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8
Estimation of the Spectral Distribution

8.1 An example

8.1.1 The network data

In Figure 8.1 we show a time series of network data from the file server
of the math center of Bell Labs covering the 18 week period from 5 am
on August 27 to 5 am on December 31 1998. Each point represents how
many kByte went into the file server during a five minute interval. Already
this rough graph suggests that there may be a periodicity of a week in the
data. The autocorrelation function in Figure 8.2 shows a clear periodicity
of one day and a second periodicity of one week. In Figure 8.3 we look
at the 126 daily total amounts of data that was going into the file server
during this period. In Figure 8.4 we plot the average amount of data that
was going into the file server during a particular five minute interval of any
week. We again recognize the daily and weekly patterns in these figures.
As a comparison, Figure 8.5 and 8.6 show the same summaries as Figure
8.3 and 8.4 respectively, for the data that was going out of the file-server.
Here we also see a daily pattern, as well as a slight increase of the amount
of data that was going out over time, but a weekly pattern is less clear.
The difference between the graphs for the data going into and going out of
the file server leads us to believe that a system of daily and maybe weekly
backups is being used. Both the graphs for data going into and going out
of the file server have a strong periodicity, but the volume of data that
is going into the file server close to midnight of every day except Friday
is much higher than volumes seen at any other time. The graphs of data
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both going into and going out of the file-server also show some short time
dependence: if the amount of data going into (out of) the file server is large
during any five minute interval, it is likely also to be large during the next
five minute interval.

Rather than analyzing the network data using fairly ad hoc techniques,
as done above, we can also try to model the corresponding spectral distri-
bution. In this chapter we will discuss the Lspec methodology for modeling
a possibly mixed spectral distribution.

8.1.2 Background

The problem of estimating the spectral distribution for a stationary time
series is of fundamental importance in statistics. If this distribution is ab-
solutely continuous, its density function can be estimated by a variety of
methods, the most popular being window, AR, and ARMA estimates. Re-
cently wavelet methods have been proposed for this problem.

Window estimates are obtained by smoothing the periodogram using
“window” (kernel) functions, while AR and ARMA estimates are obtained
by fitting parametric AR and ARMA models using “automatic” model
selection procedures such as AIC and BIC; see Priestley (1981, Chapters 6
and 7).

It is known that the periodogram is not a consistent estimate of the spec-
tral density function and that consistency can be achieved by smoothing
the periodogram ordinates, the degree of smoothing being controlled by
the window width. Larger window widths smooth out the noise, but also
tend to distort the details of the signal, while smaller window widths tend
to yield estimates with spurious features.

In the AR approach the estimated spectral density function has the para-
metric form of the spectrum of an autoregressive process, and the resulting
fit is better when the spectral density function can accurately be approxi-
mated by such a form. However, this procedure may yield poor estimates
when it is used to fit simple MA models (Beamish and Priestley 1981).

The ARMA approach extends the AR approach by approximating the
spectral density function with the spectrum of an ARMA model. Since
many more spectral density functions can accurately be approximated by
ARMA models, not surprisingly, ARMA estimates are often better than AR
estimates in fitting non-AR models. However, in our experience, numerical
procedures for determining maximum likelihood estimates of ARMA pa-
rameters are typically much less stable and far more computer intensive
than the other approaches discussed in this chapter, making the ARMA
approach considerably less attractive (see Section 7 of Kooperberg, Stone,
and Truong 1995¢).

Wavelet methods for estimation of the spectral density usually also start
with the periodogram. Moulin (1994) and Gao (1997) use wavelet threshold-
ing methods, similar to those proposed by Donoho and Johnstone (1994),
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FIGURE 8.1. Amount of data that going into the file server of the math center
of Bell Labs in five minutes intervals between August 27 and December 31, 1998.
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FIGURE 8.2. Autocorrelation function for the data shown in Figure 8.1.
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FIGURE 8.3. Amount of data that was going into the file server of the math
center of Bell Labs in daily intervals between August 27 and December 31, 1998.
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FIGURE 8.4. Average amount of data that was going into the file server of the
math center of Bell Labs in five minute intervals during fixed times of the week
over the last 18 weeks of 1998.
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FIGURE 8.5. Amount of data that was going out of the file server of the math
center of Bell Labs in daily intervals between August 27 and December 31, 1998.
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FIGURE 8.6. Average amount of data that was going out of the file server of the
math center of Bell Labs in five minute intervals during fixed times of the week
over the last 18 weeks of 1998.
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that take the nonnormality of the periodogram into account. Rather than
starting with the periodogram, Walden, Percival, and McCoy (1998) start
with a multitaper estimate of the log-spectrum, which by itself is already
more approximately normal.

If the spectral distribution is possibly mixed, there are two general ap-
proaches to its estimation that have previously been discussed. One ap-
proach is to apply a method that was actually designed for the absolutely
continuous case and hope that the estimate has sharp peaks centered near
the atoms. The AR methods are generally used for this purpose since
they typically yield sharper peaks corresponding to atoms than window
estimates, while they are numerically more stable than ARMA estimates.
Mackisack and Poskitt (1990) give an asymptotic justification for the AR
procedure. In the engineering literature there have been various proposals
to make AR methods more sensitive to atoms in the spectral distribution
(see, for example, Stoica, Moses, Soderstrom, and Li 1991).

The alternative approach is first to test whether atoms are present. If so,
their locations and masses are estimated, the corresponding components are
filtered out, and the spectral density function is estimated from the filtered
time series. Two early references on this approach are Priestley (1962a)
and Priestley (1962b). See Priestley (1981; Chapter 8) for an overview.

The Lspec methodology is an automatic procedure for estimating a pos-
sibly mixed spectral distribution. This method has the advantage of AR
and ARMA estimates in being automatic and the advantage of the test-
based procedures in giving explicit estimates for the masses and locations of
the atoms. In this procedure the logarithm of the spectral density function
is modeled as a polynomial spline, the unknown parameters of which are
estimated by maximizing an approximation to the log-likelihood function.

8.1.3 Mixed Spectra

Consider a real-valued second order stationary time series X; with mean
E(X:) = E(Xo) and covariance function y(u) = cov(X¢, X¢4,,). Assume
that the time series has the form

P
X = ZRj cos(tAj + ¢;) + Yi. (8.1.1)

j=1

Here 0 < A\; < m; ¢; are independent and uniformly distributed on [—7, 7];
R; are independent, non-negative random variables such that R? has pos-
itive mean 4p;; and Y; is a second-order stationary time series such that
E(Y;) = E(Xp) and

D e(u)] < oo, (8.1.2)

where 7e(u) = cov(¥V;, Yeru).
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For a time series X; that satisfies these conditions, we now first define
several functions related to the spectral distribution. In particular, the
spectral density function of the time series is given by

o0

feN) = Y e(wexp(iu)), —w<A<m, (8.1.3)

U=—00

which can be extended to (—oo,00) in the obvious manner so as to be
periodic with period 27; its line spectrum is given by

_ Pj if A= :t)\j,
Ja() = { 0 otherwise;
and its spectral distribution function is given by
A
FN) = [ flwdw+) folw), -m<A<m
- w<A

The autocovariance is given in terms of the spectral distribution function
by

T
y(u) = / exp(iul)dF(N).
—T

Note that f. and fq are symmetric about zero. If p = 0, then ) |y(u)| <
00, fq =0, and the spectral distribution is absolutely continuous. We refer
to £X;, 1 < j < p, as the atoms of the spectral distribution and to p; as
the mass of the distribution at +X;. Note that if R; equals 2,/p; in (8.1.1),
then the time series is the mixed model discussed in Mackisack and Poskitt
(1990).

Lspec is an adaptive methodology for estimating the spectral distribution
for the series X;. In particular, the log of the spectral density function is
estimated with cubic splines and the line spectrum by a sum of Dirac delta
functions. The estimation procedure to be described in Section 8.2 will be
based upon the periodogram

T—1 2
IMQ) = @) > exp(—idt)X,| , —m<A<m,
t=0
corresponding to the realization X,...,X7p_1 of the time series. If F

is absolutely continuous, then the periodogram can be regarded as an
(inconsistent) estimate of the spectral density function. In particular, if
2w [ul v (u)] < oo then

sinTA/2

2
sin A/2 } B(Xo)* +0(T™"),

EIIDW)] = f.(\) + 2T)? [
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where the O(T~1!) is uniform in A (Brillinger 1981).

It is convenient to refer to the function f = f. + % fa as the mean
function. Under the assumptions that the atoms are all of the form 275 /T
for some integer j and that the time series is Gaussian, it can be shown

that
0 (5F) = [ () e () = ()

for 1 < j <T/2, where W; has approximately the exponential distribution
with mean one if j < T/2 and approximately the x? distribution with one
degree of freedom if T is even and j = T/2 , and W;, 1 < j < T/2, are
asymptotically independent; see Brillinger (1981, Theorem 5.2.6).

Since f. and f; are symmetric about zero, from now on we limit our
attention to the interval [0, 7]. Observe that if the indicated derivatives of
fe exist, then f.(0), f7(0), f.(7) and f(n) all equal zero. Let §,()\) equal
one or zero according as A = a or A # a. Set ¢ = log f and ¢, = log f..
Then ¢ = ¢, + @4, where @q = 0165, + -+ + 0,05, with 01,...,60, > 0.
Moreover, fq = (27/T)f.[exp(¢q) — 1]. In Section 8.2 we will use cubic
splines to obtain a finite-dimensional approximation to ¢. and hence to ¢.

8.1.4 An Lspec model for the network data

In Figures 8.7 we show the Lspec estimates for the spectral density function
and the line spectrum for the network data that was discussed in Section
8.1.1. We note that for both sets of data, the Lspec procedure includes
an atom at Béggs 2m. Since the data summarizes 126 days, which equals
36288 five minute intervals, we conclude that Lspec indeed finds a discrete
component of period one day in the spectral distribution. For the data that
goes in the file server this component has about 6.6% of the mass of the
spectral distribution, while for the data that comes out of the server this
periodicity contributes about 6.8% of the mass of the spectral distribution.
For both estimates Lspec also includes atoms at some harmonic components
of the one day period: for the data that goes out of the file server there is
one atom at frequency 33328 27 (a period of 0.5 day) with mass 1.4%, for the
data that goes in the file server there are atoms at three different harmonic
frequencies, with a combined mass of almost 3%. Since atoms at harmonic
frequencies are included, we confirm that the periodicity is severely non-
sinusoidal, something we also noted in Figures 8.4 and 8.6. Otherwise the
spectrum is highly concentrated near the origin, which suggests strong non-
periodic short time dependence of the data. The Lspec estimates of the
spectral density for the data both going into and going out of the file-server
use 16 knots, which explains the many details in the spectrum.

It is also interesting that for neither of the two data sets does the Lspec
estimate include an atom at frequency %27r, corresponding to a period
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FIGURE 8.7. Lspec estimates of the spectral density functions and line function
for the network data. Left: data going into the file server; right: data going out of
the file server. Atoms are indicated by spikes starting at the height of the spectral
density function.

of one week. In particular, Figure 8.3 suggests that there may be such a
periodicity. We will get back to the issue of the possible weekly periodic-
ity in Section 8.3. We also will discuss in that section what happens if a
periodicity is not exactly of the form 27 /T.

If we would have analyzed the logarithm of the network data, which
seems reasonable given the skewedness of the data, the mass of the spectral
distribution that is explained by the atoms increases to about 15 to 20%.
Since the possible periodicity with period one week disappears on a log-
scale, we decided to focus on the data on its original scale.

8.2 The Lspec methodology

8.2.1 The Lspec model

The log of the spectral density function is modeled using cubic splines.
Given the positive integer K. and the sequence t1,...,tx, of knots with
0 <t < <tg, < mlet G, be the K. -dimensional space of twice
continuously differentiable functions g on [0, 7] such that the restriction of
g to each of the intervals [0,t1], [t1,t2],. .-, [tk.-1,tKk.], [tK., 7] iS a cubic
polynomial, the first derivative of g is zero at 0 and m, the third derivative
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of g is zero at 0 unless t; = 0, and the third derivative of g is zero at w
unless tx, = 7. (In particular, if K. = 1, then G, is the space of constant
functions.) Note that the functions in G, can be extended to splines on
(—00,00) that are symmetric about zero, periodic with period 27, have
a knot at zero if and only if ¢; = 0, and have a knot at 7 if and only if
tx, = 7. As we did for the Logspline basis (see Section 6.2.2) we can choose
as a basis for G, multiples of B-splines and a few additional basis functions
that are nonzero at 0 and 7. We omit the details.

Next, we describe the space that will be used indirectly to model the
line spectrum. Given the nonnegative integer Ky and the increasing se-
quence ay,...,arx, of members of {27j/T : 1 < j < T/2}, let G4 be
the K4-dimensional space of nonnegative functions g on [0, 7] such that
g = 0 except at ay,...,ax,. Set Bjk, (\) = dq;(\) for 1 < j < Kg. Then
Bk, +1,...,Bk form a basis of G4, where K = K. + K.

Let G be the space spanned by By, ..., Bx. Set

%(';Oc) = 91B1 + -4 QKCBKC
for 0. = [0, ...,0k.]" € RE,
Spd(';ed) = GKC-HBKC-H +---+ 0Bk

for 0,1 = [6‘[{64_1, .. .,HK]T with 9K0+17 .. .,9}{ 2 07 and

90('; 0) = (Pc('; 00) + @d('; ed)

for @ = (61,...,0Kk)". We use ¢.(+;0.) to model the logarithm of the spec-
tral density function and ¢(+; @) to model the logarithm of the mean func-
tion. Thus, the spectral density function corresponding to @ is given by
fe(550.) = exp@e(+; 0.), the mean function is given by f(-;0) = exp p(+;8),
and the line spectrum is given by

2T

fa(0c) = 7f0('500)[eXp(90d(';0d)) —1].

Let Y = f(X\;8)W, where W has the exponential distribution with mean
one when 0 < A < 7 and it has the x? distribution with one degree of
freedom when A = 7. The log-likelihood corresponding to the observed
value y of Y is given by

K K
V(y, A 0) = (6’79) - 1) Z%B;'(A)erexp —Z9j3j(/\)

for 0 < A < 7 and y > 0, where we have ignored a term that does not
depend on 8. Observe that

K
%w(y, X 0) = ((S’TT(A) - 1) Br(\) [1—yexp —jZ;Hij()\)
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for 1 <k<K,0< A< andy > 0. Observe also that

2

0
s 30 = (

for 1 <k I<K,0<A<mwandy >0. It follows from the last result that
¥(y, A;-) is a concave function for y > 0 and 0 < A < 7.

Let Xo,...,X7r_1 be a realization of length T' of the time series. For
1<5<T/2 let

K
%y_gwmwwmp—;%w”

T—1 2

> exp(—i2mjt/T) X,
t=0

I; = (2nT)*

be the value of the corresponding periodogram at the (angular) frequency
A = 27j/T. The (approximate) log-likelihood function corresponding to
the periodogram and the K-parameter model for the logarithm of the mean
function is given by

o
5(9)—Z¢<Ij,%;0>, 6 € RX with 0k, 11,...,0k >0,
j

which is equivalent to the Whittle likelihood (Whittle 1961). The maximum
likelihood estimate @ = [f;,...,0x]" is given as usual by

~

6) = 6
£(6) = max £(9),

the log-likelihood of the model is given by i = E(@), and the maximum
likelihood estimate of the mean function is given by f(A) = f(\; 5) Sim-
ilarly, the maximum likelihood estimates of the spectral density function
and line spectrum are given by fo(-) = fe(;8.) and f4(-) = fa(-,84), where
0. = (01,...,06.)7 and 84 = (6. 41,...,0%)T. For fixed G, and G4 the
maximum likelihood estimate can be found using a Newton-Raphson algo-
rithm.

8.2.2  Model selection for Lspec models

Model selection for Lspec is carried out using a stepwise algorithm simi-
lar to those discussed in earlier chapters. However, the selection of knots
and, in particular, atoms for Lspec is a much more ill-posed process than
for many of the other procedures discussed. Thus, rather than fitting one
sequence of models, we usually first go through one sequence of stepwise
knot and atom addition and deletion, selecting the best Lspec model using
AIC. We then use this best Lspec model that was obtained during the first
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sequence of stepwise model selection as the initial model for a second cy-
cle of stepwise model selection. We continue these cycles of a combination
of stepwise addition followed by stepwise deletion until either the optimal
model does not change or we reach a maximum number of cycles. In our ex-
perience, when the true underlying spectral distribution is mixed, one cycle
of stepwise addition and deletion might not be enough to find the proper
balance between the continuous component and the discrete component of
the estimated spectral distribution. We have found in such situations that
a two-cycle or multi-cycle procedure is more likely to find a good model.

During the first cycle, we initially fit the constant model. The location
of the one knot in this model is of no importance. For simplicity we take
t1 = 0. After the constant model is fit, we add one knot according to the
procedure described below. Then we remove the knot at zero and are left
with a constant model having one knot. We continue by successively adding
a knot or atom at each step. When searching for the location of the knot
or atom in adding a basis function, we compute the Rao statistic for the
addition of a knot for every frequency A = 2mj/T, 1 < j < T/2, such that
[A—tx| > 2(27/T) for all knots t;, already in the model, and we compute the
Rao statistic for the addition of an atom for every frequency A = 275 /T,
1 < j < T/2, such that A\ # ay, for all atoms ay already in the model.
Since it is possible to compute Rao statistics for all candidate knots in
O(K.M) time (see Kooperberg, Stone, and Truong 1995¢), we do not need
any heuristics to limit the number of candidate knots as was the case for
several other of the methodologies we discussed. After we have reached a
largest prespecified dimension, we proceed with a cycle of stepwise deletion.
Among the fitted models we select the one that minimizes AIC (3.2.29) with
default penalty parameter a = logn = log(T/2).

To keep Lspec from selecting a model with too many atoms, we typically
do not allow atoms to enter the model during the first cycle of stepwise
knot addition and deletion, and we require all atoms to have a minimum
mass (see Kooperberg, Stone, and Truong 1995c¢ for details).

8.3 Further analysis of the network data

The most peculiar aspects of the analysis of the network data is probably
the absence of an atom for the period of one week for the data going into the
file server. To examine this further in Figure 8.8 we show on a square-root
scale the first 300 entries of the raw periodogram

271y
7 (224
(%),
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FIGURE 8.8. Left: raw periodogram (open symbols and letters) and fitted peri-
odogram by Lspec (lines); right: ratio of raw periodogram and fitted periodogram.

the fitted values,

2mq ~ (271] T ~ (2mg
7 (27T L IO i)
™ (F) =5 (F) 54 (7).

and the ratio I(T)/f(T). In the raw periodogram and in the ratios, we
indicate with “W” the frequency corresponding to a period of one week,
with “D” the frequency corresponding to period one day, with “w” the
frequencies corresponding to harmonic frequencies of period one week that
are not harmonic frequencies of period one day, and with “d” harmonic
frequencies of period one day. As can be seen from this figure, the harmonic
frequencies of periods one day and one week do indeed have the largest
raw periodogram values, but the harmonic frequencies of one week do not
particularly stand out. In particular, the ratio I(T) /1 (T) is larger for some
of the harmonic frequencies corresponding to period one week than to the
exact frequency corresponding to period one week, all suggesting that the
within day pattern is very badly modeled by sinusoids.

Since Figure 8.8 suggested that there may be a small atom at a frequency
corresponding to period one week, we also ran Lspec on the data going
into the file-server, where we specified atoms at frequencies (2718)/T and
(2w126) /T corresponding to periods of one week and one day respectively.
When we did this, Lspec did indeed retain the atom at (2718)/T (with a
mass of about 1% of the mass of the total spectral distribution), The graph
of the spectral density looked very similar to the one shown in Figure 8.7.
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FIGURE 8.9. Autoregressive spectra for the data going into the file server: solid
= order 58 (AIC), dotted = order 10, dashed = order 1. The solid vertical line
corresponds to a period of one day.

The BIC value of the Lspec model with the atom was 266,469.1, which,
interestingly, is much worse than the BIC value of the model without this
atom (266,316.6).

An autoregressive model, using either BIC or AIC to select the order does
not show any sign of an atom at frequency (27126) /7. Both methods select
very high order models In Figure 8.9 we show the autoregressive spectrum
for the AR model of order 58, which was selected by AIC. Interestingly, an
AR(1) model (dashed) can already model the main shape of this spectrum,
while an AR(10) model (dotted) follows the more complicated spectrum
very closely, without the small bumps.

In the network data, a period of one day corresponds to a frequency of
(2mj)/T for j = 126, i.e. j is integer. Since Lspec can only put a mass at
frequencies that are integer multiples of (27)/T, it is of interest to examine
what happens if there is a period in the data that corresponds to a frequency
that is not of the specified form. To this end we also fitted an Lspec model
to the same network data for the period August 25, 1998, 9:20pm through
December 31, 1998, 5am. For the data going into the file-server a periodicity
of one day corresponds to a frequency of (27127.323)/T. As it turned out,
Lspec fitted a model with 2 atoms at frequencies corresponding to periods
of 205.8 minutes and of 180.1 minute, which is approximately 1/7th ad
1/6th day, but no atom at a frequency close to one day. The Lspec model
for the data going out of the file server, as well as the Lspec models for the
logarithm of both series all included atoms with frequencies of (27127)/T,
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corresponding to a period of one day and 43.9 minutes, which is the closest
to a period of one day that Lspec can fit a model.

8.4 Extensions

Clearly there are currently two main drawbacks of the Lspec methodology:

1. Lspec can only includes atoms at frequencies that are exactly of the
form (275)/T, for j integer.

2. The model selection aspect of Lspec is much more ill-posed than
that for many of the other methods discussed in this book, such as
Logspline (Chapter 6) and Hare (Chapter 7). Only Triogram (Chapter
9) may come a little close in ill-posedness, and even there the problems
are less severe. In short, depending on the starting model some atoms
may or may not end up in the model. An atom may or may not
be in the model selected by Lspec depending on whether (another)
atom was in the initial model or not. This is particular a problem for
somewhat smaller atoms, and atoms for frequencies that are not of
the form (275)/T with j an integer.

To allow atoms at frequencies that are not of the form (27j)/T, for j
an integer, we can extend the approach in Section 8.2.1 by defining basis
functions corresponding to a frequency A. These basis functions are closely
related to the Fourier transforms of sinusoids with frequency A. Unfortu-
nately, these basis functions would be nonzero for all frequencies of the
form (275)/T, severely increasing the computational burden of Lspec. In
addition, allowing for these additional atoms would undoubtedly make the
worsen the model selection problem mentioned above.

To alleviate the model selection problem it may be of interest to study
a simulated annealing or Markov chain Monte Carlo approach to Lspec,
similar to what is done in Chapter 10 for Logspline and Triogram.

8.5 Notes

Literature

Cogburn and Davis (1974) uses smoothing splines to approximate the log
periodogram. Rather than using the Whittle (1961) likelihood (which is
used in Lspec) they used least squares regression to carry out the actual
fitting. The smoothing splines are forced to be periodic. Wahba (1980)
provided an automatic procedure to choose the smoothing parameter A\ for
the procedure of Cogburn and Davis (1974). Pawitan and O’Sullivan (1994)
also used smoothing splines, but they fit the spline to the log-periodogram
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using the same Whittle likelihood that is used for Lspec, however, their
procedure does not allow for atoms, as it assumes the spectral density to
be continuous.

Software

A program for implementing Lspec as described in this chapter has been
written in C and an interface based on R has been developed. This code is
currently available from CRAN. Several others have ported this S-Plus and
C code for easy installation on other platforms and under the R language.
See Kooperberg’s website

http://bear.fhcrc.org/~clk/soft.html

for current links.

It should be noted that an approximate, nonadaptive version of Lspec
is readily available in many statistical packages. Specifically, set freq =
270j/T and period = IT)(275/T) for 1 < j < T/2 and let atoml be a
vector of the form (0,...,0,1,0,...,0)¢ of length |T/2] with the 1 in the
jth position. Then the S-Plus command

fixed <- glm(period ~ bs(freq,k) + atoml,
family = quasi(log, "mu2"))

fits a B-spline with k degrees of freedom and an atom at 27j/T to the
spectral distribution. However, the location and number of the knots and
atoms are not optimized, and the first and third derivatives of the spectral
density at 0 and 7 are not constrained to equal 0.

Theory

Under suitable conditions, Kooperberg, Stone, and Truong (1995d) ob-
tained the Lo rate of convergence for a nonadaptive version of Logspline
spectral density estimation. This result lends theoretical support to Lspec.
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