronic myeloid leukemia-chronic
phase (CML-CP, a less advanced disease category), and those with other
less advanced disease categories. As can be seen from Figure 7.2 the frac-
tions of the patients in particular disease groups that were treated have
changed considerably over time. This is relevant, as the survival proba-
bilities are very different for the different disease categories: 21% of the
patients with more advanced diseases are still alive, versus 56% of the pa-
tients with CML-CP, 66% of the patients with AA/MDS, and 41% of the
patients with other less advanced diseases.

The number of matched sibling bone marrow transplants at the FHCRC
has varied considerably over time, as can be seen from Figure 7.3. In the
late 60s and 70s, a large fraction of transplants done in the world were
done at the FHCRC. Later, other institutions started to carry out matched
sibling bone marrow transplants. At the same time, the FHCRC started
to carry out some of the more complicated transplants between unrelated
individuals and reduced the number of more “standard” matched sibling
transplants. Other things changed as well: patients became older (Figure
7.4), and the other medications/treatments that patients received in con-
junction with their bone marrow transplant changed (Figure 7.5).

The medications and treatments that we use in our analysis are:

e An indicator for the use of total body irradiation (TBI). The condi-
tioning regimen is a treatment that a patient undergoes prior to the
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number of transplants over time
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FIGURE 7.3. Number of matched sibling bone marrow transplant patients at the
Fred Hutchinson Cancer Research Center.

bone marrow transplantation. It is used, essentially, to wipe out the
immune system of the patient (and hopefully get rid of the disease
as well). The various conditioning regimens consist of chemotherapy
and/or total body irradiation (TBI). In the current analysis we use
only TBI as a covariate.

e The use of acute GVHD prophylaxis. Almost all patients now receive

methotrexate and cyclosporine, but this has not always been the case.
The use of acute GVHD prophylaxis is generally regarded as being
superior to known alternatives for prevention of acute GVHD.

e The use of fluconazole reflects a change in standard practice at the

FHCRC. All patients now receive this drug for the purpose of pro-
phylaxis for fungal infections. There was a randomized trial that com-
pared fluconazole to placebo. Before this time the drug was not avail-
able to patients, but after the completion of the trial it was adopted
as part of standard practice.

e The same also holds for the use of gancyclovir, although this drug is

used only in patients who are cytomegalovirus (CMV) sero-positive.
The drug is used for prophylaxis for CMV infections, and its use
has drastically reduced the incidence of CMV disease (which can be
fatal).

Some variables are not shown in these plots: we also have information about
the gender of the patient, the age and the gender of the donor, and the dose
of bone marrow that was received.
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patient age over time
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FIGURE 7.4. Age of matched sibling bone marrow transplant patients at the
Fred Hutchinson Cancer Research Center (with regression line).

The goal in a survival analysis of a data set like this one is to find out
which of the covariates the general survival depends on.! Ideally, we are
able to identify the conditional distribution of the survival times given a set
of covariates. In this chapter we will describe the hazard regression (Hare)
methodology, which uses splines to model this conditional distribution.

7.1.2  Background

Consider data involving a positive response variable that may be (right-)
censored and one or more covariates. We refer to the original, uncensored
response variable as the survival time and think of it as having a condi-
tional density function given the values of the covariates that is positive on
[0, 00). The hazard function and its logarithm corresponding to this density
function are referred to as the conditional hazard function and conditional
log-hazard function, respectively.

A main goal in survival analysis is to determine how survival probabilities
depend on the covariates. The most popular way to model this is depen-
dence is by means of the proportional hazards model of Cox (1972), which
assumes that the conditional log-hazard function is an additive function
of time and the vector of covariates or, equivalently, that the conditional
hazard function is a multiplicative function of time and the vector of co-

1t could also be of interest to look at other outcomes, such as disease free survival
or time until GVHD. For these types of outcomes, death by other causes would be
considered censoring. In our analysis we only consider general survival.
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treatment and medication use over time
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FIGURE 7.5. Additional treatments and medications received by matched sibling
bone marrow transplant patients at the Fred Hutchinson Cancer Research Center.

variates. After the dependence on the covariates is estimated, the baseline
distribution function (the conditional distribution function of the survival
time for a particular fixed set of covariates) can be estimated using the
Breslow estimator Breslow (1972), which is a generalization of the Kaplan—
Meier estimator (Kaplan and Meier 1958).

The main complication in analyzing survival data is censoring. In Novem-
ber 1998, when the bone marrow transplant data set was put together, 1541
of the 3976 bone marrow recipients were still alive. Thus, for these patients
the actual survival time is not known; rather it is known that they survived
at least until November 1998 (or until they lost contact with the FHCRC).

In this chapter we focus primarily on the Hare (Hazard Regression)
methodology for survival analysis, which was introduced in Kooperberg,
Stone, and Truong (1995a). Kooperberg and Clarkson (1997) extended the
Hare methodology to handle interval censored data and time-dependent
covariates. These extensions are discussed in Section 7.4.

7.1.83  Linear models for the conditional log-hazard function

In this section we describe a linear model for the conditional log-hazard
function that will be the basis for Hare. In the simplest examples (such as
the bone marrow transplant data) all covariates are fixed throughout the
study. The form of the log-likelihood does not change much when some of
the covariates depend on time. Such time-dependent covariates often occur
in medical studies, where covariates are measured at regular times during
the study and may change between measurements. Initially, we assume that
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none of the covariates are time-dependent. Time-dependent covariates will
be discussed in detail in Section 7.4.2.

Let M be a nonnegative integer and let T" be a positive random vari-
able whose distribution may depend on a vector € = (x1,...,2p) of M
covariates. Note that 7" is commonly referred to as the survival time or the
failure time. Suppose @ lies in the subset X = X} x --- x Xy of RM. The
conditional hazard function A(-|x) of T given @, which is defined by

< <
/\(t|w):E%P(t_T<tzA\t_T,a:),

is assumed to exist and be positive on (0, 00). In survival analysis the (con-
ditional) hazard function is often of interest, as A(¢|x)dt can be interpreted
as the “probability that someone dies in the next time interval of infinitesi-
mal length dt, given that he is alive at time ¢”. Let f(-|x) and F(-|x) denote
the conditional density and distribution function, respectively. We refer to

a(t|x) = log A(t|x) (7.1.1)
and

Ata) = /0 As|a)ds (7.1.2)

as defining the conditional log-hazard and cumulative hazard function, re-
spectively. Let S(t|z) = P(T > t|x) denote the conditional survival func-
tion.

Now

_ ftx)  f(tlz)  d
A(t|) = T FE) — Sle) - log S(t]x)

and S(0|z) =1, so
1 — F(t|x) = S(tlx) = exp(—A(t|x)) (7.1.3)

and hence
ft|x) = A(t|x) exp(—A(t]x)). (7.1.4)

In Hare, polynomial splines and selected tensor products are used to ob-
tain a linear model for «(t|x). By modeling a(t|x), as opposed to A(t|x),
f(t|z) or F(t|x), we do not have to worry about positivity constraints. Also,
a model for the log-hazard function leads to a concave log-likelihood func-
tion, even in the context of right censoring?. This is not true, for example,
for a linear model for the log-density function.

The most popular model for analyzing survival data is undoubtedly the
Cox proportional hazards model (Cox 1972), which is given by

Atle) = Ao ()T (x).

2The log-likelihood function is also concave when there is left truncation, as we will
see in Section 7.4.3.
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For the proportional hazards model, the regression function ¥(x) can be
estimated using a partial likelihood function if it is given a parametric
form that is independent of the (baseline) hazard function Ag(t). The most
commonly used form for ¥(x) is

U(x) = exp Z 0z,
J

while Ag(t) is left unspecified. The interpretation is that the hazard of
someone with covariates « is proportional to the baseline hazard Ag(t) with
hazard-ratio ¥(x). For this interpretation, the baseline hazard function is
not important, although it is assumed that the hazards of all participants
are indeed proportional to each other, and the integrated baseline hazard
function

Ao(f) = /Ot /\Q(S)dS

can be estimated using the Breslow (1972) estimate. A proportional hazards
model can be written as a linear model for the log-hazard function; thus
by modeling the log-hazard function, Hare includes proportional hazard
models as a special case.

Basis functions in Hare can depend on time, on one covariate, on two
covariates, or on time and one covariate. If none of the basis functions
depend on both time and a covariate, Hare effectively yields a proportional
hazards model in which the baseline hazard function is modeled via the
basis functions that only depend on time.

7.1.4 A Hare model for the bone marrow transplant data

The Hare (hazard regression) program was applied to a data set derived
from the database of matched sibling bone marrow transplants at the
FHCRC. In Figure 7.6 we show the conditional survival function S(t|x)
and the corresponding hazard function X(t|m) = A(t|m)/(1 — F(t|z)) for
the survival time of patients with several different types of cancer who
received a bone marrow transplant in 1993 at age 30 and who got total
body irradiation and also got methotrexate and cyclosporine as a prophy-
laxis against GVHD. Hare yielded a conditional distribution function that
depends on the year of transplant, the age of the patient, whether a prophy-
laxis was applied, and on the type of cancer. In addition, Hare considered
a number of other covariates, including patient and donor gender, age of
the donor, dose of transplant, and whether various medications were used,
which were not included in the final model. For the Hare methodology it is
very easy to obtain graphical representations of the risk for any individual
patient like those shown in Figure 7.6.

The model that was obtained by Hare is not a proportional hazards
model, as is evident from the crossing hazard functions on the right side of
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FIGURE 7.6. Estimated conditional survival and hazard functions for a 30 year
old cancer patient who received a bone marrow transplant with prophylaxis in
1993.

Figure 7.6. The Hare fit suggests that there is a substantial risk of dying
around 60 days after a patient is given a bone marrow transplant, but
this risk decreases considerably over time and it depends significantly on
the disease group. It does seem plausible that the peak around 60 days is
associated with some increased risk related to the transplantation.

From the crossing hazard curves in Figure 7.6 it is clear that Hare did
not yield a proportional hazards model. Actually, no two hazard functions
in Figure 7.6 are proportional to each other. The fitted hazard functions
also include an interaction between time and patient age: the hazard rate
decreases faster for younger patients than for older patients. The effect of
the use of prophylaxis interacts with the disease type. For the three less
advanced disease groups, the use of prophylaxis reduces the hazard rate by
31%, but for the more advanced disease group the reduction is only 4%.

We will get back to this example in Section 7.3, where we will compare
the results of Hare with a Hare model that does not include basis functions
that depend on time and a covariate and is thus a proportional hazards
model. There we will also assess the “significance” of the effects alluded to
in this section.
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7.2 The Hare methodology

7.2.1 The Hare model

Let 1 < p < o0, let G be a p-dimensional linear space of functions on
[0,00) x X such that g(-|z) is bounded on [0, c0) for g € G and € X, and
let By,..., By be a basis of this space. Consider the model

P

a(t|lz;0) =Y _0;B;(tlx),  t>0, (7.2.1)
j=1
for the conditional log-hazard function, where 8 = (61,...,0,)T. Given

0 € RP we define A(t|x;0), A(t|xz; 0), S(tlx; 0), F(t|x;0), and f(t|z;0) by
imitating equations (7.1.1)—(7.1.4). We refer to model (7.2.1) as the “Hare
model”. Given such a model, we can obtain the maximum likelihood esti-
mate 0 of @ in straightforward manner. Details are postponed until Section
7.2.4, after we have discussed the allowable spaces and model selection for
Hare.

7.2.2  Allowable spaces

Piecewise linear Hare models

The family of allowable spaces for the version of Hare that employs lin-
ear splines and their tensor products is almost identical to the family of
allowable spaces for PolyMARS as discussed in Chapter 3. Basis functions
can depend on time and/or one or more covariates. In particular, the two
differences between the allowable spaces for Hare and PolyMARS are that
for Hare:

1. there is only one coefficient associated with each basis function;

2. we require all basis functions that depend on time to be constant
when ¢ goes to 0o, as this eliminates the need for imposing a positivity
constraint on the coefficient of the right tail of a(t]-).

We require a constant tail in time to guarantee that lim; ..o A(t]-) = oo
or, equivalently, that lim;_,., S(¢|-) = 0. To achieve the constant tail, we
use basis functions of the form B(¢) = (¢t — t)+ in time, and we do not
use a basis function B(t) = ¢. In the algorithm with stepwise addition
and deletion of basis functions, basis functions that introduce a knot in
time can thus be entered at any time into the model. Basis functions that
can occur in a piecewise linear Hare model have the form 1, (¢, — ¢)4, i,
(:vl — Tk )+, (b — t)+:vl, (ty, — t)+($l — Tk )4, TiTm, xl(:vm — l'mk)-',-, and
(21 — k) + (Tm — Tmk )+, where 2; and x,, are covariates, tj is a knot in
time, and x;; and x,,x are knots in covariates [ and m, respectively. A basis
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function that depends on knots in a covariate can be in a Hare model only
if the corresponding linear basis function in that covariate is in the model,
and a tensor product basis function can be in a Hare model only if the
corresponding basis functions in one variable are in the model.

The advantage of using linear splines for time in Hare is that all integrals
that are required for the maximum likelihood estimation can be computed
exactly without numerical integration. This is no longer true when either
some of the covariates are time-dependent in a non-piecewise constant man-
ner (see Section 7.4.2) or basis functions in time are not piecewise linear.

Piecewise cubic Hare models

The implementation of Hare by Insightful Corporation (see Section 7.6)
also allows for the use of cubic splines and their tensor products for one or
more of the covariates or time>. In this implementation, all tails of basis
functions are required to be linear, except for the tails of basis functions in
time when ¢ goes to co, which are again required to be constant. For each
covariate except for time this leads to basis functions that are identical to
the Logspline basis (Chapter 6) for a covariate. A problem for Hare is that
when knots are first entered in such a covariate, three knots have to be se-
lected simultaneously?. The reason for this requirement is that a nonlinear
twice continuously differentiable cubic spline with linear tails requires at
least three jumps in the third derivative. In the Insightful implementation
this problem is solved by considering only six order statistics as the first
candidate knots; for the addition of further knots a search algorithm simi-
lar to the one for Polyclass (see Section 5.5.2 and the additional remark for
cubic splines in Section 6.7.2) is employed. For time, again a similar basis
to the Logspline basis is used, except that the basis function By(t) is not
considered.

7.2.3 Model selection

Model selection in Hare is carried out in a manner similar to that dis-
cussed in earlier chapters using a procedure that involves stepwise addition
and stepwise deletion of basis functions and BIC to select the final model.
Initially, we choose G as the minimum allowable space (which for Hare is
the model a(t|x) = 6y). Then we proceed with stepwise addition. Here
we successively replace the (p — 1)-dimensional allowable space G by a p-
dimensional allowable space G containing G as subspace, choosing among

3The Insightful implementation also allows for quadratic splines and step functions,
which are not discussed here.

4This is not a problem in Logspline, since the corresponding initial model already
contains knots, although the minimal allowable model for Logspline does contain three
knots for exactly the same reason. A similar problem occurs in Lspec (Chapter 8).
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the various candidates for a new basis function by a heuristic search that
is designed approximately to maximize the corresponding Rao statistic.

During each step of the stepwise addition of basis functions, we consider
all allowable spaces G of dimension p + 1 that contain the current allow-
able space Gg of dimension p. Among the candidate basis functions we
choose the one that corresponds to the largest Rao statistic. For the ver-
sion of Hare that employs piecewise linear splines this means that we need
to compute Rao statistics for the addition of basis functions that (i) are
linear in a covariate, (ii) are tensor products of two existing basis functions
involving different, single variables, (iii) introduce a new knot in time, or
(iv) introduce a new knot in a covariate that is already in the model (we
optimize the knot location using a procedure similar to the one described
in Section 6.7.2).

For the version of Hare that employs cubic splines, the situation is more
complicated. The first basis function in a covariate or time that depends
on knots depends on three knots (for time) or two knots (for a covariate),
as the basis function needs to be linear in one tail and constant in the
other tail (for time) or linear in both tails (for a covariate). To keep the
computations feasible, for the first knots in a covariate we only consider
about 6 to 8 selected quantiles of the values of that covariate as knots. For
the addition of subsequent knots we again use a procedure similar to the
one described in Section 6.7.2). When we enter interactions between basis
functions that depend on knots, we consider all allowable spaces that can
be obtained by adding tensor products of two functions in Gy as a basis
function. For example, suppose that a tensor product basis function will
have knots in a covariate x;. When cubic splines are used, this new basis
function will have two knots in z;. These two knots can be any two of the
knots for x; that are in the model; for example, if there currently are four
knots in covariate x;, there are (3) = 6 sets of knots that could be used for
a bivariate basis function depending on x;.

Upon stopping the stepwise addition process (for Hare the default value
for the maximum dimension is given by Ky = min(6n%2 n/4,50); see
Section 5.5.1 for a motivation of this type of default), we carry out stepwise
deletion. Here we successively replace the p-dimensional allowable space
G by a (p — 1)-dimensional allowable subspace G until we arrive at the
minimal allowable space, at each step choosing the candidate space Gg so
that the Wald statistic for a basis function that is in G but not in Gq is
smallest in magnitude. Again, this is more complicated using cubic splines
than using linear splines, with complications for the cubic spline procedure
similar to those during the addition of tensor product basis functions.

During the combination of stepwise addition and stepwise deletion, we
get a sequence of models from which we select the final model by minimizing
BIC, that is, AIC with the default penalty parameter logn (3.2.29).
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7.2.4 Fitting Hare models

In survival analysis applications we typically try to model the distribution
of the time when a particular event T happens. Sometimes we may not ob-
serve T', because the event to which T' corresponds does not happen before
the end of the study, or because another event (such as death from another
cause) happens that prevents 7" from being observed. In such situations we
still know that T is larger than the time of the end of the study or the
time when the other event happens. Such a lower bound on T is known as
a censoring time. Typically, we observe either T" or the censoring time, and
we know which of the two we observe.

Let the survival time T' be a positive random variable whose distribution
may depend on a vector « of covariates. Let the censoring time C be another
positive random variable. Set ¥ = min(7,C) and § = ind(T < C). It
is assumed that 7" and C are conditionally independent and that 7' has
conditional density function f(-|x) given « € X. The random variable Y is
said to be uncensored or censored according as § = 1 or § = 0.

Let g(.|z) and G(.|z) denote the conditional density (or probability) and
distribution function of the censoring time C. For a random variable Y that
is censored at y, we know that T' > y and C' = y. Because of the conditional
independence, the likelihood corresponding to Y =y, § = 0, x, and 0 of
such an observation is given by

g(ylx; 0)P(T > y|z;0) = g(y|x; 0)[1 — F(y|x; 0)].

For a random variable Y that is uncensored at y, we know that T = y
and C > y. Because of the conditional independence, the likelihood corre-
sponding to Y =y, § = 1,  and 0 of such an observation is given by

P(C > ylz;0) f(ylx; 0) = [1 — G(y|z; 0)] f(y|z; 0).

Since we are not interested in the conditional distribution of C, for the
partial likelihood we ignore the parts depending on that distribution, so
that the partial likelihood corresponding to Y =y >0, § € {0,1}, «, and
0 is given by [f(y|x; 0)]°[1—F (y|z; 8)]*~%; hence the (partial) log-likelihood
is given by

P(y, d|z; 6) dlog f(ylz;0) + (1 — &) log(1l — F(yl|z; 0))

dlog A(ylx; 0) — A(y|x; 9)

= da(y|z;0) —/Oyexp(oz(u|:1:;0))du, (7.2.2)

where we have used (7.1.1)—(7.1.3). Consequently,

%M% dlz; 0) = 0B;(y|z) — /Oy Bj(u|z) exp(a(u|z; 0))du
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for 1 < j <pand

ﬁqﬁ(y,cﬂm;@) = — /07! Bj(u|z) B (u|x) exp(a(u|xz; 0))du  (7.2.3)

for 1 <j,k<p.

The log-likelihood function corresponding to the observed data (y;, §;, @;),
1 <4 < n, and the linear model for the conditional log-hazard function is
given by

10) = Zsb(yi,&nmi;m, 6 c R

It follows from (7.2.3) that ¢(y, §|x; -) is a concave function on R? for y > 0,
0 € {0,1}, and & € X and hence that £(0) is a concave function on RP.

The maximum likelihood estimate 8 is given as usual by [ (5) =maxg (),
and the log-likelihood of the model is given by =1 (5) The correspond-
ing maximum likelihood estimates of the conditional log-hazard function,
hazard function, density function, and distribution function are given by
a(tlx) = a(t|lz; 0), A(tlx) = A(t|x;0), and so forth.

As the log-likelihood function for Hare is concave, the maximum like-
lihood estimate @ is easily obtained using a Newton-Raphson algorithm
(see Section 2.5.3). The main complication in computing the maximum-
likelihood estimate and Rao statistics is the need to evaluate the integrals
in (7.2.2) and (7.2.3). Note that these integrals need to be carried out
separately for each unique set of covariates. As such, it is essential that
these integrals can be computed rapidly, thus the advantage of using a fast
quadrature formula (e.g. Gaussian quadrature, see Abramowitz and Stegun
1965, Section 25) or to use linear splines for the basis functions in time so
that the integrals can be computed exactly.

7.2.5 Inference

Since estimation for Hare models is carried out by the method of maxi-
mum likelihood, approximate standard errors for the coefficients in a Hare
model that is specified a priori are readily available. However, as with any
statistical procedure that involves formal or informal model selection, in-
ference about parameters in a Hare model may be incorrect when stepwise
model selection is carried out. For example, variables that end up in a
Hare model are almost guaranteed to be “significant”, since otherwise the
stepwise model selection procedure would have dropped basis functions in-
volving this variable. This may be misleading, for example, when another
correlated variable was considered and did not end up in the model. Clearly,
this is a problem not just with Hare, but with any statistical procedure that
involves variable selection—even if this variable selection involves informal
screening of variables by an expert before a parametric model is applied.



7.3 Further analysis of the bone marrow transplant data 323

However, the problem may be more severe in Hare because of the large
number of potential basis functions involved in the selection process.

The variability of Hare models can easily be assessed using simulation
or bootstrap studies (see Section 7.3 below). However, these procedures
cannot assess the possible bias of Hare estimates.

7.3 Further analysis of the bone marrow transplant
data

7.3.1 Does a simpler model fit the data?

The Hare model for which survival and hazard functions were shown in
Figure 7.6 uses cubic splines. The final model, as selected using BIC, has 18
basis functions, the log-likelihood is —4028.69, and the BIC value is 8206.16.
The model is summarized in Table 7.1. Note that since we use cubic splines,
7 knots in time correspond to 5 basis functions: 4 basis functions for cubic
polynomials plus 7 basis functions for knots minus 2 constraints to keep
the left tail linear minus 3 constraints to keep the right tail constant minus
1 basis function because of the intercept.

We can also force the Hare algorithm to yield a proportional hazards
model by not allowing any basis functions that depend on time and a
covariate to enter the model. When we do this, we get a model with 15
basis functions, a log-likelihood of —4054.73, and a BIC value of 8233.45.
The model has roughly the same basis functions as those listed in Table 7.1,
except that, obviously, there are no interactions between time and other
variables. The use of total body irradiation (TBI) and interactions between
TBI and two of the disease categories also enter the model. If we force the
Hare algorithm to fit an additive model (that is, without any basis functions
depending on two variables), we get a model with 13 basis functions, a log-
likelihood of —4075.43, and a BIC value of 8258.30. This model includes
the same variables as the model in Table 7.1 and a nonlinear contribution
from the variable year of transplant.

The difference in BIC values of 8233.45 — 8206.16 = 27.29 between the
full Hare model and the proportional hazards suggests that this data is
not well modeled by a proportional hazards model. Clearly, BIC values
are not the only basis for preferring one model over another. An advan-
tage of proportional hazards models is, for example, that the exponents
of the coefficients are interpretable as relative risk parameters (Kalbfleisch
and Prentice 1980). Typically, when particular basis functions occur in a
proportional and a nonproportional Hare model and the variables involved
with these basis functions do not interact with time, the coefficients in the
two models are quite similar. For example, we could compare the coeffi-
cients of patient age and prophylaxis use in Tables 7.1 and 7.4.
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number of  (time) knots standard
variables involved type basis fcts  involved coefficient error
intercept - 1 - 2.891 0.336
patient age linear 1 — 0.02450  0.00255
prophylaxis use linear 1 — —0.3798 0.0731
year of transplant linear 1 - —0.03708 0.00405
more advanced indicator 1 - 1.748 0.146
less advanced indicator 1 - 0.9982 0.1288
disease type CML-CP indicator 1 — 1.267 0.232
time spline 5 .00, .19, .30, .59 misc misc

1.97, 7.27, 8.59

more advanced x patient age interaction 1 - —0.01697  0.00300
more advanced x  prophylaxis interaction 1 - 0.3444 0.0916
patient age X time interaction 1 .00, .19, .30 0.01803 0.00540
more advanced x time interaction 1 .19, .30, 1.97 —0.7375 0.1853
less advanced X time interaction 1 .30, .59, 1.97 —1.006 0.193
type CML-CP  x  time interaction 1 1.97, 7.27, 8.59 —2.022 0.270

TABLE 7.1. Hare model for the bone marrow transplant data employing cubic splines.
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FIGURE 7.7. Estimated log-hazard of censoring as a function of time since trans-
plant and year of transplant for the bone marrow transplant data.

To verify further that a nonproportional hazards model fits the data
better than a proportional hazards model, we carried out a small simulation
study. As the amount of cpu time involved in fitting Hare models with cubic

splines is substantial, we used Hare with linear splines for this study. We
proceeded as follows:

1. First we fitted three Hare models with linear splines to the bone
marrow transplant data: an unrestricted model, a model that is forced
to be a proportional hazards model, and a model that is forced to be
an additive model. These three models are very similar to the models
using cubic splines described above.

2. We used a Hare model with linear splines to estimate the censoring
distribution, conditional on the covariates. This is easily done by ap-
plying Hare to the regular data, using §* = 1 — § as the censoring
indicators. While all participants are censored at or before November
1998, the censoring distribution is still well modeled by a continu-
ous distribution, as the time origin is date of transplantation, which
is different for (virtually) every subject. Not surprisingly, this fitted
model depends strongly on year of transplant, as patients who re-
ceived their transplant in later years have to be censored sooner after
their treatment. It does not depend on any other variables. In Figure
7.7 we show the conditional log-hazard rate of censoring as a function
of time and year of transplant. It can be seen that initially the rate
of censoring is fairly high, but that it drops considerably after about
one year. The rate then increases again when it reaches the “diago-

nal”, which corresponds to 1998, as there are no data on any patient
beyond that time.
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fitted model
proportional nonproportional

true model additive hazards hazards
additive 205 24 21
proportional hazards 2 223 25
nonproportional hazards 1 10 239

TABLE 7.2. Number of times that data generated from a Hare model with a
given structure resulted in a fitted Hare model with that or another structure,
for a data structure similar to the bone marrow transplant data.

3. For each simulation we proceeded as follows: conditional on the actual
observed variables, we generated a new set of survival times T;!,
i =1,...,3887, from the unrestricted Hare model obtained in step
(1) using the same covariates as in the original data. Similarly, we
generated Ti*2, i =1,...,3887, from the Hare model restricted to
be a proportional hazards model, and T;3, i = 1,...,3887, from the
Hare model restricted to be an additive model.

4. We generated a new set of censoring times C}, ¢ =1,...,3887, from
the Hare model obtained in step (2) using the same covariates as in
the original data.

5. For j = 1,...,3, we then generated three new data sets Yi*j =
min(7;”7, CF),i = 1,...,3887. To each of these data sets we applied
Hare, and we counted how often Hare yielded an additive model, a

proportional hazards model, and a nonproportional hazards model.

For each of the three models we generated 250 data sets. The results are
summarized in Table 7.2. As can be seen from this table, when the true
model is an additive model or a proportional hazards model, there is only
about a 10% chance that Hare yields a nonproportional hazards model,
while if the true model is nonproportional, there is a 95% chance that the
fitted model is nonproportional. We conclude that there is fairly strong
evidence that the “true” hazard function for the transplant data is nonpro-
portional.

We can use both bootstrap and simulation techniques to assess the un-
certainty in conditional hazard functions like those shown in Figure 7.6. In
interpreting the results it is important to be aware of the sources of bias
and variance in estimates of the (log-)hazard function:

e Estimation of the coefficients of a fixed set of basis functions (with
fixed knots) is a parametric maximum likelihood problem. With these
parameter estimates come standard errors that quantify uncertainty
in the coefficient estimates.

e A second source of variability comes from the model selection. Clearly,
there is considerable uncertainty about which basis functions end up
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in the model. We discuss this topic in much more detail for Logspline
and Triogram regression in Chapter 10.

e Finally, since the “true” model is not exactly a (linear, cubic) spline,
we have bias as we cannot exactly fit the true model. Theoretical
results (11) suggest that this bias is larger for linear than for cubic
splines.

The parametric standard errors only address the first type of uncertainty.
When we simulate from a fitted Hare model, as we did for the simulation
study summarized in Table 7.2, we get an excellent handle on the first
type of uncertainty and a reasonable handle on the second type (although
the variation may be a bit different because now the “true model” is a
spline function). When we use the bootstrap approach (sampling cases
with replacement from our data set), we generate estimates that may not
be centered around the fitted model, as the data are sampled from the true
model (and not the fitted model).

The shaded area in the left side of Figure 7.8 shows the 2.5th and 97.5th
percentiles of the fitted hazard functions for the 250 simulations from the
fitted Hare model without any restrictions, which were used for the simu-
lation described above; the dashed curves show the pointwise parametric
95% confidence bounds using the asymptotic covariance matrix of the es-
timated coefficients. The shaded area in the right side of this figure shows
the pointwise 2.5th and 97.5th percentiles of the fitted hazard functions
for the fits of 250 bootstrap samples from the original data; the dashed
curve shows the mean of these 250 curves. To keep this figure readable, we
only show two of the four groups of patients. All other covariates are as in
Figure 7.6. The left side of Figure 7.8 shows that the parametric bands are
indeed overly optimistic, in particular in the tail and close to the knot at
about one year.

7.3.2  Partially linear Hare models

In many medical studies there may be one variable that represents a new
treatment. When Hare is being used to analyze data from such a study it
is rather unfortunate if this treatment does not end up in the model. In
particular, when the goal is to make an inference about the effectiveness of
the new treatment we may want to force one or more variables, for example,
the treatment variable, to be linear in the model, without allowing for any
interactions among these variables or between these variable and other
variables. In practice we do this by starting with the variables that are
forced to be linear in the initial model, by not considering any other basis
functions involving these variables for entering in the model, and by not
allowing the linear basis functions to be removed from the model.

For such a “partially linear” Hare model, inference about the coefficients
of the variables that are forced to be linear is of particular interest. To
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FIGURE 7.8. 95% simulation and bootstrap bands as shaded areas for two
log-hazard functions. The left side includes the parametric pointwise “confidence”
bands, and the right side includes the mean of 250 bootstrapped curves as dashed
curves; the solid line is the fitted Hare model.

assess the accuracy of the standard errors of such coeflicients, we carried
out the following bootstrap study: for each of the ten covariates in the bone
marrow transplant data other than the disease categories, we fitted a Hare
model forcing a partially linear Hare model for that variable, allowing the
other nine covariates to have interactions as usual. We then generated 250
bootstrap samples of the same size (drawing cases with replacement) from
the bone marrow transplant data, and we fitted the same ten partially linear
Hare models to the data. In Table 7.3, for each of the ten covariates, we
compare its estimated coefficient and standard error based on the partially
linear Hare model with the mean and standard deviation of the coefficient
of that covariate over 250 partially linear Hare bootstrap models. We also
provide the value of the absolute largest correlation between the particular
variable and the other variables in the bone marrow transplant data. From
this table we see that the parametric estimate of the standard error is
always downwards biased, but that the magnitude of this bias seems to be
strongly related to the correlation of the particular variable with the other
variables. In Figure 7.9 we plot the ratio of the bootstrap standard error
over the parametric standard error versus the absolute value of the largest
correlation. The results of this bootstrap study suggest that for randomized
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bootstrap standard bootstrap largest

covariate coefficient mean coef. error std. dev.  correl.
patient age 0.01665 0.01527  0.00156 0.00319 0.916
donor age 0.002261 0.003700 0.003409  0.004670 0.916
use of

— TBI 0.1518 0.1352 0.0590 0.0692 —0.434
— prophylaxis  —0.2534 —0.2098 0.0535 0.0700 0.555
— fluconazole —0.1708 —0.1783 0.0720 0.1191 0.714
— gancyclovir ~ —0.1221 —0.0427 0.0765 0.0940 0.601
patient sex —0.1159 —0.1204 0.0425 0.0455 0.098
donor sex 0.1067 0.1005 0.0413 0.0421 0.098
log(dose) —0.09311 —0.08705 0.03184 0.03401 —0.258
year —0.03765 —0.03440 0.00406 0.00677 0.715

TABLE 7.3. Estimate and standard error of coefficients in a partially linear Hare
model together with the mean and standard deviation of the same coefficient in
250 bootstrapped models.

studies, where the variable of interest is uncorrelated with other variables,
the parametric estimate of the standard error is likely to be fairly unbiased.

7.3.3  Proportional hazards regression

In Section 7.3.1 we concluded that a proportional hazards model did not
fit the bone marrow transplant data well. In this section we compare two
approaches to estimating the regression function ¥(x) using polynomial
splines when we a priori decide to fit a proportional hazards model to the
data, regardless of the validity of the proportional hazards assumption.
The first approach uses a restricted version of Hare, as was done in Section
7.3.1, in which basis functions that depend both on time and a covariate
are not allowed to enter in the Hare model. The basis functions that do not
involve time yield an estimate of ¥(x), while those that do involve time
yield an estimate of the baseline hazard function Ag(¢). In the remainder
of this section we refer to this restricted version of Hare as Harepy,.

An alternative approach is directly to model the proportional hazards
regression function ¥(x) and to use the method of maximum partial like-
lihood for estimation and model selection. Huang, Kooperberg, Stone, and
Truong (2000) define the Proportional Hazards Regression (PHare) model
as

P
log ¥(z) =Y _ 0;B;(x). (7.3.1)

j=1
For fixed basis functions the parameters 61, ...,6, in (7.3.1) are estimated

using the method of maximum partial likelihood (see, for example, Kalbfleisch
and Prentice 1980 for details about partial likelihood estimation). Model
selection is carried out using the same stepwise algorithm as described in
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FIGURE 7.9. Largest absolute correlation coefficient and ratio between the boot-
strap standard deviation and the parametric standard error for the partially linear
bootstrap study.

Sections 7.2.2 and 7.2.3 with two differences: no basis function in time is
considered; the initial model has p = 0 or, equivalently, ¥(x) = 1.

Implementation of PHare is considerably more straightforward than im-
plementation of Hare, as most statistical packages have routines for estimat-
ing parameters in a Cox regression model, which can be used to estimate
the parameters in (7.3.1) for fixed basis functions. In particular, estimation
by maximum partial likelihood does not involve integration.

In Table 7.4 we compare the results of applying (piecewise linear versions
of) Harepy, and PHare. When examining these results, we should keep in
mind that the two programs were developed independently and, as a result,
many tiny programming details differ between them. In addition, the step-
wise algorithm may enhance small earlier differences during later stages of
the algorithm. To confirm that maximum likelihood and maximum partial
likelihood estimation give very similar results, we fitted the Hare,,, model
of Table 7.4 (ignoring the basis functions depending on time) using PHare
and found that all coefficients that were fitted by maximum partial likeli-
hood were within 1.4% of the value of those fitted by maximum likelihood,
while the standard errors were all within 0.4%. This is consistent with the
results reported in Huang, Kooperberg, Stone, and Truong (2000).

As a further comparison, we used maximum likelihood and maximum
partial likelihood to estimate the parameters in Hare models that include



Harepy PHare

basis function coefficient  standard error coefficient  standard error
intercept —2.179 0.331 NA NA
patient age 0.02611 0.00247 0.02640 0.00244
total body irradiation NA NA 0.6495 0.1233
prophylaxis use —0.3911 0.0734 —0.3787 0.0726
dose —0.09124 0.03150 NA NA
year —0.03730 0.00407 —0.03534 0.00425
more advanced 1.375 0.113 1.377 0.142
less advanced 0.4865 0.0795 0.6754 0.1177
disease type CML-CP —0.3553 0.1054 —0.7145 0.1264
more advanced x patient age  —0.01671 0.00301 —0.01572 0.00301
more advanced X  prophylaxis 0.3785 0.0920 0.3642 0.0923
more advanced x  thi NA NA —0.5366 0.1478
less advanced X thi NA NA —0.7250 0.1582
(0.0465 — ¢) —35.49 4.12 NA NA
(1.06 — t)+ 1.543 0.079 NA NA
(6.73 —t)+ 0.4585 0.0193 NA NA

TABLE 7.4. Harep, and PHare model for the bone marrow transplant data employing linear splines. Basis functions for which the
coefficient are listed as NA are not in the corresponding model.
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FIGURE 7.10. Log-likelihood for Harepn (solid) and partial log-likelihood for
PHare (dotted) (left) and ratio coefficient/standard error (right) as a function of
the location of the knot in year.

the eight basis functions that are both in the Harep}, and the PHare model
in Table 7.4 and also include a basis function (year — k)4 for k in the range
of year of transplant. For the model fitted by maximum likelihood we also
included the intercept and the three basis functions that depend on time
in Table 7.4. In Figure 7.10 we show the log-likelihood and the log-partial-
likelihood for these two estimation methods and the ratio of the coefficient
and the standard error for the basis function (year — k) as a function of
k. We note that there is little difference between estimation by maximum
likelihood and estimation by maximum partial likelihood.

As the results for Harep,,, and PHare are virtually identical and the the-
oretical convergence rates are the same (Kooperberg, Stone, and Truong
1995b; Huang, Kooperberg, Stone, and Truong 2000), what are the advan-
tages of one versus the other? Advantages of Hare:

e Hare also provides an estimate of the baseline hazard function;

e Hare can be used to assess whether the assumption of proportional
hazards is appropriate.

Advantages of PHare:
e PHare requires less cpu time than Hare;

e developing a numerical implementation of PHare is easier than de-
veloping one for Hare;
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e as Cox regression is the de facto standard for analyzing survival data,
some scientists may be more easily convinced by a PHare analysis,
which is closer in spirit to traditional Cox regression, than by a Hare
analysis.

When a version of Hare is already available on one’s system, the first two
advantages of PHare may not be significant.

All in all, we do not see PHare as a serious alternative to Hare, but rather
we see the similarity of the results of PHare and Harepy, as an additional
justification for the use of Hare, primarily addressed to those people used
to analyzing data using Cox regression.

7.4 Extensions

7.4.1 The Colorado Plateau uranium miners data

The second example with survival data involves the Colorado Plateau Ura-
nium Miners data. This data set comes from the U.S. Public Health Service
database. The data set contains records on 4103 male uranium miners in
the Colorado Plateau (located within the states of Colorado, Utah, New
Mexico, and Arizona); only miners who worked in uranium mines at some
time between 1950 and 1964 are included in the study. Vital status data
on most of these (uranium) miners are available up to 1995, at which stage
most miners were retired. See Hornung and Meinhardt (1987) and Hornung,
Deddens, and Roscoe (1998) for details. The data set, as compiled by the
National Institute for Occupational Safety and Health, contains informa-
tion on radon exposure from uranium and possible hard rock mining and
smoking patterns. Briefly, for each period in the life of one of these miners
we know how many packs a day he smoked on the average and how large
his radon exposure was (in units per time). For example, for one miner we
may know that from age 0 to age 11 years and 8 months he did not smoke,
from that age through age 23 years and 8 months he smoked half a pack
per day, and from that age until the end of 1991, when this participant
was 67 years old, he smoked one pack a day. The smoking information
was obtained retrospectively using a questionnaire and is available through
1991. For miners who were still alive at that time we assumed that this
miner continued smoking the same amount from then on. The information
about radon exposure is organized similarly to the smoking information.
For example, for a particular miner who had first (mining) radon exposure
at age 22 years and 9 months, it could be that between age 22 years and
9 months and age 33 years and 9 months this miner had an exposure level
of 0.303 working level months per month (WLM/m) and from that age
until age 34 years and 1 month he had an exposure level of 3.5 WLM/m.
(One WLM equals 3.5 x 10~3 joule-hours per cubic meter.) About one
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quarter of the miners in the data set mined hard rock before they became
uranium miners. For these miners we also have information for radon expo-
sure from hard rock mining. See Luebeck, Heidenreich, Hazelton, Paretzke,
and Moolgavkar (1999) for more details. In our analysis we excluded 109
miners with incomplete covariate or vital status data, as was done in the
analysis of Luebeck et al. (1999), leaving 3,954 miners.

For this data set we would like to find out whether there is an effect of
radon exposure on the hazard of dying from lung cancer among the uranium
miners. Censoring combines loss to follow up, death by causes other than
lung cancer, and being alive at the end of follow-up (1995). There are two
complications in carrying out this analysis. The first is time-dependent
covariates: the patterns of smoking and radon exposure may change over
time. The second is left truncation: the study is restricted to men who
were miners at some time during the period 1950-1964, but the natural
time-origin when studying survival is time of birth. Thus males who died
from lung cancer at a very young age were excluded from the study. The
concept of left truncation, which may be new to readers unfamiliar with
survival analysis, is discussed further in Section 7.4.3.

7.4.2 Time-dependent covariates

In our analysis of the uranium miners data we used two types of time-
dependent covariates. For current amount of smoking and radon exposure
we used a piecewise constant function; for example the radon exposure for
the miner described above is 0.303 from year 22.75 through year 33.75 and
is 3.5 from year 33.75 through year 34.083. The cumulative radon exposure
for this miner is obtained by integrating the radon exposure over time. (Any
exposure from sources other than mining is ignored; thus the cumulative
radon exposure when the participant becomes a miner is zero.) Observe
that the cumulative radon exposure is a piecewise linear function.

A third type of time-dependent covariates is more common in medi-
cal studies with periodic examinations: certain vital status measurements
may be recorded periodically. Formally, we do not know how this covariate
changes between measurements, but for analysis purposes we may either
interpolate linearly or keep the previous value until the next measurement.

The proportional hazards model can easily deal with such covariates,
as long as the covariate value is known at each event time (Kalbfleisch
and Prentice 1980). For Hare the main change because of time-dependent
covariates is that numerical integration may be needed for models that
otherwise could be fit more easily.

We now discuss the complications of time-dependent covariates on the
linear model for the log-hazard function and on maximum likelihood esti-
mation of the coefficients, as discussed in Section 7.1.3 and 7.2. Here we
assume that there is no left truncation.
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We assume that the positive random variable T" may depend on a vector
x(t) of M (possibly time-dependent) covariates that lies in the subset X
of RM for each 0 <t < T. Let A\(t|z(s),0 < s < t) denote the conditional
hazard function of T given x(s),0 < s < t. We assume that the conditional
hazard function at time ¢ depends only on the value of the covariates at
that time; that is, we assume that

Atlz(s),0 < s < t) = A(t|x(t)) (7.4.1)

and hence that the conditional log-hazard function a(t|z(s),0 < s <t) =
a(t|z(t)) has the same property. Let

A(tlz(s),0 < s <t) = /0 AMul|xz(uw))du (7.4.2)

denote the conditional cumulative hazard function.

From here we can get expressions for the partial likelihood ¢(y, d|x(s),
0 < s < y;0) and its derivatives for y > 0 and § € {0,1} (compare with
(7.2.2) and (7.2.3)) and see Andersen, Borgan, Gill, and Keiding (1993):

oy, dlx(s),0 < s <y;0)

= balyian)6) - | Cepla(ule(w);0)dy,  (7.43)

0
— < s <y
7, o(y,6lx(s),0 < s < y;0)

= 0B;(ylz(y)) - /Oy B (ulz(u)) exp(a(ulz(u); 0))du  (7.4.4)
for 1 < j <p, and

82
90,00

- _/OyBj(U|CC(u))Bk(u|m(u))exp(a(um(u);g))du (7.4.5)

(y,0lx(s),0 < s < y;0)

for 1 < j,k < p. Thus, the log-likelihood function remains concave. The
main complication occurs in computing the numerical integrals, as the ex-
ponent a(ulx(u); @) may be a polynomial of order 2¢ — 1 when splines of
order ¢ are being used, and some time-dependent covariates vary linearly
with time. In particular, this means that even when linear splines are used
numerical integration may be needed.

7.4.3  Left truncation

Left truncation occurs when failures before a particular time are excluded
from the data, so nonfailures before that time cannot be used in estimating
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the hazard rate. This happens frequently in epidemiological studies when
the potential participants who have died before data collection started can-
not be included in the study, because it is impossible to determine whether
these potential participants actually would have been eligible for the study,
because crucial covariates can no longer be determined, or because we sim-
ply are not aware of who these potential participants would have been.
It also occurs in industrial settings when we are interested in the failure
time of equipment, and the equipment that is being studied has already
been in operation for a while. The Colorado Plateau uranium miners data
described in Section 7.4.1 thus involves left truncation: the natural time-
origin is birth, but only miners who worked in uranium mines at some time
between 1950 and 1964 are included in the study.

Informally, it is the easiest to understand the problems associated with
left truncated data by considering a simplified example. Suppose that all
miners start mining at 25 years. By definition, none of these miners died
of lung cancer before the age of 25, but this says nothing about the hazard
rate for dying from lung cancer before that age. Keeping this in mind, it
should now be clear that someone who become a miner at age r contributes
to the information about A(t|z(s),r < s < t) for r < ¢ < y; here r is the
left truncation time for this miner.

Consider a randomly selected individual for whom the survival time T'
is larger than the truncation time R. For this individual, let C' > R denote
the censoring time and x the vector of covariates, which may depend on
time, and set Y = min(7, C') and 6 = ind(T < C). The random variable Y’
is said to be uncensored or censored according as § =1 or § = 0.

Compared to the treatment in Section 7.4.2, in (7.4.1) and (7.4.2), 0 <
s <t gets replaced by 7 < s < t; in (7.4.2), fg gets replaced by f:, and in
(7.4.3)—(7.4.5) , 0 < s < y gets replaced by r < s < y and foy gets replaced
by fry (see Andersen, Borgan, Gill, and Keiding 1993). The log-likelihood
function remains concave.

7.4.4 Analysis of the Colorado Plateau uranium miners data

We applied Hare using cubic splines to the Colorado Plateau uranium min-
ers data as described in Section 7.4.1. The response T is the age of death
from lung cancer. The left truncation time R is the time the miner joined
the study, this typically is the maximum of the age in 1950 and the age of
becoming a uranium miner. We used six covariates. Four of these covariates
are time-dependent: current and cumulative radon exposure, and current
and cumulative smoking. The other two are race, a binary variable indicat-
ing whether a miner was white (0) or not (1), and birth year, to account
for a possible cohort effect.

The Hare model that was selected, using BIC, contains eight basis func-
tions. Six of these basis functions, an intercept, two basis functions in-
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FIGURE 7.11. Contribution to the log-hazard in the Hare model of the univariate
basis functions depending on birth year (left) and time (right). An interaction
term with a much smaller effect, involving both of these variables, is not shown.

volving birth year, two basis functions involving time, and an interaction
between time and birth year, do not involve smoking or radon status. The
contributions to the log-hazard from the basis functions depending on time
and birth year are shown in Figure 7.11. The interaction term is not shown
in these figures; the contribution from it is small compared to the effects
shown in Figure 7.11. The increasing hazard with time is not unexpected.
The decreasing hazard with birth year presumably could be explained by
the general improvement in health care during the 20th century.

Both cumulative smoking and cumulative radon exposure ended up lin-
early in the Hare model. Of all miners, 3096 (78%) smoked at some stage
during their life. For those who did smoke, the median contribution to the
log-hazard due to smoking at the time of censoring or death was 0.56, which
corresponds to a relative risk of 1.75. For the 10th percentile among the
smokers the contribution was 0.08, which corresponds to a relative risk of
1.08, and for the 90th percentile among the smokers the contribution was
1.09, which corresponds to a relative risk of 3.00. Sixty-four miners had
fitted relative risks due to smoking of more than 5.00. All miners had some
radon exposure, although for some this exposure was very low. The median
contribution to the log-hazard due to radon exposure at the time of cen-
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FIGURE 7.12. Relation between cumulative smoking and age for 100 randomly
selected uranium miners.

soring or death was 0.14, which corresponds to a relative risk of 1.15. For
the 10th percentile among the smokers the contribution was 0.02, which
corresponds to a relative risk of 1.02, and for the 90th percentile among
the smokers the contribution was 0.65, which corresponds to a relative risk
of 1.91. Thirty-six miners had fitted relative risks due to radon exposure of
more than 5.00.

Since cumulative smoking and, to a lesser extent, cumulative radon ex-
posure are closely correlated with age (which is time in this example), it is
clear that we have a problem of confounding. This relation is particularly
evident from Figure 7.12: for those individuals who smoke, the relation be-
tween age and cumulative smoking is very close between age 20 and 60.
Among the uranium miners, 79% have smoked and 65% have smoked at
least 10 pack-years.

To attribute all of the variation in the log-hazard over time to smoking
and radon exposure, we may want to fit a model without knots in time. By
doing this, we essentially fit a proportional hazards model with a constant
hazard rate. Both current and cumulative smoking and radon exposure
variables end up in the fitted model, as well as an intercept and two basis
functions involving birth year. The coefficient of cumulative smoking is
considerably larger than in the earlier model, but this is partly offset by a
negative coefficient for current smoking. If we combine these two terms, the
maximum attained contribution to the log-hazard for the smokers increases
by an average of about 0.18, corresponding to an additional relative risk
of about 1.19. The results for radon exposure are harder to interpret. The
coefficient of cumulative radon exposure is virtually unchanged, but there
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is a substantial negative coefficient for current radon exposure, so that this
model would suggest a protective effect of radon exposure for lung cancer
until the effect of cumulative radon exposure is larger than the effect of
current radon exposure. This is hard to believe.

The model that includes basis functions that depend on time and the
model that does not include such basis functions both have eight basis
functions. The model that does not involve time has a log-likelihood of
—2334.60, while the model that does involve time has a log likelihood of
—2280.89. The difference in log-likelihood of 53.71 and the inconsistent
radon results together leads us to prefer the model which involves time.

7.4.5 Interval censored data

Many other types of censoring and truncation can occur in real data sets.
Here, we briefly discuss interval censoring, probably the most common form
of censoring other than right censoring. We say that an observation T is
interval censored in the interval C' = [Cy, C,] if it is known that T € C,
but the exact value of T is unknown. Hare with interval censored data
is discussed extensively in Kooperberg and Clarkson (1997). We can also
think of uncensored and right censored data in this manner. In particular, if
T is uncensored, then C = {T'}; if T is right censored at C; < T, then C' =
[Cy,00). For simplicity, we assume here that there are no time-dependent
covariates. It is assumed that 7' is independent of the type of censoring
given the vector & of covariates and that T and C' are independent given
x. Let § = 0 if T is right censored, § = 1 if T is uncensored, and § = 2 if T
is interval censored. When there is no left truncation, the partial likelihood
corresponding to C' = [¢;, ¢y], § and @ is given by

Cu I(6#1)
Ferle) =D [ / f(tlw)dt]

= S(Cl|$)I(6:0)f(01|:13)1(5:1)[S(cu|$) _ S(Cl|w)]l(6:2),

Using this expression we can obtain formulas for the log-likelihood, the
score function, and the Hessian. These formulas are rather tedious. See
Kooperberg and Clarkson (1997) for details and for the analysis of a data
set involving interval censoring.

As it turns out, the log-likelihood function is not necessarily concave
when some observations are interval censored. In principle this may cause
problems since the maximum likelihood estimate 6 is no longer guaran-
teed to be unique and the Newton—Raphson algorithm is not guaranteed
to find the MLE when it exists. In practice, however, we have not experi-
enced problems in finding the MLE when some data are interval censored.
See Section 6.5.2 for some discussion about maximization for nonconcave
likelihoods.
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7.4.6 Heft

When there are no covariates, the numerical problems involved with us-
ing cubic splines are reduced considerably. The Hazard Estimation with
Flexible Tails (Heft) model uses cubic spline basis functions in time, and
it has two additional basis functions that allow for a wider range of tail
behavior; in particular, they allow Heft to fit Weibull and Pareto distri-
butions exactly. The cubic spline basis functions for Heft are the same as
those mentioned above for Hare. The two additional basis functions are de-
fined as follows. Given a positive number ¢, set B_;(t) = log(t/(t + ¢)) and
By(t) = log(t + ¢) for t > 0. Let Bq(t),...,Bp(t) be a cubic spline basis.
Then B_1(t), Bo(t), B1(t), ..., Bp(t) span an allowable space for Heft.

The two log terms in the model for the log-hazard function are easily
motivated. Consider a positive density function f on (0,00), and let F,
h, and « denote, respectively, the associated distribution function, hazard
function, and log-hazard function. Suppose first that f(¢) = at” for ¢t = 0,
wherea > 0 and v > —1. Then log f(t) = ylogt for t = 0. Since 1—F(t) ~ 1
for t ~ 0, we conclude that «(t) = ylogt for t ~ 0. This motivates the
inclusion of the term 6_1B_;(t) with #_1 > —1 in the model for the log-
hazard function.

Suppose next that f(t) ~ aexp(—btY) for t > 1, where a > 0, b > 0, and
v > 0. Then

1—-F(t) exp(—bt7), t>1,

. a
Tyt T
S0
At) ~ byt t>1,

and hence a(t) ~ (y—1)logt for ¢t > 1. This motivates the inclusion of the
term 0y By (t) with 89 > —1 in the model for the log-hazard function.

Suppose, instead, that f(t) ~ at="~! for t > 1, where a,b > 0. Then
1—F(t) ~ ab=1t? for t > 1, so that A(t) ~ bt~! for t > 1 and hence
a(t) = (—1)logt for t > 1. This motivates allowing the possibility that
fp = —1 in the model for the log-hazard function.

Suppose now that p =1 and B; = 1 and hence that

t
t+
This three-parameter model, which is the minimal allowable space for Heft,
includes Weibull and Pareto distributions as special cases. As the default
we chose the shift parameter ¢ to be the upper quartile of the uncensored
data.

Consider the Weibull density function f given by

f(t) = byt? " Lexp(—bt"), t>0,

a(t;0) =0_1log p + 6o log(t + ¢) + 04, t>0.

where b > 0 and v > 0, whose distribution function is given by

F(t) =1— exp(—bt7), t>0. (7.4.6)
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The corresponding log-hazard function is given by «a(t) = (y — 1) logt +
log by for ¢ > 0. Thus a(-) = a(+;0), where _; = 8y = y—1 and 6; = log by.
(Alternatively, we can get the Weibull model by setting ¢ = 0, 61 = 0,
0o =~ —1, and 6; =logby.)

Consider next the Pareto density function f given by

beb

f(t):m,

t>0,

where b > 0 and ¢ > 0, whose distribution function is given by

Fity=1- - i t>0. (7.4.7)
(i)

t+c

The corresponding log-hazard function is given by «a(t) = logb — log(t +
¢) for t > 0. Thus a(-) = «(-;80), where §_1 = 0, p = —1, and 6; =
logb. (Here we have assumed that the parameter ¢ of the three-parameter
model coincides with the parameter c of the Pareto distribution; otherwise,
the three-parameter model provides only an approximation to the Pareto
distribution.)

Before applying Hare, we can use Heft to transform time so that the
transformed unconditional hazard function will be approximately equal to
one. To this end, let the Heft methodology be applied to (Y;,0;), 1 <i < n,
to yield an estimate Xo of the unconditional hazard function. Let the Hare
methodology then be applied to (qo(Y;), 0i, x;), yielding an estimate A\; of
the conditional hazard function for the transformed data and the estimate
At|lx) = Ao(t)A1(qo(t)|x) of the conditional hazard function for the un-
transformed data; here gy = — log(1 — ﬁo) with ﬁo being the distribution
function corresponding to XO. (Note that if some of the covariates are time-
dependent, the time argument of these covariates needs to be transformed
as well.)

The unconditional hazard function of the transformation should be ap-
proximately constant on [0, 00). To see this, let T be a continuous random
variable having distribution function F'. Then U = F(T') is uniformly dis-
tributed on (0, 00), so —log(1 —U) = —log(1 — F(T')) has the exponential
distribution with mean 1, whose hazard function equals one on [0, 00).

There are two advantages of such a transformation. First, when applying
Hare we can use either linear or cubic splines to model time. In either case
we pay a price. When we use cubic splines the computational burden goes
up considerably, since we need to resort to numerical integration. While
we also need to use numerical computations for Heft, this is considerably
cheaper since no covariates are present, which allows us to use some neat
trickery (see Section 7.5.1). When linear splines are used the (baseline) haz-
ard function may have big jumps in its first derivative at the various knots
in time. However, the Hare model for the transformed data typically has
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fewer knots in time, while the jumps in the first derivative of the baseline
hazard function at these knots tend to be smaller. Secondly, because of
the allowable spaces used for the Hare model, the fitted conditional hazard
function beyond the last knot in time is necessarily constant. This is no
longer true if the transformation based on Heft is made before applying
Hare.

A disadvantage of using such a transformation is that after the data
have been transformed, there is much less need for the addition of knots in
time during the stepwise procedure in Hare, since the unconditional hazard
function of the transformed data is approximately constant. (Some knots
in time may still be added, since the largest model usually has many more
basis functions than needed.) If there are far fewer knots in time available,
there is less opportunity for Hare to fit nonproportional hazards models,
since they require that first a knot in time be added; in addition, a basis
function that is an interaction between time and a covariate has to generate
an increase in the log-likelihood that is large enough to compensate for the
addition of two basis functions in the BIC criterion.

Figure 7.13 shows the conditional hazard functions for the same four sets
of covariates as in Figure 7.6 using three different modeling approaches:
the left side of the figure shows the hazard functions using both the cubic
spline version and the linear spline version of Hare (these can easily be
distinguished by noting the corners in the hazard functions); the right side
shows the hazard functions that are obtained after preprocessing the data
using Heft. For this particular data set, the selected Hare model after pre-
processing by Heft is proportional and does not contain any knots in time,
although some knots in time and a nonproportional basis function in time
entered during the stepwise model selection procedure. The effect on the
hazard functions is particularly noticeable for the disease categories CML-
CP and AA/MDS, where the tails of the hazard functions are switched.

7.4.7 Severe censoring and the penalty parameter

The value logn for the penalty parameter in BIC (3.2.29) may not be
appropriate when numerous observations are censored. To see this, compare
two data sets: one a regular survival analysis data set of size n; the other
the same data set to which we have added 10n observations that are right
censored at 0. Effectively, we do not add any information to the data;
indeed, when we fit a fixed set of basis functions, both data sets will yield
the same maximum likelihood estimate 8. Rao and Wald statistics are also
the same for both models. However, the penalty parameter is logn when
the first model is fit and log 11n ~ logn + 2.40 when the second model is
fit. This clearly seems to be inappropriate, and it suggests that logn may
not be an appropriate penalty for Hare in the presence of heavy censoring.

There are other situations in survival analysis where censoring reduces
the information content of various cases. For example, in power calculations
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FIGURE 7.13. Estimated conditional hazard functions for the same sets of co-
variates as in Figure 7.6 using three different versions of Hare.

for clinical trials that are analyzed using the log-rank test, it is the number
of events (uncensored observations) that is important, not the sample size
(Fleming and Harrington 1991). For data sets with only right censored
data, one could use log(>d;) as the penalty parameter, but this seems
inappropriate when the right censored observations are censored at a large
quantile of their conditional survival distribution. In addition, counting the
uncensored observations does not work when there is interval censoring.
A reasonable, but admittedly ad hoc, modification is to use the penalty
parameter logn’ with

n' =n =3 (exp(~T(Cale)) - exp(~T(Cuul)))
This reduces to
W= (51- F(1-8)1— exp(—f(cikc)))) (7.4.8)
when there is no interval censoring and to

W= (&- r(1- 5i)ﬁ(0i|:c))

2



344 7. Survival Analysis

when there are no time-dependent covariates. In practice any initial esti-
mator of I'(-]x) will do (for example, one which ignores the covariates and
uses logn as the penalty parameter), since Hare is not very sensitive to the
penalty parameter.

Example

For the uranium miners data n = 3954 but ). d; = 386. There is no inter-
val censoring in this data set. Using as an initial estimator a Hare estimate
that ignores all the covariates yields n’ = 760.3. Thus, rather than using
log 3954 = 8.28 as the penalty penalty, we could use log 760.3 = 6.63. As
it turns out, for the Hare model that allows basis functions depending on
time this change would result in five additional basis functions: an addi-
tional knot in time, a linear basis function for race, as well as interactions
between race and cumulative radon exposure, race and birth year, and
cumulative radon exposure and time. All coefficients of basis functions in-
volving cumulative radon exposure are positive, so we could carry out an
analysis for the effect of radon as was done in Section 7.4.4.

7.5 Technical details

7.5.1  Numerical integration for Heft

The main numerical task for the Heft algorithm is the computation of the
log-likelihood 1(8), the score S(0), and the Hessian H(6) for various models
and values of 8. The time-consuming aspect of this computation involves
the numerical approximation of

Y; e’}
> [ = [ N@wde N =#({i: Yz u)),
—~Jo 0
for many functions ¢ that are twice continuously differentiable on (0, c0)
and infinitely differentiable on each of the intervals

(0=t1]7 [t17t2]7"'7 [tK—lutK]u [tK,OO)-

Note that the function N(-) is piecewise constant, has jumps at the obser-
vations Y1,..., Yy, and equals zero to the right of Y(,,y = max(Y1,...,Ys).

Let Ji,...,Ja be a partition of (0,Y(,)] into disjoint intervals whose
endpoints contain all of the initial knots. Then

/0 b N(u)g(u)du = ’ N (w)tp(u)du.

Thus the time-consuming aspect of the computation involves the evalua-
tion of fJ N (u)tp(u)du, where J is a bounded interval and v is an infinitely
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differentiable function on a bounded interval Jy containing J. Let by, ba, b3
and by be distinct points in Jy, and let P be the cubic polynomial that inter-
polates the values of 1 at these points. We approximate fJ N(u)y(u)du by
J; N(u)P(u)du. According to the Lagrange interpolation formula, P(u) =

> (b)) Pi(u), where Pi(u) = [1,,, 4 (w—bn)/ I1,,.2:(br — by). Observe that

/J N (u)P(u)du = /J NG T R = 300 /J N(w)Py(u)du,

where the quantities [, N'(u)P;(u)du (which can be evaluated analytically)
need to be obtained only once, right after the partition Jp,...,Jy and
the four interpolation points corresponding to each of these intervals are
determined.

7.6 Notes

Literature

There are numerous papers proposing methodologies based on splines for
survival data. Most of the papers that appeared before 1990 either propose
methods for estimating the unconditional hazard function or the baseline
hazard function in the proportional hazards model using splines. The pa-
pers that appear around 1990 use splines to model a nonlinear regression
function in the proportional hazards model. Many of the papers that ap-
pear after 1992 use a spline in time to create a time-varying coefficient for
a covariate in a Cox model, which then becomes nonproportional.
Anderson and Senthilselvan (1990) and Senthilselvan (1987) used penal-
ized likelihood to estimate the baseline hazard in a Cox model. The main
difference between the two papers is the form of the penalty, which An-
derson and Senthilselvan (1990) took to be [[A(t)']*d¢, while Senthilselvan
(1987) used f[\/(/\(t))’]th. The later choice guarantees that the uncon-
ditional hazard function is a positive piecewise continuous function with
jumps at the uncensored observations. In Senthilselvan (1987) the solu-
tion is called a hyperbolic spline. However, it is not a polynomial spline as
defined in 2, but rather a function that involves exponentiations and poly-
nomials. No algorithm for choosing the penalty parameter was provided.
Bloxom (1985) maximized an unpenalized spline to estimate the uncon-
ditional hazard function. He placed knots at the deciles of the data and
added various constraints to the estimation of the parameters. His method
did not deal with censored data. Klotz (1982) and Whittemore and Keller
(1986) modeled the unconditional hazard function using (unpenalized) lin-
ear splines with knots at each uncensored data point. They also proposed
using such splines for modeling the baseline hazard function in a propor-
tional hazards model. Jarjoura (1988) used cubic splines to smooth the
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unconditional hazard function. He first discretized the problem to regular-
ize the solution and make the computations feasible. In addition, he added
a smoothness penalty, which was optimized using a systematic search and
cross-validation. Etezadi-Amoli and Ciampi (1987) used quadratic splines
to model the baseline hazard function in proportional hazards models and
accelerated failure time models. They used quadratic splines with very few
knots. Interestingly, they numerically optimized the location of the knot.

O’Sullivan (1988a) was the first to model the log-hazard function. He
used a penalty on the second derivative of this function. To circumvent the
computational problem of having to put a knot at each data point, he used
a smaller number of knots and B-spline basis functions. A cross-validation
procedure yielded an automatic choice of the smoothing parameter.

Some density estimation procedures are also able to deal with censored
data. Since there is a one-to-one correspondence between the density func-
tion and the hazard function, an estimate of the density function can be
used to obtain an estimate of the hazard function. One example of a density
estimation methodology that can deal with censored data is Logspline; an-
other is the method of Abrahamowicz, Ciampi, and Ramsay (1992), which
models the unconditional density function for possibly censored data using
cubic splines. In this paper the number of knots, which were positioned at
order statistics, were selected using AIC (with penalty parameter 2).

Herndon and Harrell (1990) modeled the unconditional hazard function
using a cubic spline restricted to be linear in the tails. Initially they put four
knots at restricted order statistics. Based on a visual inspection of the fit,
they adjusted the number or locations of the knots. Herndon and Harrell
(1995) extended the method of Herndon and Harrell (1990) for estimating
the baseline hazard function in the proportional hazards model when some
covariates are time-dependent. This allowed for nonproportionality for such
covariates. Heinzl, Kaider, and Zlabinger (1996) proposed a model that
differs only in details from that of Herndon and Harrell (1995). Rosenberg
(1995) also used B-splines to model the baseline hazard function. He did not
require the tails to be linear. The knots were positioned at order statistics.
The number of knots was selected using AIC (with penalty parameter 2).
His procedure allowed for interval censoring.

O’Sullivan (1988b) and Hastie and Tibshirani (1990) used cubic smooth-
ing splines to estimate the effect of a covariate in a proportional hazards
function. They put a penalty on the integrated second derivative of the
relative risk function. Rather than putting a knot at every distinct value
of the covariate, O’Sullivan (1988b) used a limited number of B-splines.
Hastie and Tibshirani (1990) selected the smoothing parameter using an
approximate “degrees of freedom” argument.

Sleeper and Harrington (1990) used cubic B-splines to estimate the (ad-
ditive) effect of a covariate in a proportional hazards function. Parametric
likelihood ratio tests were used to select the knots.
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Hastie and Tibshirani (1993) discussed varying-coefficient models. In the
context of survival analysis this allowed them to fit an additive model
with time-varying coefficients. Gray (1992) extended the approach of Hastie
and Tibshirani (1990) by also allowing for selected covariate interactions
and time-varying coefficients. This relaxed the assumption of proportional
hazards. Gray (1994) used models similar to those of Gray (1992) to test for
(proportionality of the) covariate effects in a proportional hazards model.
Hess (1994) used B-splines in time with three or four knots to fit time-
varying coefficients for some covariates in the proportional hazards model.
Abrahamowicz, MacKenzie, and Esdaile (1996) used a model similar to
that of Hess (1994) to test for (proportionality of the) covariate effects
in a proportional hazards model. Fahrmeier and Wagenpfeil (1996) and
Fahrmeier and Klinger (1998) used penalized likelihood to develop varying
coefficient models for discrete duration models and event history analysis
models, respectively.

Within the context of the proportional hazards model, LeBlanc and
Crowley (1999) used a MARS-like algorithm to model covariate effects.
Their algorithm would likely yield results very similar to Hare when the
underlying model satisfies the proportional hazards assumption or when
Hare is used without allowing for basis functions that depend both on time
and a covariate.

Gu (1994) proposed a smoothing spline procedure for estimating the
conditional log-hazard function for censored survival data. In light of the
computational issues involved, his procedure appears to be impractical for
problems with many cases or covariates: in particular the selection of the
smoothing parameter becomes intractable when the number of covariates
increases. Gu (1996) developed the corresponding asymptotic theory.

Other than splines, the most popular adaptive nonparametric methods
used in survival analysis extend the CART approach (Breiman, Friedman,
Olshen, and Stone 1984) to survival data. There are many papers about
“survival trees”; see, for example, Gordon and Olshen (1985), Segal (1988),
Davis and Anderson (1989), and LeBlanc and Crowley (1992). Intrator and
Kooperberg (1995) compared survival trees and Hare. Their paper contains
many more references about survival tree methods.

There have been some applications to survival analysis of local polyno-
mial methods (see, for example, Fan and Gijbels 1996) and kernel methods
(Andersen, Borgan, Gill, and Keiding (1993) contains a number of applica-
tions), but the use of these approaches in survival analysis does not seem
to have reached the level of splines and tree-based methods.

Software

The version of Hare and Heft that is described in Kooperberg, Stone,
and Truong (1995a) is publically available from CRAN. This version of
Hare employs linear splines and does not allow for interval censoring, time-
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dependent covariates, or truncation. It is written in C and contains an
interface to the statistical package R.

Several others have ported these S-Plus and C codes for easy installation
on other platforms and under the R language. See Kooperberg’s website

http://bear.fhcrc.org/~clk/soft.html

for current links.

A commercial version of Hare, implemented by Insightful Corporation,
which includes all of the options described in this chapter (and many more),
will be available in a future version of S-Plus.



