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10
Alternate Optimization Methods

In the previous chapters, we explored greedy, deterministic search algo-
rithms for knot placement that are meant to approximately minimize a
model selection criterion like AIC. Broadly, each procedure involves the
use of stepwise knot addition to grow a model of dimension M , after which
knots are deleted sequentially. Clearly, the number of models examined
during this two-pass process is at most 2M . In the previous chapters, we
have taken M to be of the form

M = Cnα (10.0.1)

where n denotes sample size and α is some constant in (0, 1]. This expression
was derived largely through simulation and empirical observation, although
it can be loosely justified via the theoretical work in Chapter 13.1 For
example, in Logspline and Hare we set the constants in (10.0.1) to be
α = 0.2 and C = 4. Therefore, given one million data points, the largest
model we will fit for either of these schemes consists of at most M = 65
basis functions.

By way of comparison, consider estimating a function of a single vari-
able, say a univariate density (as in Logspline) or a univariate regression
function (as in the scatterplot smoothing methods of Chapter 3). Suppose
we place K candidate knots at equally spaced quantiles of the input data.
Associating subsets of these points with knot sequences, we can construct

1Depending on the assumed smoothness of the unknown function, these results tell
us roughly (the order of magnitude) how many knots we should use when fitting a model
with fixed breakpoints.
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2K different spline spaces. For even modest values of K, the number of
models left unexplored by our stepwise algorithm is enormous. While many
are likely to provide very poor fits to the data, it is not unreasonable to
wonder about the models ignored by our greedy search.

The main motivation for stepwise methods is that they are efficient com-
putationally. Clearly, by entertaining a very small subset of the candidate
models, we incur significant savings. In addition, by introducing simple ap-
proximations to the final model selection criterion, we can greatly reduce
the effort required to evaluate “nearby” fits; or more precisely, models that
differ by the position, presence or absence of a single knot. As seen re-
peatedly in Chapters 4 through 8, these shortcuts typically involve simple
Taylor’s expansions of the log-likelihood. For example, the use of Rao and
Wald statistics to evaluate the impact of adding or deleting a single knot
makes Polyclass, Logspline, Hare, and Lspec feasible. Although discussed
in connection with greedy, stepwise algorithms, these approximations and
the corresponding computational savings can be applied in any procedure
that iteratively adds and deletes knots.

In this chapter we explore whether the gains in estimation performance
outweigh the computational expense of more exhaustive search procedures.
A major source of inspiration for this study comes from the recent work
on Bayesian model selection and the accompanying Markov chain Monte
Carlo (McMC) schemes for identifying promising models. In the last decade,
Bayesian approaches to model selection have advanced considerably, mainly
through the development of convenient computational tools. As we have
seen, the greedy methods like MARS and TURBO were constructed by
borrowing ideas from traditional approaches to model selection in linear
models. Recently, several Bayesian spline methods have also made use of
the connection between variable selection and knot placement, and in so
doing have brought new ideas from Bayesian computing into the practice
of nonparametric estimation.

10.1 Normal linear regression revisited

Let (X1, Y1), . . . , (Xn, Yn) denote n independent observations from a (nor-
mal) regression model. To describe the conditional mean of Yi given Xi, we
consider splines of order k. In the notation of Chapter 3, let t = (t1, . . . , tm)
denote a sequence of m knots or breakpoints and let Sk(t) denote the space
of splines (piecewise polynomials) of order k having k−1 continuous deriva-
tives across each point in t. So defined, Sk(t) is a (m+k)-dimensional linear
space with the collection of functions

1, x, . . . , xk−1, (x− t1)
k−1
+ , . . . , (x− tm)k−1

+ (10.1.1)

forming a basis. An estimate of the unknown regression function is obtained
by an ordinary least squares (OLS) projection into Sk(t). As we have seen,
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the success of this simple scheme depends on how we arrange points in t:
We would like to place more knots in regions exhibiting strong features,
while locating relatively fewer breakpoints in other areas. Unfortunately,
we rarely know much about the function we are trying to estimate and
must rely on the data (X1, Y1), . . . , (Xn, Yn) to help us determine both the
number of knots as well as their placement. By examining how knot place-
ment affected the statistical properties of an OLS projection into Sk(t), we
derived constraints on t that related to (possibly realistic) prior assump-
tions about the smoothness of the unknown regression function. One such
constraint involved the minimum number M of input points X1, . . . , Xn

that must separate neighboring elements of t. The so-called minimal span
M helps to reduce the influence of noise when using the data to find t. In
so doing, it acts as a smoothing parameter, implicitly restricting the shape
of the fitted curve.

In addition to the span M , we also considered other aspects of the struc-
ture of Sk(t) that determine the statistical properties of the spline fit. For
example, rules for extrapolating beyond the support of the data could help
reduce excess variability near the boundaries. In the case of cubic splines
(k = 4), the so-called natural boundary conditions forced each curve to
blend smoothly (two continuous derivatives) to a line outside the range of
the data. Recall from Chapter 3, that the set of functions in S4(t) that
satisfy this condition again forms a linear space with a basis given by

φ1(x) , φ2(x) , and R(x, tl) , l = 1, . . . ,m (10.1.2)

where φ1(x) = 1, φ2(x) = k1(x) and

R(x, x′) = k2(x)k2(x
′) − k4 ( |x− x′| ) . (10.1.3)

The functions k1, k2, and k4 are constant multiples of Bernoulli polynomials
and are given by

k1(x) = x− 1/2 , k2(x) = (k2
1(x) − 1/12)/2

and

k4(x) = (k4
1(x) − k2

1(x)/2 + 7/240)/24 .

In deriving these closed forms, we have assumed that the predictor variables
Xi all belong to the interval [0, 1], perhaps as a result of rescaling.

In Chapter 3, we applied popular selection criteria like AIC to evaluate
the relative performance of different knot sequences t. Let RSS(t) denote
the residual sum of squares associated with the OLS projection into Sk(t).
Recall that for normal regression, the family of generalized AIC criteria is
given by

AIC(t) =
n

2
logRSS(t) +

α

2
J(t) , (10.1.4)
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FIGURE 10.1. AIC (with α = log n) as a function of the model size for the 87
δ Sr

data using a stepwise addition (solid) followed by deletion (dotted) algorithm.

where J(t) denotes the dimension of the spline space Sk(t). Through the
penalty α, we explicitly trade fidelity to the data (as measured by the resid-
ual sum of squares of the OLS fit) with model complexity (the dimension of
the spline space, or rather the degrees of freedom associated with the OLS
fit). The fact that the flexibility of a spline space increases with knot count
implies that α acts as a smoothing parameter: by choosing a large value
for α, we focus our interest on spline spaces with very few breakpoints.

So far, we have only studied simple greedy algorithms for identifying a
the knot sequence t. These techniques were applied to both the ordinary
polynomial splines (10.1.1) as well as the space of natural splines (10.1.2).
As their name suggests, these greedy schemes add and delete knots se-
quentially, at each stage performing an act that is optimal in terms of its
effect on the selection criterion (10.1.4). When adding a knot, this means
we select that single point which yields the greatest drop in AIC (or, equiv-
alently, the residual sum of squares). Similarly, when removing a knot from
an existing sequence, we choose the point that produces the smallest rise in
AIC (or, equivalently, the residual sum of squares). Such schemes make it
easy to incorporate restrictions on the knot sequence (say, enforcing a given
minimal span), and are easily implemented using the bases in (10.1.1) or
(10.1.2) and standard statistical computing environments.

10.1.1 Greedy methods and the 87
δSr data

Consider again data introduced in Chapter 3 recording a standardized ra-
tio, 87δ Sr, of strontium isotopes 87Sr to 86Sr present in shells of marine
organisms. Recall that interest lies in the shape of the regression function
near the Cretaceous-Tertiary boundary (roughly 66 million years ago), re-
ferred to as the KTB. Starting from a simple linear relationship (consisting
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m=4 m=5 m=6 m=7 m=8

FIGURE 10.2. Curves found during backward deletion beginning with a model
consisting of 14 knots. Here, m refers to the number of knots in the model, and
the dimension of the natural spline space is then m + 2.

only of the basis functions 1 and x), knots were added sequentially to a
natural spline space. Initially, we set the minimum span M = 0, so that
any knot could be entered providing it was not already in the model. At
each step, we considered the set of unique input points X1, . . . , Xn as can-
didates for addition. The AIC values associated with each spline model
encountered during this process is plotted as a function of dimension in
Figure 10.1 (upper curve). Knots were then removed, producing another
series of models that were again evaluated via AIC. Starting from each
model consisting of between 10 and 14 knots (models of size 12 to 16), the
deletion process consistently found the same spline space of six knots. This
range of starting points for stepwise deletion covers all the rules mentioned
in Chapter 3. The AIC values for the sequence of models starting with the
14-knot fit are also plotted in Figure 10.1 (lower curve).

In Figure 10.2, we plot the best AIC fit (corresponding to 8 knots, or
a 10-dimensional space) as well as the four nearest fits, in terms of this
selection criterion, encountered during either knot addition or deletion.
These models vary largely in the region around the KTB, exhibiting from
between one and three modes! While the nearby curves consisting of 4, 5, 7
and 8 knots are close in terms of the selection process, their appearance can
be quite different. In terms of AIC, the 6-knot model is deemed to be the
best for penalties α ranging from 1 to 9 (keep in mind that traditional AIC
would take α = 2 and BIC selects α = log 45 = 3.8). For smaller values
of α, we can tip the criterion in favor of models with more knots (m = 7
or 8), and with a larger α, we can force the selection of one of the smaller
models (m = 4 or 5). This story does not change substantially if we enforce
a minimum span M larger than zero. In Figure 10.3, we plot the minimal
AIC models setting M equal to 1, 2 and 3. As with the M = 0 case, there
was considerable agreement across starting points of the deletion process,
where again our attempt was to cover all the suggested rules presented in
Chapter 3. Here, we can see clearly that the span restriction has resulted
in smoother selected models.

Throughout this text, we have emphasized the need to examine the
curves obtained by varying parameters like the span M or the penalty
on dimension α used in defining AIC. This analysis helps us to assess the
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FIGURE 10.3. Several fits for the 87
δ Sr data.

believability of features evident in our final, selected curve. We have also
introduced various simulation techniques to guide our judgment about the
height of peaks, the depth of values or the number of modes. In each case,
however, these tools make use of the same greedy search procedure for knot
placement. While motivated largely for computational purposes, it is not
unreasonable to question whether the fits in Figures 10.2 or 10.3 are rep-
resentative of the entire population of models. How much different is the
best (as measured by AIC) 6-knot model from the one found during our
passes of stepwise knot addition and deletion? In the knot-selection context,
we are dealing with potentially large sets of candidate predictor variables,
perhaps one per data point. For such applications, greedy schemes are a
compromise. While they can easily miss large numbers of “good fitting”
models, it is well known that more exhaustive search procedures frequently
identify spurious structures (a problem often referred to as selection bias).
Therefore, we might naturally question whether, in addition to explicit pa-
rameters like M or α, the search procedure itself might have an effect on
the statistical properties of the final selected model. Next, we will explore
these difficulties in more detail using the 87δ Sr data from Chapter 3.



10.1 Normal linear regression revisited 405

Age (millions of years)

50 60 70 80 90 100

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

δ87
S

r (
x  

10
)

FIGURE 10.4. All models that achieve an AIC score within 1% of the best model
for the 87

δ Sr data, as determined by an exhaustive search.

10.1.2 Results from an exhaustive search

At some level, a stepwise scheme for 87δ Sr data is unnecessary. The sample
size (n = 45) is small enough that it is possible to evaluate every knot
configuration that can be formed from the unique input points X1, . . . , Xn.
To make this process stable numerically, we considered the space of natural
splines (10.1.2), mapping our support of the original data, [44.3, 100.9], to
the interval [0, 1]. In so doing, our fits will join smoothly to a line both
before the first data point X1 and after the last Xn. This leaves us with
43 candidate basis functions. However, as one of the input points near the
KTB is repeated, we in fact have only 42 unique candidates. After stan-
dardizing the kernel functions (10.1.3) to have mean zero and variance one,
we used a well-known exhaustive search procedure for regression modeling
(also known as “regression by leaps and bounds,” this method was first
introduced by Furnival and Wilson (1974).

For the moment, we do not consider the entire set of 242 models, but
instead focus on all spline spaces consisting of 15 or fewer knots. In Fig-
ure 10.4, we plot all such models achieving an AIC score that is not more
than 1% larger than the smallest value computed for this subset. There
are roughly two regimes evident in this figure, a unimodal and a bimodal
fit. After closer inspection, we see that the unimodal curves can be further
classified into two groups, one dropping to lower values across the KTB
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FIGURE 10.5. Close up of the drop across the KTB for the unimodal fits found
by an exhaustive search.

than the other; see Figure 10.5. The bimodal and unimodal fits are mixed
in terms of their AIC values, with the absolute minimum in AIC achieved
by a unimodal curve. The models encountered during our greedy search are
at least 2% larger than the minimum AIC value, and hence are not rep-
resented in this sample of curves. By examining more models, we observe
variations that result in essentially equivalent fits (from the point of view
of AIC). In so doing, we might question the reliability of features that are
present in only a few models. In Figure 10.6 we present Quantile-Quantile
plots of residuals computed under each of the bimodal and unimodal fits.
Given that we have only 45 data points, these plots do not point to any
deficiencies in either curve.

So far, we have restricted our attention to models that consist of at most
15 knots. We have done so mainly because this was the range suggested
by our stepwise procedures. This kind of approach is frequently applied in
regression analysis (see Miller 1990). By minimizing AIC over the entire
range of knot configurations (with minimal span M = 0), however, we
would choose a model consisting of 26 breakpoints. This situation is not
uncommon when using selection criteria like AIC or GCV. As the number of
candidate models increases, the potential for identifying spurious structures
increases. In Figure 10.7, we present a curve of model dimension versus
AIC. Because of the form of this criterion (10.1.4), the models represented
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FIGURE 10.6. Quantile-Quantile plots of residuals computed under each of the
bimodal and unimodal fits for the 87

δ Sr data.

by this curve achieve the lowest RSS among all models of their size. We
plot the value of AIC for several choices of α, each larger than the penalty
assumed by BIC. The implication here is that we need roughly 1.2 times
the BIC penalty (or 1.2J(t) logn/2) to identify the 6-knot models as best.
In a purely heuristic fashion, we can motivate this multiplier through the
analysis in Section 5 of Chapter 3: the more extensive our search, the
greater the degrees of freedom we need to charge for each additional basis
function.

With the benefit of a complete search, we can see that several competing
models seem to provide adequate descriptions of the data, and yet differ
in their behavior near the KTB. Throughout this text, we have focused
on deriving a single “best” model according to a given selection criterion.
One can argue for this approach both in terms of computational savings and
ease of interpretation. Indeed, as we saw in the previous section, the greedy
schemes do not give an adequate reflection of the models in a neighborhood
of the “best,” so that it did not make sense to try to incorporate other fits
encountered during the addition and deletion process. When more good-
fitting models are available, however, it might make sense to combine the
predictions from each rather than force a selection. Greedy schemes are
notoriously susceptible to small changes in the input data, while average
or ensemble models are less so. In Figure 10.8, we present both the single
best fit as well as the average of the models within 1% of the best (both
in terms of AIC). In this chapter, we will study the gains to be had by
combining several good-fitting models in this way.
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FIGURE 10.7. Several penalties for the selection criterion. Over the range
1.15 log n = 4.4 to 1.5 log n = 5.7, a model of dimension 8 (which has 6 knots) is
preferred.

10.2 Bayesian Formulations

Our goal in this section is to present some well-known ideas from Bayesian
statistics, providing enough notation and terminology to be able to moti-
vate our application to function estimation. In the Bayesian approach to
modeling, we find a convenient framework for considering both model selec-
tion and model combination, two topics that featured prominently in our
previous discussion. Our connection to classical Bayesian statistics is again
through the parametric nature of our estimates. That is, a spline space
G is nothing more than a linear model. Well-known Bayesian methods for
estimation and inference are now immediately applicable to the problem
of curve and surface fitting. A significant component of our discussion will
also cover supporting computational methods. In the last ten years, the
field of Bayesian computation has become one of the most active areas
of statistics research. We will present techniques for Markov chain Monte
Carlo that make possible the construction of many “good fitting” spline
models by varying both the number and placement of knots.

Broadly, these tools offer us a more complete picture of the variability
among competing fits, as well as a scheme for combining them to improve
predictive power. In a Bayesian parlance, we use this framework to address
the structural uncertainty associated with the knot sequence. We begin this
section with a general overview of Bayesian methods for linear models. Our
treatment is necessarily limited and slanted toward the task of function
estimation (i.e., the linear space in question should be thought of as an
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FIGURE 10.8. The single best fit based on AIC (solid), and the average of all
fits that are within 1% of that AIC value (dashed) for the 87

δ Sr data.

approximation space). Readers wanting a more thorough presentation of
Bayesian statistics are referred to O’Hagan (1994).

10.2.1 A single linear space

In what follows, we let D denote a collection of observations from which
we are to estimate an unknown function f , and we let p(D|f) denote the
likelihood connecting the two. Let G be a J-dimensional linear space of
functions, chosen because of its favorable approximation properties. Let
{B1, . . . , BJ} represent a basis for G so that we can write any function
g ∈ G in the form

g(x; θ) = θ1B1(x) + · · · θJBJ(x) , (10.2.1)

for some value of the coefficient vector θ = (θ1, . . . , θJ). As usual, we are
interested in assessing various features of f and introduce G as a device
to explore them. The maximum likelihood estimate (MLE) of f from G is
defined as

ĝ = argmaxg∈G p(D|g) .

Because we are working with a linear model, we can write the likelihood in
terms of the coefficient vector θ,

p(D|θ,G) , (10.2.2)
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where we have explicitly included the dependence on the space G. Using
this notation, the MLE can be expressed as

ĝ = g(x; θ̂) , where θ̂ = argmaxθ p(D|θ,G) .

Optimization methods like Newton-Raphson iterations are then applied to
find θ̂. In all of the estimation contexts we have studied so far, p(D|θ,G) is
a concave function of θ, greatly simplifying numerical schemes for finding
θ̂ (see Chapter 2 for more on these topics).

In a Bayesian setup, we treat elements of G as random quantities. We
define a prior distribution for functions g ∈ G that expresses our prior
knowledge or ignorance about aspects of f . For example, given our under-
standing of the physical process that generated the data, we might place
less weight on wiggly functions, and instead favor smooth representations.
Using the fact that G is a linear model, such prior assignments are best
made in terms of the coefficient vector θ. In this case, we will let p(θ|G)
denote the prior distribution on θ. Given the observations D, the prior
distribution of θ is then updated using Bayes’ rule

p(θ|D,G) =
p(D|θ,G) p(θ|G)

p(D|G)
(10.2.3)

∝ likelihood (D|θ,G) × prior (θ|G) ,

where the quantity on the right is referred to as the posterior distribution.
In the denominator of (10.2.3) we find the so-called marginal or mixture

distribution of the data,

p(D|G) =

∫
p(D|θ,G) p(θ|G) dθ .

Notice that as with (10.2.2), we have made explicit the dependence of θ

on the space G. In the next section, we will consider several approximation
spaces, and this notation will be important.

In a classical Bayesian linear model, the posterior distribution (10.2.3)
incorporates all the information available in the data about f . In our set-
ting, however, this is only really true if we assume that f is a member of the
approximating space G. In deriving our prior distribution, we have implic-
itly assigned zero mass to functions outside of G, and hence the posterior
also has support on G. Such an assumption is clearly difficult to justify, and
as a result our inferences are limited by the properties of our chosen ap-
proximation space. Recall that we encountered similar difficulties with the
likelihood-based approaches when we examined classical parametric confi-
dence intervals (see Chapter 3). Assuming that G is sufficiently flexible to
capture the major structures in f , we will overlook this technicality for the
moment and instead explore what the Bayesian formalism offers us.
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FIGURE 10.9. Assessing variability from the posterior using a single linear
model G. Fifty samples from the posterior are generated via (10.2.4).

Sampling from the posterior

Using the expansion (10.2.1), the posterior for θ (10.2.3) gives rise to a
posterior distribution for functions in G. By drawing realizations from this
distribution, we can see at least informally the kinds of curves that receive
the most support from the data. The simple recipe for generating functions
from the posterior is given by

g(x; θ∗) , θ∗ ∼ p(θ|D) . (10.2.4)

By sampling several values of θ∗ and plotting the associated curves, we are
able to visually assess the variability captured by the posterior distribu-
tion. In Figure 10.12, we present the 87δ Sr data and fifty curves generated
from the posterior associated with the best-fitting unimodal model. The
exact specification of the priors is given in the next section. The plot is
reminiscent of one we obtained in Chapter 3 using bootstrap samples. The
use of this technique in more general smoothing contexts and its relation
to the bootstrap are discussed in Hastie and Tibshirani (1990).

This sampling technique can also be used to help us draw inference about
possibly complicated functionals of f . For example, the slope of the 87δ Sr
curve at the KTB provides earth scientists with information about the
events that accompanied the mass extinction 66 million years ago. Using the
same setup leading to Figure 10.9, we sampled 1000 curves and numerically
evaluated the average slope in a 200,000 year window just after the KTB.
A histogram of this distribution is given in Figure 10.10. The mean slope is
0.26 with a standard deviation of 0.01. Other quantities of interest might
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FIGURE 10.10. Histogram of the average slope in a 200,000 year window just
after KTB for the 1000 curves displayed in 10.9.

include the number of peaks exhibited by a curve or its maximum in some
region. In general, we can approximate the posterior distribution of each of
these functionals via sampling. Through simple diagnostics like the plot in
Figure 10.10, we obtain a picture of the features supported by the posterior.
See Silverman (1985) for more examples of this technique.

Estimation

Next, we want to form an estimate of f . Following the approach given
above, a reasonable choice is the posterior mean,

ḡ(x) = g(x; θ̄) , where θ̄ = E(θ|D,G) , (10.2.5)

and the expectation is taken with respect to the posterior distribution of θ.
By a standard argument, we can show that this choice is optimal in a mean
squared sense. To be more precise, let x be any point in I and consider the
squared loss

L(g, h) = [ g(x) − h(x) ]
2
,

where g ∈ G and h is any other function defined on I . We then consider
the expected loss

E
(
L(g, h)

∣∣D,G
)

(10.2.6)

where the expectation is taken with respect to the posterior distribution
over g(x). As was done above, we obtain the posterior distribution of g(x) =
g(x; θ) from the posterior on θ (10.2.3). Then, a minimizer of (10.2.6)
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over all functions h is ḡ(x). 2 In the next section, we will see that for a
certain assignment of priors p(θ|G), the posterior mean (10.2.5) is a familiar
smoothing spline fit constructed in Chapter 3.

10.2.2 Many spaces

As in the previous section, let D denote a collection of observations from
which we are to estimate an unknown function f , but now let G1,G2, . . .
represent a series of linear spaces, differing perhaps in their ability to resolve
features of f . To make use of these spaces, we need to construct a prior for
the collection G = ∪mGm. Repeating the recipe above, we construct a basis
for each space

gm(x; θm) = θm1Bm1(x) + · · · + θmJm
BmJm

(x) ,

where θm = (θm1, . . . , θmJm
); and assign a prior distribution to functions

in Gm through the coefficient vector θm, which we denote p(θm|Gm). Next,
we associate with Gm a prior probability p(m) that reflects our knowledge
about the function we are estimating. For example, suppose Gm is a space
of natural splines with m knots distributed in some way over the domain
of f . If we expect f to exhibit only very smooth behavior, our prior prob-
abilities should decrease with m. Having constructed p(m) and p(θm|Gm),
we simulate curves from our prior in two steps given below. This scheme
will produce functions from the collection G = ∪mGm.

Given the likelihood p(D|θm,Gm), we can compute the marginal distri-
bution of the data D given the linear space Gm,

p(D|Gm) =

∫
p(D|θm,Gm) p(θm|Gm) dθm .

Using the prior p(m) to combine contributions from each space, the data
D now have a mixture distribution

p(D) =
∑

m

p(D|Gm)p(m) .

2Many sensible loss functions produce the same result. For example, we could define

L (g, h) =

Z

I

[ g(x) − h(x) ]2 dx .

In the regression context, where the data D consist of the pairs (X1, Y1), . . . , (Xn, Yn),
we could alternately define the loss function as

L(g, h) =
1

n

n
X

i=1

[ g(Xi) − h(Xi) ]2 .

If G is identifiable with respect to the input values {X i}, then the minimizer of (10.2.6)
is still ḡ.
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Simulating from the prior

Prior 1: First, we select a model by sampling an index m∗ from the
distribution p(m);

Prior 2: then, given m∗, we sample a coefficient vector θ∗ from the
prior p(θm∗ |Gm∗) and form gm∗(x; θ∗).

Simulating from the posterior

Post 1: First, we select a model by sampling an index m∗ from the
posterior distribution p(m|D);

Post 2: then, given m∗, we sample a coefficient vector θ∗ from the
posterior computed as in (10.2.3) for Gm∗ ,

p(θm∗ |D,Gm∗) = p(D|θm∗ ,Gm∗) p(θm∗ |G) / p(D|Gm) ,

and form gm∗(x; θ∗).

FIGURE 10.11. Two-stage or hierarchical model specification. Sampling from the
prior and the posterior.

Given data D, we apply Bayes’ rule to update the probabilities p(m) on
each model space

p(m|D) =
p(D|Gm) p(m)

p(D)
. (10.2.7)

Models receiving high posterior probability p(m|D) are favored by the data.
In terms of the actual function spaces, the posterior distribution for ele-
ments in G = ∪mGm is again specified in two steps. We now consider how
introducing the different models changes our approach to Bayesian infer-
ence and estimation.

Posterior inference

As we mentioned above, the incorporation of several model spaces allows
us to assess uncertainty in both the number and location of knots. In Fig-
ure 10.10, we present samples from the posterior obtained from all possible
models. The prior is described in detail in the next section. For comparison
purposes, the prior conditional on the best-AIC model from Figure 10.12
was the same. The samples here exhibit different variability across the in-
terval. Similarly, the overall spread of these functions is wider, reflecting in
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FIGURE 10.12. Assessing variability from the posterior using models with be-
tween 0 and 43 knots. Fifty samples from the posterior are generated via the
prescription in Figure 10.11.

some sense the uncertainty coming from the knot sequence. The curves in
Figure 10.2.3 do not incorporate this component of variability and hence
tend to be overly optimistic.

We can make this idea precise by considering again estimates of a func-
tional of f . In the previous section we considered the average slope in
some neighborhood of the KTB, and other candidates might include the
maximum of the curve in some region or the number of modes of f . Let
ψ(·) denote any such functional. Given a linear space Gm, we used sam-
ples θ∗m from the posterior p(θm|D,Gm) to generate random functions
g∗m(x) = gm(x; θ∗

m). We in turn used the distribution of ψ(g∗m) to draw
conclusions about ψ(f). Suppose that for each m, the variables ψ(g∗m) have
mean µm and variance σ2

m. Next, we remove the conditioning on the linear
space Gm and consider the distribution of ψ(g∗) where g∗ is constructed
according to the posterior over G = ∪mGm given in Figure 10.11.

Let πm = p(m|D) denote the posterior probability of the mth model.
The mean of ψ(g∗) is then given by

µ =
∑

m

πmµm
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while the variance is given by

σ2 =
∑

m

πmσ
2
m +

∑

m

πm(µm − µ)2

=




Within
Model

Variance


 +




Between
Model

Variance


 .

This final expression makes explicit the effect of including different models
when drawing inferences about functionals of f . We can decompose the
posterior variation in estimating ψ(f) into two components. The first rep-
resents the average variation resulting from any particular choice of model,
while the second records the variation arising purely from uncertainty in
our choice of model.

Estimation

There are two approaches to estimating f given the posterior distribution
described in Figure 10.11. The first mimics the technique we employed to
estimate functionals of f , namely via a posterior mean. Theoretical con-
siderations indicate that this kind of averaging across spaces can offer im-
provements in predictive performance (Barron, Shervish, and Wasserman
1999; X. and L. 1998; Huang 2001). The downside, however, is that we are
forced to consider many knot sequences to produce an estimate. A single,
low-dimensional spline space is appealing for many applications. Therefore,
the second estimation scheme chooses one model according to the posterior
probabilities (10.2.7).

Model averaging. Applying the recipe above for functionals of f , we can
form an estimate of f via the pointwise average

ḡ(x) =
∑

m

ḡm(x)πm , (10.2.8)

where πm = p(m|D) is the posterior probability (10.2.7), and ḡm is the
posterior mean (10.2.5) computed for the space Gm. This estimate is also
optimal in a mean squared sense applying the same loss functions and rea-
soning as in the single-model case presented above. In this case, we minimize
the expected loss with respect to the mixture posterior (10.2.7). The esti-
mate in expression (10.2.8) is often said to be the result of Bayesian model
averaging. In the spline context, this approach dates back to an early paper
by Halpern (1973). Unfortunately, given the restricted computational tools
of his day, Halpern’s estimator did not find substantial practical application
for nearly two decades.

Maximum a Posteriori Estimate. Rather than average together a large
number of models, we might instead choose to select a single model. Using
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FIGURE 10.13. Whatever fig:resbma is.

the posterior model probabilities, we might consider

m̂ = argmaxmp(m|D)

and then take as our estimate ḡ bm(x). It can be shown that this esti-
mate serves to minimize a different loss function, the so-called 0-1 loss
that charges the value 0 if we get the model right, and 1 otherwise. The
convenient thing about this estimate is that it involves only one model.
Therefore, just like our greedy scheme, we are afforded some degree of sim-
plicity in the representation of our estimate. We only require a singe space,
rather than the (potentially) large suite of candidates.

10.2.3 Computation

With the benefit of a complete search, we can see that several
When the number of candidate models is reasonable, the posterior-based

methods mentioned above are sensible. For example, if we took the spaces
Gm to be the cubic natural spline space with knots at m equally spaced
quantiles, we could entertain at most n models. In Figure 10.13 we repro-
duce the simulation from Chapter 3 with 200 equally-spaced data points.
We have added the curve posterior mean curve using the prior discussed
in the next section. We have also plotted the equivalent kernel. The fit
behaves like a fixed-bandwidth kernel estimate. To improve matters, we
would prefer to include knots sequences that concentrate breakpoints in
regions where they are needed. So, given m knots, we might have many
more sequences. How doe we compute with such a large number?
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Exhaustive search

Given a search procedure like regression by leaps-and-bounds, we can sift
through model space and keep only promising models. A variant of this
idea, known as Occam’s window, was suggested by Madigan and Raftery
(1994). Broadly, these ideas make use of some kind of deterministic search
through model space, reducing options based on the residual sum of squares
or other heuristics associated with the fit. This is our approach to the 87δ Sr
data.

Markov chain Monte Carlo

Suppose we have a finite number of candidate models, denoted G1, . . . ,GM ,
for which we can compute the posterior model probabilities p(m|D). The
idea behind Markov chain Monte Carlo (McMC) is to construct a Markov
chain m(t), t = 1, 2, . . ., on the indices 1, . . . ,M having the equilibrium dis-
tribution p(m|D). Let m(1), . . . ,m(N) be N observations from this chain,
and suppose we want to estimate a functional of f . For simplicity, we will
consider the value of f at the point x. Then, by standard McMC results
the average

ĝ(x) =
1

N

N∑

i=1

ḡm(i)(x) .

tends to
ĝ(x) → E ( g(x)|D )

almost surely as N tends to infinity. Again, the expectation above is with
respect to the posterior distribution. This technology has been developed
mainly in the context of model averaging and through the connection with
linear spaces, has found application in spline modeling. We describe two
basic approaches that have appeared in the literature.

Metropolis-Hastings. The simplest method for constructing a Markov chain
on model indices is via the Metropolis-Hastings algorithm. Here, we define
a neighborhood of models nbhd(Gm). We then construct a transition matrix
Q(i, j) = 0 if i 6∈ nbhd(Gj).

min

{
1,
p(m′|D)

p(m|D)

}

Finally! The simple Met-Hastings approach will allow us to
talk about simulated annealing, etc. The disc starting from this
point will appear shortly.

Gibbs sampler. When the number of candidate knots is fixed (say given by
the input data points), we can introduce a binary vector γ as a replacement
for the index m. Here, each element of γ corresponds to a knot location and
is one if the knot is in the model and zero otherwise. The neighborhood of a
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given model with index γ is defined as those which differ by the placement,
the presence or absence of a single knot.

The kernel obtained by conditioning on Y produces γj+1 by sampling
from the conditional distribution γ|Y . As a result, for any y, the conditional
distribution of γ|y is an invariant distribution for this kernel.

George and McCulloch (1993) used the Gibbs sampler to identify promis-
ing subsets of variables in linear regression models. Smith and Kohn (1996)
proposed an alternative Gibbs sampler to that of George and McCulloch
(1993) to generate iterates from p(γ|Y ). They generate the γi one at a
time from their conditional densities p(γi|Y , γj 6=i), with both β and σ2

integrated out to speed up convergence. A computationally efficient algo-
rithm for implementing this is outlined in Smith and Kohn (1996).

Reversible jump Markov chain Monte Carlo. In many cases, we would pre-
fer to treat the location of knots as continuous. This so-called free-knot
spline approach means that we cannot discretize the space and generate a
fixed set of alternatives. Instead, our sampler must draw locations as well.

This framework is quite general and in fact each of the previous McMC
schemes can be interpreted in this way. This sampling scheme was intro-
duced by Green (1995) and used by Denison, Mallick, and Smith (1998) and
Holmes and K. (1998) for nonparametric regression. The sampler assumes
that the number of active variables (which is mγ , the number of indicator
variables equal to 1) has a Poisson distribution with mean τ which we de-
note as pτ (mγ). The sampler is based on the repeated application of one of
the following three elementary steps: (a) A birth in which a randomly chosen
γi which is currently 0 is turned into a 1; (b) A death in which a randomly
chosen γi which is currently 1 is turned into a 0 ; (c) A move in which a ran-
domly chosen γi which is currently 1 is turned into a 0 and simultaneously
a randomly chosen γj which is currently 0 is turned into a 1. If mγ = k cur-
rently, then the probability of a birth is bk = 0.4 min{1, pτ(k + 1)/pτ (k)},
the probability of a death is dk = 0.4 min{1, pτ(k)/pτ (k+1)} and the prob-
ability of a move is 1− bk − dk. Each of the birth, death and move steps is
then either accepted or rejected based on Metropolis-Hastings step. Details
are given by Green (1995).

The priors in Denison et al. (1998) and Holmes and K. (1998) are different
than those in Section 10.2. First, as noted above, these authors follow Green
(1995) and use a Poisson prior with mean τ for mγ . Denison et al. (1998)
assume a given value for τ , whereas Holmes and K. (1998) place a gamma
prior on τ . Both papers assume an inverse gamma prior on σ2, but do not
put a prior on the regression coefficients. At each iteration, both papers
estimate the regression coefficients of the active variables by least squares
and use these estimates to generate γ and σ2. Strictly speaking, neither
Denison et al. (1998) nor Holmes and K. (1998) provide genuine Markov
chain Monte Carlo sampling schemes which would require generating the
regression coefficients from their conditional distributions. One practical
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consequence of not generating the regression coefficients in their sampling
scheme is that the confidence intervals for the regression surface may be
too narrow.

10.2.4 Connection with model selection criteria

As we have seen in the Smith and Kohn (1996) procedure, it is possible to
construct a prior so that the posterior agrees with a selection criterion like
our generalized AIC. In fact, the Bayesian information criterion BIC (α =
logn), is obtained directly by expanding the posterior distribution (10.3.7)

in a quadratic Taylor’s series around the maximum likelihood estimate β̂.
Therefore, under Gm we have

p(β|Gm,D) ≈ (β − β̂)p(β̂|Gm,D) + p′(β̂|Gm,D) − 1

2
(β − β̂)I(β̂)(β − β̂),

where p is simply the posterior and I is the Fisher information. Because β̂

is the MLE, the linear term drops from this expression leaving

p(β|Gm,D) ≈ (β − β̂)p(β̂|Gm,D) − 1

2
(β − β̂)I(β̂)(β − β̂) .

Therefore, we see that the posterior is essentially given by a Gaussian dis-
tribution with mean β̂ and variance-covariance I(β̂)−1. This is commonly
called a Laplace expansion of the posterior.

Schwarz (1978) derives BIC as an approximate means of comparing mod-
els. The nice thing about this expansion is that it effectively eliminates
the prior specification. Through judicious choice of prior, it is possible to
construct a posterior that scales like any member of the AIC family. For
regression, George and Foster (2000) make use of this. For generalized re-
gression Clyde (2000) introduces a particular prior that gives rise to the
same posterior. In each case, a tuning parameter on the prior for β is equiv-
alent to setting α. For this reason, Clyde (2000) calls this class of priors
the Calibrated Information Criterion priors. They are part of a class of
objective Bayesian procedures that are mean to be automatic.

10.2.5 Theoretical justification

10.3 Normal linear regression

10.3.1 Prior specification

Our treatment of Bayesian approaches to the normal linear regression
model is necessarily brief. Readers requiring more motivation are referred
to the text by O’Hagan (1994). The reader in need of more motivation than
is given in these pages is referred to this text. In the normal linear regression
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model, our data D consists of n independent pairs (X1, Y1), . . . , (Xn, Yn)
observed from the model

Y = f(X) + ε , (10.3.1)

where ε has a Gaussian distribution with mean zero and variance σ2. For
simplicity, we will assume that σ2 is known. Then, writing the likelihood
in terms of β we find

p(D|β,G) =

(
1

2πσ2

)n/2

exp

[
−

∑n
i=1 (Yi − g(Xi; β) )2

2σ2

]
. (10.3.2)

Define the matrix B to be the design matrix

[B ]i,j = Bi(Xj) i = 1, . . . , n and j = 1, . . . , J ,

corresponding to the basis in (10.2.1), and set Y = (Y1, . . . , Yn)′. With this
notation, the likelihood (10.3.2) becomes

p(D|β,G) =

(
1

2πσ2

)n/2

exp

[
− (Y −Bβ)′(Y −Bβ)

2σ2

]
.

Motivated mainly by computational convenience, the prior on β is usu-
ally taken to be normal with some mean mean b and variance-covariance
Σ.3 With this choice, we use Bayes’ rule (10.2.3) to derive the posterior
distribution

p(β|D,G) ∝ exp

[
− (Y −Bβ)′(Y −Bβ)

2σ2
− (β − b)′Σ−1(β − b)

2

]

(10.3.3)
where multiplicative constant does not depend on β. Then, rewriting the
expression within brackets as a quadratic function of β, it is easy to verify
that the posterior distribution of β given D is normal but with mean and
variance

(
Σ−1 + B′B

)−1 (
Σ−1b + B′Y

)
and

(
Σ−1 + B′B

)−1
, (10.3.4)

respectively. From the quantity on the left, we can see immediately that if
b is a vector of zeros, then the posterior mean has the form of a generalized
ridge regression

β =
(
Σ−1 + B′B

)−1
B′Y . (10.3.5)

and we take as our estimate of f the function g(x; β).

3This choice is known as the conjugate prior because the both the prior and the
posterior distributions belong to the same parametric family. In this case, both are
Gaussian.
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Smoothing splines

In Chapter 3, we found that the cubic smoothing spline produced an esti-
mate the form (10.3.5). To make the connection with Bayesian methods, we
recall some notation. First, we will focus on univariate smoothing splines
based on data (X1, Y1), . . . , (Xn, Yn) where Xi ∈ [0, 1]. Let G be the space
of natural splines corresponding to some knot sequence and let B1, . . . , BJ

be some basis for the space. A smoothing spline is a penalized least squares
fit into G, where the penalty is given by a roughness measure S(g) for func-
tions g ∈ G. While S is a property of the function g, given a basis and the
expansion (10.2.1) we can express it in terms of the coefficient vector β:

S(g) =

∫
(g′′)2 = β′Aβ,

where

[A ]ij =

∫
g′′i (x)g′′j (x)dx for 1 ≤ i, j ≤ J.

Because S has the property that any function of the form β0 + β1x is
assigned roughness zero, the matrix A is only positive semidefinite.

With these definitions, the smoothing spline is given as the minimum of
the penalized likelihood

n∑

i=1

(Yi − g(Xi))
2 + S(g) , g ∈ G ,

which we can rewrite this in terms of the coefficient vector β,

n∑

i=1

(Yi − g(Xi; β) )2 + λβ′Aβ = (Y −Bβ)′(Y −Bβ) + λβ′Aβ (10.3.6)

using the definitions of Y and B given in the previous section. Comparing
this to (10.3.3), we see that the penalized likelihood is in fact (up to some
additive constants that do not depend on β) the (negative) log-posterior
corresponding to the normal regression model (10.3.1) with a normal prior
on β. The noise variance σ2 has been absorbed into the penalty parameter
λ.

To obtain the smoothing spline criterion (10.3.6), the normal prior on β

has mean zero and variance-covariance λ−1A−1. Unfortunately, because A
is derived from a roughness measure that gives each function of the form
β0+β1x the value zero, it is only positive semi-definite and hence not invert-
ible. Therefore, the prior on β that produces a smoothing spline is partially

improper: It concentrates mass on a hyperplane of dimension J−2. From a
Bayesian perspective, improper priors of this sort are acceptable providing
the posteriors are well behaved. In this case, as long as the linear space
spanned by 1, x is identifiable with respect to the input data X1, . . . , Xn,
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the posterior is proper and normal with the mean and variance-covariance
indicated in (10.3.4). When the identifiability condition does not hold, the
matrix A+B′B is not invertible, the posterior is again improper, and as we
found in Chapter 3, a single solution to the penalized least squares problem
does not exist.

Calibrated information criterion priors

Many prior specifications have been suggested for the normal linear model,
and several have been applied as is to smoothing via a linear space G. One of
the earliest modern treatments was considered by Smith (1996) and Smith
and Kohn (1996). A normal prior with mean zero and variance-covariance
λ(X′X)−1 is introduced. This means that the posterior is given by

BIC(t)

The idea behind the Smith–Kohn technique is to introduce a binary vector
γ = (γ1, . . . , γM+4) that indexes the columns of the design matrix X corre-
sponding to the truncated power basis: γi equals zero or one according as
the coefficient βi of the ith basis function does or does not equal zero. The
components of γ are assumed to be a priori independent, with probability
one-half of equaling zero. This corresponds to giving all possible subsets of
the set of M + 4 variables the same prior probability. After also specify-
ing prior distributions for β = (β1, . . . , βM+4)|(γ, σ2) and σ2|γ, Smith and
Kohn derive the posterior distribution of γ given the vector of n observa-
tions y = Xβ + ε, where ε ∼ N(0, σ2In). Specifically, if we let βγ and Xγ

denote the coefficient vector and design matrix, respectively, corresponding
to a model containing exactly those variables for which γi equals one, then
by setting

p(βγ |γ, σ2) = N(0, c(XT
γ Xγ)−1) and p(σ2|γ) ∼ 1/σ2

we find that the posterior probability function of γ is given by

p(γ|y) ∼ (1 + c)−qγ/2
(
yT y − c

c+ 1
yTXγ(XT

γ Xγ)−1XT
γ y

)−n/2

,

where qγ =
∑

i γi is the number of terms in the model and c is a user-
specified constant. Smith and Kohn apply the Gibbs sampler to simulate
from the posterior distribution of γ and either report the posterior mode
of γ or the posterior mean of β. The model has been specified so that
the sampling procedure steps through many models with high posterior
probability in a computationally efficient manner. AfterK Gibbs iterations,
two alternative approaches are applied to the samples γ [k], k = 1, . . .K, to
estimate β: (i) β̂ is obtained by an OLS fit to those variables included in
the model specified by the vector γ [k] that maximizes p(γ[k]|y); or (ii) the
posterior mean E(β|y) is estimated by the average value of E(β|y, γ [k]),
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where the indicated conditional expectation is computed exactly using the
fact that β|(y, γ) has a multivariate t distribution.

Transforming the expression for the posterior probability function of γ
into something more familiar to the smoothing community, Foster and
George (1996) have found that under certain conditions the value of γ
that maximizes this function also minimizes the quantity RSS(γ) + (1 +
c−1) log(c + 1)qγσ̂

2, where RSS(γ) is the residual sum of squares for the
model specified by γ, and σ̂2 is estimated from the full model with all M+4
variables. By selecting c properly, we can perform model selection with re-
spect to Mallow’s Cp, AIC, or BIC. Making this connection, we see that the
Gibbs sampler of Smith and Kohn is in fact an alternative to our approach
of minimizing BIC in a stepwise fashion. Unfortunately, because of the way
the vector γ treats all variables as candidates for inclusion or exclusion, we
are left with the deficiencies described in the previous section.

The performance of this technique, however, is heavily dependent on the
number of knots used to define the truncated power basis. An alternative
approach followed by Denison, Mallick, and Smith (1998) involves defining
prior distributions for the number and location of knots as well as the
coefficients in a spline expansion. The resulting “automatic Bayesian curve
fitting” procedure makes use of reversible jump Markov chain Monte Carlo
methods (Green 1995) to compute the posterior distribution, this time over
collections of models having different numbers and positions of knots. At
each step in their sampling procedure, one of several possible transitions is
chosen at random. These transitions include adding a new knot and either
moving or deleting an existing knot, and they can in principle be made
efficient through the use of Rao and Wald statistics.

10.3.2 Computation

As in the previous section, let D denote a collection of observations from
which we are to estimate an unknown function f , and let G1,G2, . . . rep-
resent a series of linear spaces, differing perhaps in their ability to resolve
features of f . Each space is assigned a prior probability p(Gm) that is con-
sistent with our assumptions about the function we are estimating. For
example, suppose Gm is a space of natural splines with m knots distributed
in some way over the domain of f . Then, if we expect f to exhibit only
very smooth behavior, our prior probabilities should decrease with m. If we
let p(D|Gm) denote the marginal probability of the data given the linear
space Gm, the data D have a mixture distribution

p(D) =
∑

m

p(D|Gm)p(Gm) .
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As we did in the case of a single linear model, the prior distribution on the
collection of linear spaces is updated using Bayes’ rule

p(Gm|D) =
p(D|Gm) p(Gm)

p(D)
, (10.3.7)

the quantity on the right being referred to as the posterior distribution for
Gm. Inference about f is now made on the basis of (10.3.7).

10.4 Extended linear models

10.4.1 Logspline density estimation

In Figure 10.14, we compare the greedy scheme with several versions of
stochastic techniques. Here, we have applied a prior that controls the
smoothness of the data. It is still possible to form a type of calibration with
the model selection criterion and this was done in Hansen and Kooperberg
(2000). What we find from this example is that there is a price to be paid
for the more exhaustive search schemes. The best results were obtained
with a penalty α = logn.

10.4.2 Triogram regression

A major difficulty with the Triogram procedure was that the chain of mod-
els visited during addition tended to be very similar to those seen on the way
down. This is because the placement of knots tends to be rather highly con-
strained: Splitting edges and adding vertices produce triangulations from
which it is difficult to remove structures other than those that were added.
In short, the process is much more constrained and the number of candi-
date models examined during the greedy search is even more limited than
in the univariate examples given above.

In the previous section, a greedy search was employed to identify a single
spline space G. From among the functions in G we then chose an estimate
ĝ via maximum likelihood. By restricting ourselves to the class of (concave)
extended linear models, we were naturally led to stepwise procedures in-
volving nested spaces. We now present a general Bayesian framework for
model adaptation that will allow us to compare this greedy procedure with
other more recent approaches to the problem. In this Bayesian setup, model

uncertainty comes from both the structural aspects of the space G (knot
or vertex placement) as well as from our selection of members g ∈ G.

10.4.3 ELM Prior specification

We begin with a simple hierarchical formulation. At the first level, we assign
a prior distribution p(G) to some set of candidate models G. In the parlance
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FIGURE 10.14. Several versions of Logspline density estimation for the income
data.

of the previous section, those G for which p(G) > 0 represent the collection
of allowable spaces. For example, through p(G) we can enforce properties
like the minimum spacing between knots or the largest acceptable aspect
ratio of triangles in a mesh. Next, given a space G, we generate elements
g (univariate or multivariate splines) according to the distribution p(g|G).
By selecting a basis for G consisting of the functions g1, . . . , gJ , a natural
prior for g involves the coefficients β = (β1, . . . , βJ) in the expansion

g = β1g1 + · · · + βJgJ . (10.4.1)

We will use a partially improper, normal distribution for β frequently en-
countered in smoothing spline applications (Silverman 1985; Wahba 1990;
Green and Silverman 1994). We are led to this prior because it is indepen-
dent of how we select our basis for the expansion (10.4.1). Finally, the data
enter through the likelihood specified by an extended linear model p(W |g)
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FIGURE 10.15. In the top row we have the true surface (left) and the fit resulting
from model averaging (right). In the bottom row we have two isolated fits, each
a “minimal” BIC model, the leftmost coming from a greedy search, and the
rightmost produced by simulated annealing (the triangulations appear at the top
of each panel).

defined in Chapter 4. The prior components of this general specification de-
serve further elaboration. Implementation issues associated with Bayesian
versions of both Logspline and Triogram regression will be discussed at the
end of this section.

Priors on model space

In many applications, the most direct specification of p(G) involves the
collection of knots or vertices. For the moment, consider univariate spaces
G and let τ = {t1, . . . , tK} denote the set of breakpoints. Introducing an-
other layer of conditioning, we first choose the number of knots K (closely
related to the dimension J of G) according to p(K), and then given K,
we generate τ from the distribution p(τ |K). Regularity conditions on the



428 10. Alternate Optimization Methods

76
78

80
82

84
86

X
 0

10

20

30

Y

76
78

80
82

84
86

X
 0

10

20

30

Y

FIGURE 10.16. The volt data from Cleveland and Fuentes (1996).

structural aspects of the associated spline space G can be imposed by re-
stricting the placement of t1, . . . , tK through p(τ |K). Both continuous and
discrete specifications for knot sequences given K have been suggested in
the literature. In the context of fitting piecewise constant splines, for ex-
ample, Green (1995) places knots continuously in some interval [a, b] that
covers the support of the input variables {x1, . . . , xn}. They are “stochas-
tically spaced” at order statistics of a collection of random variables, each
uniformly distributed over [a, b]. Denison, Mallick, and Smith (1998) use
this idea for univariate curve fitting, but discretize their choice of knot
locations. Here, candidate breakpoints are located at order statistics of a
uniform sample with state space {xi; 1 ≤ i ≤ n}. To prevent knots from co-
alescing, Denison et al. (1998) define as allowable those spaces for which at
leastKsep data points fall in the intervals (tk , tk+1), k = 1, . . . ,K−1. Smith
and Kohn (1996) also create a discrete space of candidate breakpoints, but
consider only max(35, n) sites located at quantiles of the {xi}. Any collec-
tion of points from this reduced set represents an allowable space. Similar
ideas are discussed in Wong, Hansen, Kohn, and Smith (1998) where nat-
ural splines and spaces of radial basis functions are also considered. In
what follows, we find that in some cases (Logspline density estimation),
the discrete approach is sufficient, while in others (Triogram regression) a
continuous choice of knots is required.

Broadly, each of these schemes places (essentially) uniform mass on suf-
ficiently regular knot sequences. This leaves us with the task of specifying
p(K). To the extent that the number of knots also acts as a smoothing
parameter, this distribution can have a considerable effect on the look of
the final curves produced. We will explore several of the proposals that
have appeared in the literature. The first is a simple Poisson distribution
with mean γ suggested initially by Green (1995). Denison, Mallick, and
Smith (1998) take the same distribution for more general spline spaces and
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argue that their results are somewhat insensitive to the value of γ. (In later
attempts, this parameter is assigned a hyper-prior and sampled within a
larger Markov chain Monte Carlo scheme; see Holmes and K. 1998). Just as
the bounds Kmin < Kmax helped restrict the greedy search in the previous
section, this choice of p(K) is usually truncated to have support on the set
{Kmin, . . . ,Kmax}.

The next prior we will consider was suggested by Smith and Kohn (1996)
and later used by Wong, Hansen, Kohn, and Smith (1998). Either by greatly
reducing the number of candidate knots or by scaling the prior on the coef-
ficients in (10.4.1), these authors suggest that K be distributed uniformly
on the set Kmin . . . ,Kmax.

The final proposal for p(K) is somewhat more aggressive in enforcing
small models. To properly motivate this distribution, we think of the model
selection procedure as two stages: in the first we find the posterior average
of all models with k knots by integrating out τ and g, to obtain, say ḡk and
its posterior probability P (ḡk|W,K = k). Suppose that we consider ḡk to
have k degrees of freedom (an admittedly questionable assumption). If we
now were to use an AIC-like criterion to choose among the ḡk, we would
select the model that minimized

−2 logP (ḡk|W,K = k) + ak

(compare (3.2.29)). On the other hand, using the posterior to evaluate the
best model suggests maximizing

P (ḡk|W,K = k)P (K = k).

If we take P (K) ∝ exp(−a/2) these two approaches agree. Thus, taking
a geometric distribution for P (K) implies an AIC-like penalty on model
dimension. In particular a = logn and q = 1/

√
n imposes the same cost

per knot as BIC. For reasonable settings of Kmin and Kmax, however, the
expected prior number of knots under this prior will tend to zero with
n. While it is certainly intuitive that the prior probability of K decreases
monotonically with K, this drop may be at a faster rate than we would
expect. If a ≥ 2 then P (K = k + 1)/P (K = k) ≤ 1/e.

Priors on splines in a given space

We parameterize p(g|G) through the coefficients in the expansion (10.4.1).
As the solution to a penalized maximum likelihood fit, smoothing splines
(Wahba 1990) have a straightforward Bayesian interpretation (Silverman
1985). In univariate smoothing, for example, G is a space of natural splines
(given some knot sequence τ ), and the “roughness” of any g ∈ G is mea-
sured by the quantity

∫
(g′′)2. Expanding g in a basis (10.4.1), it is not

hard to see that
∫

(g′′)2 = β′Aβ, where Aij =

∫
g′′i (x)g′′j (x)dx for 1 ≤ i, j ≤ J.
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The traditional smoothing spline fit maximizes the penalized likelihood

argmaxβ { p(β) + λβ′Aβ},
for some parameter λ. Silverman (1985) observes that the solution to this
problem can be viewed as a posterior mode, where β is assigned a par-
tially improper, normal prior having mean 0 and variance-covariance ma-
trix (λA)−1. (In regression problems, the posterior distribution for β is
again normal, so the solution above is also the posterior mean.) This setup
has the favorable property that it is invariant to our choice of basis. More
precisely, given a positive constant c, a priori the probability that the
roughness

∫
(g′′)2 < c is a property of g and not the underlying basis.

When we move to more general spline spaces, we will continue to use some
form of smoothing prior, also depending only characteristics of the function
itself and not on the particular basis chosen to represent it.

By contrast, Smith and Kohn (1996) and Wong, Hansen, Kohn, and
Smith (1998) borrow a prior distribution from Zellner (1986), taking p(g|G) =
p(β|G) to be normal with mean 0 and variance-covariance λ(X ′X)−1. Here,
X is the design matrix corresponding to the basis functions g1, . . . , gJ .
(For simplicity, we have left out details concerning nuisance parameters in
the prior specification.) By considering a discrete set of candidate knots
{t1, . . . , tN}, Smith and Kohn (1996) specify spaces G through a binary
vector γ that records the presence (γi = 1) or absence (γi = 0) of each
breakpoint ti. Given G, or equivalently γ, Zellner’s prior yields a simple
expression for the posterior of β. Integrating with respect to β, Smith and
Kohn (1996) produce a closed-form expression for the (marginal) posterior
distribution of γ, or equivalently G. The collection of knots (the value of
γ) that receives the most support from the posterior is selected. George
and Foster (2000) show that the hyper-parameter λ appearing in Zellner’s
prior can be calibrated so that this posterior agrees with our generalized
AIC criterion (3.2.29) in the sense that they both rank the candidate knot
configurations similarly. As a final note, the function estimate produced
by Smith and Kohn (1996) is obtained by shrinking the MLE ĝ computed
in the single best space G. While Zellner’s prior was chosen for purely
computational convenience, it is not immediately clear why this shrinkage
is reasonable for smoothing applications. Realistically, one hopes that its
overall effect is minor. When a (model averaged) posterior mean is desired,
however, the situation is somewhat murkier.

In any event, this class of priors can be thought of as a device for cal-
ibrating the resulting posterior with known model selection criteria. In
the scheme of Denison, Mallick, and Smith (1998), on the other hand, no
stochastic structure is assigned to the coefficients. Instead maximum like-
lihood is employed to make a deterministic choice of β given G. Computa-
tional efficiency also drives this specification. A reasonable alternative that
also again choosing a prior for β is a simple BIC approximation motivated
by an appropriate Laplace expansion (Schwarz 1978; Kass and Raftery
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1995). Although motivated by simulation and other empirical studies, the
default value of a = logn in the generalized AIC criterion (3.2.29) of Stone,
Hansen, Kooperberg, and Truong (1997) is an application of this idea to
spline modeling.

10.4.4 Computation

In our greedy search algorithm, we generated a sequence of nested models,
each differing from its predecessor by a single knot addition or deletion.
One byproduct of taking a Bayesian approach is that a variety of McMC
schemes exist for exploring the space of candidate knot configurations. In
the case of Smith and Kohn (1996), for example, a Gibbs sampler is applied
to the elements of the index vector γ. In short, the posterior distribution of
each γi given the remaining γj , j 6= i, is Bernoulli with success probability
depending on the number of knots currently in the fit and the residual sum
of squares (this method was derived in the context of normal regression).
As the sampler progresses along the vector γ, we are again generating a
sequence of nested spaces, each obtained by inserting or removing a knot
in the previous model.

In situations like Triogram regression, however, it is somewhat unnatu-
ral to discretize the space of knots. In order to treat a variety of estima-
tion problems simultaneously, we have chosen the reversible jump McMC
scheme developed by Green (1995). Denison, Mallick, and Smith (1998)
implement this technique in the context of general univariate and additive
regression. At this point, we expect that details of the scheme are well
known, and we instead focus on the type of moves that we need to imple-
ment the sampler. In general, we alternate (possibly at random) between
the following moves.

• Increase model dimension. In this step, we introduce a new knot
or vertex into an existing collection of breakpoints. Given the concav-
ity properties of ELMs the change in the log-likelihood can either be
computed exactly, or approximated using the appropriate Rao statis-
tic. When knots are selected from a discrete set, candidates are chosen
at uniformly from among the set that yields an allowable space.

• Decrease model dimension. As with the greedy scheme, knots
are deleted by imposing a constraint on one or more coefficients in
the spline expansion. Again, concavity suggests that we can either
evaluate the drop in the log-likelihood exactly, or through the Wald
statistics described in the previous section. For univariate models,
any knot can be removed at any time (assuming we have more than
Kmin breakpoints to chose from). This is not true in the case of Tri-
ogram models. Only knots in one of the configurations described in
Figure 9.10 are candidates for removal. To maintain the reversibility
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of the Markov chain, more elaborate removal schemes would require
more elaborate addition moves.

• Make structural changes to G that do not change dimension.
Unlike our standard greedy scheme, non-nested steps like moving a
knot are now possible. Moving a knot from tk to t∗k technically involves
deleting tk and then inserting a new breakpoint at t∗k. In the context
of non-linear models like Logspline, we were initially concerned that
such a move would be computationally expensive. On the contrary,
with smart initial conditions on the Newton-Raphson steps, we can
calculate the change in the log-likelihood exactly and still maintain
an efficient algorithm.

• Update (possibly) g and any nuisance parameters. In a non-
linear model like Logspline, we can either apply a suitable approxima-
tion to the posterior and integrate with respect to the coefficients β,
or we can fold sampling them into our Markov chain. Because of the
concavity of ELMs and our use of normal priors on β, our posterior
is again concave in β. We choose to generate them in a Metropolis
step from a straightforward normal approximation. Similar in spirit
is the rejection sampling scheme of Zeger and Karim (1991).

10.4.5 Logspline density estimation

Priors and computation

In our implementation we consider those spaces G for which all K knots
are located at data points (recall that K knots produce a space with di-
mension J = K − 1). We require that there are at least Ksep data points
in between any two knots. The restriction that knots are located at data
points is purely for convenience, but represents little loss of flexibility espe-
cially in the context of density estimation (where peaks in the underlying
density naturally produce more candidate knots). Some restriction, how-
ever, to prevent consecutive knots from being to close together is needed
for numerical stability.

Following Green (1995) and Denison, Mallick, and Smith (1998), we cycle
between proposals for adding, deleting and moving knots, assigning these
moves probabilities bJ , dJ and 1 − bJ − dJ (see Denison et al. 1998). New
knots can be positioned at any data point that is at least Ksep data points
removed from one of the current knots. Subject to this constraint, knot
addition follows a simple two step procedure. First, we select one of the
intervals (L, t1), (t1, t2), . . . , (tK , U) uniformly at random (where the tk are
the current breakpoints). Within this interval, the candidate knot is then
selected uniformly at random from one of the allowable data points. When
moving a knot, we either propose a large move (in which a knot is first
deleted, and then added using the addition scheme just described) or a
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small move (in which the knot is only moved within the interval between its
two neighbors). Each of these two proposals have probability (1−dJ−bJ)/2.

After each reversible jump step, we then update the coefficients β. To
do this, we use the fact that for a given set of knots, we have a para-
metric model, and that the posterior distribution of β given G, K and
the data is thus approximately multivariate normal with covariance matrix
Σ = (λA+H)−1, and mean ΣHβ̂, where β̂ is the maximum likelihood es-

timate of β in G, and H is the Hessian of the log-likelihood function at β̂.
An observation from this distribution is used as a proposal in a Metropolis
step. Because we are using (partially improper) smoothing priors, the ac-
ceptance ratio for this proposal is formally undetermined (recall that the
prior covariance matrices are degenerate). We solve this problem by “can-
celing” the zero eigenvalue in the numerator and the denominator (see also
Besag and Higdon 1999).

Application and Simulation

To compare the performance of the various possible implementations of
Logspline density model selection procedures, we carried out a simulation
study. We generated data from three densities:

normal the standard normal density;

slight bimodal f(y) = 0.5∗fZ(y; 1.25, 1)+0.5∗fZ(y;−1.25, 1.1), where
fZ(y;µ, σ) is the normal density with mean µ and standard deviation
σ;

sharp peak f(y) = 0.8 ∗ g(y) + 0.2 ∗ f)Z(y; 2, .07), where g(Y ) is the
density of the lognormal random variable Y = exp(Z/2) and Z has a
standard normal distribution.

These three densities are displayed in Figure 10.17. From each we gener-
ated 100 independent samples of size n = 50, 200, 1000, and 10000. We
applied a variety of Logspline methods to these data sets: (i) the greedy,
stepwise addition-deletion proposed by Stone, Hansen, Kooperberg, and
Truong (1997); (ii) simulated annealing tuned to optimize BIC, termed
SALSA for simulated annealing Logspline approximation (described be-
low); and several Bayesian schemes outlined in the previous section. For all
the Bayesian methods we estimated the posterior mean by a simple point-
wise average of the McMC samples. Otherwise, the Bayesian approaches
differ in two aspects:

• The prior on the model size: we used the geometric prior with param-
eter p = 1 − 1/

√
n, the Poisson prior with parameter 5, as proposed

by Denison, Mallick, and Smith (1998), and a uniform prior; and

• Parameter estimates β̂: we took either the maximum likelihood (ML)
estimate, or we assigned a multivariate normal prior to β (for one of
several choices for λ).



434 10. Alternate Optimization Methods

normal slight bimodal sharp peak

FIGURE 10.17. Densities used in the simulation study.

Table 10.1 summarizes the versions of Logspline which are reported here.
For simulated annealing (ii) we ran the same McMC iterations as for

version (iii), but rather than selecting the mean of the sampled densities,
we chose the density which minimizes BIC. As described in above, this is
very similar taking the density with the largest a posteriori probability (the
mode), except that we ignore the prior on knot locations given the number
of knots, K. This would have changed the penalty in the BIC criterion
from K logn to K logn + 1

2 log
(

n
K

)
. Since version (ii) begins with the fit

obtained by the greedy search (i), it is guaranteed to improve as far as BIC
is concerned. Version (iii) uses the same penalty structure as version (ii),
but averages over McMC samples. Version (iv) is included since a Poisson
(5) prior was proposed by Denison et al. (1998). It applies a considerably
smaller penalty on model size. Versions (v)–(ix) experiment with penalties
on the coefficients. (After trying several values for λ, we decided that 1/n
seemed reasonable.) As argued above, generating the parameters using a
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model size parameters

(i) greedy optimization of BIC
(ii) simulated annealing

optimization of BIC
(iii) geometric MLE
(iv) Poisson (5) MLE
(v) uniform λ = 1/n2

(vi) uniform λ = 1/n
(vii) uniform λ = 1/

√
n

(viii) uniform λ = 1
(ix) geometric λ = 1/n

TABLE 10.1. Versions of Logspline Density Estimation used in the simulation
study.

multivariate normal prior distribution implies smoothing with a BIC-like
penalty. As such, we would expect that using λ = 1/n with a uniform prior
(version viii) may give reasonable results, but that using a geometric prior
(version ix) would smooth too much. Choosing λ too large, as in versions
(vii)–(viii), leads to oversmoothing, while choosing λ too small tends to
produce overly wiggly fits.

For versions (iii) and (iv) we ran 600 McMC iterations, of which we
discarded the first 100 as burn-in. Some simple diagnostics (not reported)
suggest that after 100 iterations the chain is properly mixed. For versions
(v)–(ix) each structural change was followed by an update of the coefficients
β.

In Table 10.2, we report ratios of integrated squared errors between the
greedy scheme and the other methods outlined above. In addition, we feel
that it is at least as important for a density estimate to provide the correct
general “shape” of a density as to have a low integrated squared error.
To capture the shape of our estimates, we counted the number of times
that a scheme produced densities having too few, too many and the correct
number of modes. These results are summarized in Tables 10.3 and 10.4.
Table 10.5 calculates the “total” lines of Tables 10.3 and 10.4. Note that
for simulations of a normal distribution it is not possible for an estimate
to have too few modes.

From Table 10.2 we note that most methods show a moderate overall
improvement over the greedy version of Logspline, except for (viii). This
scheme oversmooths the data, so that the details (like the mode in the
sharp peaked distribution) are frequently missed. We note that version
(iii), choosing the mode of a Bayesian approach, is the only version that
outperforms the greedy version for all 12 simulation set-ups. Otherwise,
the difference between versions (ii), (iii), (v) and (ix) seems to be minimal.
In particular, if we had chosen another set of results than those for (i) to
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version (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
n MISE ratio of MISE over MISE of the greedy version (i)

normal distribution
50 0.0279 0.73 1.52 1.84 1.27 0.66 0.40 0.26 0.67

200 0.0107 0.49 0.60 1.23 0.69 0.79 0.50 0.24 0.66
1000 0.0021 0.59 0.58 1.33 0.64 0.87 0.90 0.42 0.73

10000 0.0002 0.33 0.49 1.45 0.69 1.35 1.10 0.80 0.87

slightly bimodal density
50 0.0250 0.88 1.09 1.34 0.97 0.48 0.36 0.36 0.50

200 0.0077 0.80 0.61 1.14 0.88 0.70 0.38 0.46 0.61
1000 0.0016 0.57 0.60 1.13 0.87 0.89 0.66 0.40 0.77

10000 0.0002 0.77 0.61 0.88 0.79 0.71 0.82 0.51 0.84

density with sharp peak
50 0.1523 0.97 0.78 0.81 0.66 0.68 0.90 1.12 0.72

200 0.0370 0.89 0.75 0.94 1.04 0.93 2.02 3.62 1.13
1000 0.0097 0.81 0.67 0.81 1.12 0.67 2.01 8.90 0.74

10000 0.0015 0.72 0.57 0.57 1.05 0.64 0.58 21.43 0.76

average 1.00 0.71 0.74 1.12 0.89 0.78 0.89 3.21 0.75

TABLE 10.2. Mean Integrated Squared Error (MISE) for the simulation study.

normalize by, the order of the average MISE for these four methods was
often changed.

From Table 10.3 we note that version (viii), and to a lesser extent (ii)
and (vii), have trouble with the slight bimodal density, preferring a model
with just one peak. Versions (vii) and (viii) find too few modes, leading
us to conclude that λ should be chosen smaller than 1/

√
n when using a

uniform prior on model size. On the other hand, the Poisson prior leads to
models exhibiting too many peaks, as do versions (iii), (v) and (vi).

Overall, it appears that the greedy, stepwise search is not too bad. It
is several orders of magnitude faster than any of the other methods. The
greedy approach, as well as SALSA have the advantage that the final model
is again a Logspline density, which can be stored for later use. For the other
methods, we must record the posterior mean at a number points. This
has the potential of complicating later uses of our estimate. Among the
Bayesian versions that employ ML estimates, version (iii) seems to perform
best overall, while among those that put a prior on the coefficient vector,
versions (vi) and (ix) (both of which set λ = 1/n) are best. It is somewhat
surprising that version (ix) performs so well, since it effectively imposes
twice the BIC penalty on model size: one coming from the geometric prior,
and one from the normal prior on the parameters. Kooperberg and Stone
(1992) argue that the Logspline method is not very sensitive to the exact
value of the parameter, possibly explaining the behavior of version (ix).
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Version (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
n
slightly bimodal density
50 45 52 4 0 0 21 74 99 31
200 6 22 13 0 16 1 18 96 19
1000 5 17 19 0 12 7 6 45 16
10000 4 12 4 1 7 3 4 2 10

density with sharp peak
50 24 38 1 0 1 9 56 99 13
200 0 1 0 0 2 0 0 89 1
1000 0 0 0 0 0 0 0 0 0
10000 0 0 0 0 0 0 0 0 0

total 84 142 41 1 38 41 158 430 90

TABLE 10.3. Number of times out of 100 simulations that a Logspline density
estimate had too few modes.

We applied the nine versions of Logspline used for the simulation study
to the income data discussed in Stone, Hansen, Kooperberg, and Truong
(1997). the results are displayed in Figure 10.14. For the computations on
the income data we ran the McMC chain for 5000 iterations in which a new
model was proposed, after discarding the first 500 iterations for burn-in. For
the versions with priors on the parameters we alternated these iterations
with updates of the parameters. In Kooperberg and Stone (1992) it was
argued that the height of the peak should be at least about 1. Thus, it
appears that versions (vii) and (viii) have oversmoothed the peak. On the
other hand, version (iv) seems to have too many small peaks.

It is interesting to compare the number of knots for the various schemes.
The greedy estimate (version i) has 8 knots, and the simulated annealing
estimate (version ii) has 7 knots. The Bayesian versions (iii), (v), (vi) and
(ix) have an average number of knots between 5 and 8, while the three
versions that produced unsatisfactory results (iv, vii, and viii) have an
average number of knots between 14 and 17.

The McMC iterations can also give us information about the uncertainty
in the knot locations. To study this further, we ran a chain for version
(iii) with 500,000 iterations. Since the knots are highly correlated from
one iteration to the next (at most one knot moves at each step), we only
considered every 250th iteration. The autocorrelation function of the fitted
log-likelihood suggested that this was well beyond the time over which
iterations are correlated. This yielded 2000 sets of knot locations: 1128
with five knots, 783 with six knots, 84 with seven knots, and 5 with eight
knots. When there were five knots, the first three were always located close
to the mode, the fourth one was virtually always between 0.5 and 1.25,
and the last knot between 1 and 2. Figure 10.18 displays Logspline density
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Version (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
n
slightly bimodal density
50 18 11 94 100 99 49 5 0 28
200 34 9 38 100 43 81 21 0 24
1000 26 4 15 91 13 68 54 32 32
10000 4 1 7 61 10 31 29 1 17

slightly bimodal density
50 4 1 84 99 74 6 0 0 4
200 16 1 19 99 31 55 4 0 5
1000 15 1 13 93 5 51 31 1 17
10000 6 1 8 68 1 33 39 0 6

density with sharp peak
50 15 8 90 93 66 3 1 0 2
200 36 19 46 94 30 43 5 0 5
1000 28 14 30 77 20 32 12 1 9
10000 25 12 15 31 16 20 30 11 7

total 227 82 459 1006 408 472 231 46 156

TABLE 10.4. Number of times out of 100 simulations that a Logspline density
estimate had too many modes.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

too few 84 142 41 1 38 41 158 430 90
too many 227 82 459 1006 408 472 231 46 156

total 311 224 500 1007 446 513 389 476 246

TABLE 10.5. Number of times out of 100 simulations that a Logspline density
estimate had an incorrect number of modes.

estimates (version i) for the locations of the first three knots. The locations
of these three knots overlap considerably. The peakiness in these density
estimates is partly caused by discreteness in the data, and partly by the
requirement that two knots cannot be too close, sometimes restricting the
possible knot locations.

When there are six knots, the extra knot can either be a fourth knot in
the peak, or it is beyond the fifth knot. This becomes apparent when we
examine Figure 10.19, which contains plots of the location of knot 4 versus
the location of knot 5 and of the location of knot 6 versus the location of
knot 5 within the same panel. If knot 5 is below about 1.2, knot 4 is usually
in the peak, and the 6 knot is below 2, but when knot 5 is above 1.2, knot
4 is between 0.5 and 1.2, and knot 6 is above 2. Note that in this plot knot
4 has to be below the diagonal line and knot 6 has to be above this line.
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FIGURE 10.18. Density estimates of the location of the first three knots of Log-
spline density estimates for the income data with five knots.

We have no explanation for the apparent negative correlation between the
location of knots 4 and 5 when the location or knot 5 is above 1.2.

10.4.6 Triogram regression

Priors and computational methods

As with univariate spline models, a prior on the space of Triograms is
most easily specified by first considering the structure of the approxima-
tion space, which in this case is a triangulation 4. Several authors have
discussed the use of the Delaunay triangulation for estimating an unknown
function. In this case, 4 is completely determined by a collection of vertices
v1, . . . ,vK , and the prior specification for 4 reduces to a point process for
locating vertices. This is the approach followed in Green (1995). Besides
simplifying the prior on 4, Rippa (1992) shows that for any set of coeffi-
cients β1, . . . , βK , the Delaunay triangulation produces the surface having
minimal roughness in the sense that the norm of g =

∑
βkBk,

|g| =
∑

δ∈4

∫

δ

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dxdy (10.4.2)

is smallest among all triangulations 4 of v1, . . . ,vK . This remarkable fact
is independent of the coefficients being interpolated. Recently, alternate
smoothness measures have been proposed in the numerical analysis litera-
ture for which the Delaunay triangulation is not optimal (we will return to
this subject shortly).

In general, the structure 4 is not determined solely by a collection of
vertices or knots, but instead many triangulations connect a given set of
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FIGURE 10.19. Locations of knots four through six of Logspline density estimates
for the income data with six knots.

vertices (and the fixed polygonal boundary of U). Unfortunately, a closed-
form expression for the number of such triangulations does not exist, and
estimating it for even moderately sized configurations is prohibitively ex-
pensive. To see how this complicates matters, suppose we follow the strat-
egy for Logspline and consider a hierarchical prior of the form

p(4|V K ,K) p(V K |K) p(K), (10.4.3)

where 4 is a triangulation of the vertices V K = {v1, . . . ,vK}. Assigning
any proper distribution to 4 given V K introduces an unknown normaliz-
ing constant (obtainable only by enumerating the number of ways one can
triangulate the set V K) that does not cancel between different configura-
tions. With this setup, calculating acceptance probabilities in any McMC
scheme for moves between models with different vertex sets poses a difficult
computational problem.

Before we can describe a solution, we need some notation. For simplicity,
let p(V K ,K) represent a Markov point-process on the interior of U . Fol-
lowing Kelly and Ripley (1976) these processes are absolutely continuous
with respect to the distribution of a Poisson process on U having unit in-
tensity. Each such point-process on U is defined by a sequence of intensity
functions pk(v1, . . . ,vk) that do not depend on the order of the vertices
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v1, . . . ,vk. The sequence must satisfy
∑

k pk = 1, where

pk =

{
exp−µ(U), k = 0
exp−µ(U)

k!

∫
Uk pk(v1, . . . ,vk)µ(v1) · · ·µ(vk)

and µ is Lebesgue measure on U . The values pk, k = Kmin, . . . ,Kmax, are
the probabilities of observing k vertices. Kelly and Ripley (1976) introduce
functions pk(v1, . . . ,vk) proportional to

bk cNk ψ(k),

where Nk counts neighboring vertices (points separated by a distance ρ,
say); and c can be chosen to force inhibition (c < 1) or clustering (c > 1).
(The formula for ψ is given in Kelly and Ripley 1976). If c = 1, then we
have a homogeneous Poisson process with intensity b. We have chosen this
class of priors because it allows us to “stochastically space” vertices. Fur-
thermore, by scaling the intensity functions pk, we can mimic the behavior
outlined for Logspline in terms of the prior number of knots. (In the next
section, we will consider analogs of the Poisson, geometric and uniform
priors described above.)

Returning to the distribution on triangulations, given the set V K =
{v1, . . . ,vK}, let ΓU (v1, . . . ,vK) denote the collection of all triangles that
can be formed by joining these points. Then, following Nicholls (1998), the
joint distribution p(4,V K ,K) = p(4, {v1, . . . ,vK},K) is C−1p(V K ,K)
where the normalizing constant C is given by

C =

Kmax∑

k=Kmin

∫
|ΓU(v1, . . . ,vk)| pk(v1, . . . ,vk)µ(v1) · · ·µ(vk).

This construction is possible, because the number of triangulations con-
necting V K is finite and bounded by

|ΓU (V K)| ≤ 2[4K + 2l− 5]! [2l − 3]!

[3K + 2l− 3]! K! [l − 1]! [l − 3]!
, (10.4.4)

where l is the number of vertices specifying the polygonal boundary of U
(Nicholls 1998). From here, we can also define the “volume” of a set of
triangles 4 according to

∫

4

dδ = C−1
Kmax∑

k=Kmin

∫

Uk

µ(v1) · · ·µ(vk)
∑

δ∈ΓU (v1,...,vk)

I(δ ∈ A)

where ΓU denotes the collection of all triangulations on U . At the point
δ ∈ ΓU , the element of measure dδ is simply the set of triangulations that
can be obtained from δ by moving the vertices of δ, v1, . . . ,vk, within the
volume µ(v1) · · ·µ(vk).
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While this approach produces a valid distribution on triangulations, our
prior on model size is no longer pk as it would have been if we had specified
a uniform distribution for p(4|V K ,K) in (10.4.3). Therefore, we propose
“normalizing” by a factor h(K), so that p(4, VK ,K) ∝ p(V K ,K)h(K), for
some function h. Shortly, we experiment with h(K) = 1 and h(K) = K!.
Simple calculations with (10.4.4) assuming U is a triangle (l = 3) suggest
that the latter choice will perform well for models having as many as 15
internal vertices. So far, we have considered all possible triangulations of
a point set, ΓU . Frequently, we would like to restrict out set of meshes,
perhaps insisting that each triangle be larger than a minimum size or have
an aspect ratio larger than some bound. Each of these conditions will lower
the count |ΓU (V K)|, complicating our choice of weight functions h(k). As
an alternative in these more complicated settings, we also consider a simple
uniform distribution for p(4, VK ,K), embedding a penalty on model size
in the prior on coefficients.

Now, unlike the Logspline example, we do not have a single obvious choice
for the smoothing prior on the coefficients given a fixed triangulation. As
mentioned above, the Sobolev semi-norm (10.4.2) and its connection with
the Delaunay triangulation led to the creation of several techniques for
measuring the smoothness of a continuous, piecewise-linear surface (Dyn,
Levin, and Rippa 1990b; Dyn, Levin, and Rippa 1990a). One class of cri-
teria measures how near the fit is to a plane. Typically, these are edge-
based, compiling a roughness penalty along edges in 4. For example, (Dyn
et al. 1990b; Dyn et al. 1990a) accumulate the jump in the normal deriva-
tive across each edge. Measuring the squared differences yields a quadratic
penalty on the coefficient vector β = (β1, . . . , βK) which can be written
βtAβ for a positive-semidefinite matrix A. As constant and linear func-
tions have zero roughness by this measure, A has two zero eigenvalues. As
was done for Logspline, we use A to generate a partially improper normal
prior on β (with prior variance λσ2, where σ2 is the error variance). This
assignment is similar in spirit to that taken by Nicholls (1998) who looked
at differences between neighboring triangles in piecewise constant fits. Be-
cause Triogram regression is a simple linear model, we are able to remove
β entirely by integration. This approach allows us to focus on structural
changes and was used by Smith and Kohn (1996) and Wong, Hansen, Kohn,
and Smith (1998) for univariate and multivariate regression, respectively.

Following Denison, Mallick, and Smith (1998), we assign a proper, inverse-
gamma distribution to σ, and update its value after each structural (re-
versible jump) move. An alternative approach would be to integrate out σ2

completely, as is done in Wong, Hansen, Kohn, and Smith (1998). Because
of the simplicity of the Triogram model, we can also consider assigning a
prior to the smoothing parameter λ, and either sample it along with σ2

or integrate it out. We have instead chosen to compare a number of fixed
choices for λ that depend on the sample size n.
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Original Triangulation Swapping a Diagonal Moving a Vertex

FIGURE 10.20. Additional structural moves for the reversible jump McMC
scheme. Note that these two proposals result in a non-nested sequence of spaces.

Finally, we must augment our set of structural changes to 4. To imple-
ment the reversible jump McMC sampler outlined at the beginning of this
section, we have included two non-nested moves that maintain the dimen-
sion of the space G, but change its structure. In Figure 10.20, the middle
panel illustrates moving a vertex inside the union of triangles that contain
it; while in the final panel, we demonstrate “swapping” an edge. It can be
shown that all triangulations of a given point set v1, . . . ,vK can be ob-
tained by this operation. For Triograms, the notion of an allowable space
can appear through size or aspect ratio restrictions on the triangulations,
and serves to limit the region in which we can place new vertices or to
which we can move existing vertices. For example, given a triangle, the set
into which we can insert a new vertex and still maintain a minimum area
condition is a subtriangle, easily computable in terms of barycentric coor-
dinates (see Chapter 9)). Next, we explore how these conditions impact the
final mean squared error results.

Simulation results

In Figure 10.15, we present a series of three fits to a simulated surface plot-
ted in the upper lefthand corner. A data set consisting of 100 observations
was generated by first sampling 100 design points uniformly in the unit
square. The actual surface is described by the function

40 exp{8[(x1 − 0.5)2 + (x2 − 0.5)2]}
exp{8[(x1 − 0.2)2 + (x2 − 0.7)2]} + exp{8[(x1 − 0.7)2 + (x2 − 0.2)2]} ,

to which we add standard Gaussian errors. This function first appeared in
Gu, Bates, Chen, and Wahba (1990), and it will be hereafter referred to
as simply GBCW. The signal-to-noise ratio in this setup is about 3. In the
lower lefthand panel in Figure 10.15, we present the result of applying the
greedy, Triogram algorithm. As is typical, the procedure has found a fairly
regular, low-dimensional mesh describing the surface (the MISE is 0.31).
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model size parameters

(i) greedy optimization of BIC
(ii) simulated annealing

optimization of BIC
(iii) Poisson (5) MLE
(iv) geometric MLE
(v) uniform λ = 1/n

TABLE 10.6. Versions of Triogram used in the simulation study.

For the fit plotted in the lower righthand panel, we employed a simulated
annealing scheme similar to that described for Logspline. The geometric
prior is used to guide the sampler through triangulations 4, and in each
corresponding spline space G we consider ĝ, the MLE (or in this case the
ordinary leastsquares fit). In this way, the objective function matches that
of the greedy search, the generalized AIC criterion (3.2.29). The scheme
alternates between (randomly selected) structural changes (edge swaps and
vertex moves, additions and deletions) and updating the estimate σ̂2 of the
noise variance. After 6,000 iterations, the sampler has managed to find a less
regular, and marginally poorer-fitting model (the MISE is 0.32). This effect
is typical across the experiments conducted in this section. In the context
of triangulations, the greedy search is subject to a certain regularity that
prevents configurations like the one in the Figure 10.15. We can recapture
this either by placing restrictions on the triangulations in each mesh (say,
imposing a smallest allowable size or aspect ratio) or by increasing the
penalty on dimension, specified through our geometric prior.

In the last panel, we present the result of model averaging using a uniform
prior on model size and a smoothing prior on the coefficients (λ = 1/n). The
sampler is run for a total of 6,000 iterations, of which 1,000 are discarded as
burn-in. We then estimate the posterior mode as a pointwise average of the
sampled surfaces. The final fit is smoother in part because we are combining
many piecewise-planar surfaces. We still see sharp effects, however, where
features like the central ridge are present. The model in the lower righthand
panel is not unlike the surfaces visited by this chain. As spaces G are
generated, the central spine (along the line y = x) of this surface is always
present. The same is true for the hinged portions of the surface along the
lines x = 0 and y = 0. With these caveats in mind, the MISE of the
averaged surface is about half of the other two estimates (0.15).

We repeated these simulations for several sample sizes, taking n = 100,
500 and 1000 (100 repetitions for each value of n). In Table 10.6, we present
several variations in the prior specification and search procedure. In addi-
tion to GBCW, we also borrow a test function from Breiman (1991), which
we will refer to as Exp. Here, points u = (u1, u2) are selected uniformly
from the square [−1, 1]2. The response is given by exp(u1 sin(πu2)) to which
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version (i) (ii) (iii) (iv) (v)
distribution n MISE ratio of MISE over (i)
GBCW (high snr) 100 0.31 1.35 0.85 0.78 0.77
GBCW (high snr) 500 0.10 1.00 0.64 0.76 0.80
GBCW (high snr) 1000 0.08 0.91 0.82 0.94 0.79

Exp (low snr) 100 0.15 0.90 0.52 0.51 0.49
Exp (low snr) 500 0.04 0.85 0.46 0.50 0.47
Exp (low snr) 1000 0.03 0.51 0.32 0.40 0.46

average 1.00 0.92 0.60 0.65 0.63

TABLE 10.7. Mean Integrated Squared Error (MISE) Two Smooth Test Func-
tions.

normal noise is added (σ = 0.5). The signal-to-noise ratio in this setup is
much lower, 0.9. The results are presented in Table 10.7. It seems rea-
sonably clear that the simulated annealing approach can go very wrong,
especially when the sample size is small. Again, this argues for the use
of greater constraints in terms of allowable spaces when n is moderate. It
seems that model averaging with the smoothing prior (λ = 1/n) and the
Poisson prior of Denison, Mallick, and Smith (1998) perform the best. A
closer examination of the fitted surfaces reveals the same kinds of secondary
structure as we saw in Figure 10.15. To be sure, smoother basis functions
would eliminate this behavior. It is not clear at present, however, if a dif-
ferent smoothing prior on the coefficients might serve to “unkink” these
fits.

Unlike Logspline (or we believe any univariate, extended linear models),
the behavior of the Triogram procedure is extremely sensitive to our choice
of “hyperparameters.” For example, in the simulations reported above, we
took as our prior on vertices a point process introduced by Kelly and Rip-
ley (1976) and described above. The priors on model size were selected
to yield either the Poisson (5) distribution or the geometric with param-
eter 1 − 1/

√
n. In each case, we scaled these distributions by h(K) = K!.

Without at least this scaling, the samplers quickly drifted into very high-
dimensional, poor fitting models. By imposing aggressive limits on the min-
imum size for each triangle in the mesh, or perhaps the maximum aspect
ratio, we can remove the need for this scaling and return the sampler to
a better portion of model space. Unfortunately, these bounds are difficult
to set a priori, and can yield 20-25% variations in mean squared error. As
an automated procedure, it seems more reasonable to sidestep the issue
of model size entirely and restrict our attention to priors on coefficient
vectors. Finally, we comment on the somewhat surprising performance of
the Poisson (5) distribution. While for Logspline this choice led to under-
smoothed densities, it would appear that the Triogram scheme benefits
from slightly larger models. We believe that this is because of the bias in-
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volved in estimating a smooth function by a piecewise-linear surface. In
general, these experiments indicate that tuning the Bayesian schemes in
the context of a Triogram model is much more difficult than univariate
set-ups. One comforting conclusion, however, is that essentially each of the
schemes considered outperform the simple greedy search.

In Chapter 9, we studied the performance of the greedy Triogram proce-
dure on a bivariate data set known to exhibit a simple hinge, not aligned
with either of the coordinate axes (Cleveland and Fuentes 1996). While we
have seen that a certain amount of smoothing is possible with the Bayesian
estimator when the underlying target function is smooth, in this case, we
hope that sampler will spend time in very simple, “nearby” ridge models.
This would allow the non-greedy schemes to still capture ridges effectively.
In Figure 10.15 we present two surfaces, one from simulation set-up (v) and
one from (iii). It is clear from this figure that Poisson prior yields a chain
that spends too much time in overly-complex models. The surface obtained
by prior specification (v), on the other hand, is an improvement over the
greedy scheme. While it is difficult to tell from the perspective plot, the
ridge or central hinge more closely follows the line found by (Cleveland and
Fuentes 1996).

As a final test, we repeated the simulations from Chapter 9. We took as
our test functions two piecewise planar surfaces, one that the greedy scheme
can jump to in a single move (Model 1), and one that requires several moves
(Model 3). The results are summarized in Table 10.8. In this case, the model
averaged fits (iv) were better than both simulated annealing and the greedy
procedure. The estimate built from the Poisson prior tends to spend too
much time in larger models, leading to its slightly poorer MISE results,
while the geometric prior extracts a heavy price for stepping off of the
“true” model. (Unlike the smooth cases examined above, the extra degrees
of freedom do not help the Poisson scheme.) One message from this suite
of simulations, therefore, is that a posterior mean does not over-smooth
edges, and in fact preserves them better than the greedy alternatives.

Fibonacci search. This finds the maximum of a unimodal function on
an interval, [a, b], by evaluating points placed according to a Fibonacci
sequence, FN . If there are FN points in the interval, only N evaluations are
needed. In the continuous case, we begin with some interval of uncertainty,
[a, b], and we reduce its length to (b−a)/FN . The ratio, gn = F(n−1)/Fn,
is the key to the placements.

Here is the method for the continuous case: 1.Initialization. Let x =
a + (1 − gN)(b − a) and y = a + gN(b − a). Evaluate f(x) and f(y) and
set n = N . 2.Iteration. If f(x) < f(y), reduce the interval to (x, b] (i.e.,
set a = x), decrement n to n − 1, and set x = y and y = a+ gn(b− a). If
f(x) >= f(y), reduce the interval to [a, y) (i.e., set b = y), decrement n to
n− 1, and set y = x and x = a+ (1 − gn)(b− a).

The Fibonacci search method minimizes the maximum number of evalu-
ations needed to reduce the interval of uncertainty to within the prescribed
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version (i) (ii) (iii) (iv) (v)
distribution n MISE ratio of MISE over (i)

model 1 50 0.16 0.97 0.70 0.35 0.80
model 1 200 0.04 0.82 0.95 0.52 0.62
model 1 1000 0.01 0.63 0.72 0.76 0.40

model 3 50 0.70 1.40 0.86 0.51 0.50
model 3 200 0.17 0.85 0.63 0.27 0.30
model 3 1000 0.03 0.34 0.45 0.21 0.20

average 1.00 0.83 0.72 0.44 0.47

TABLE 10.8. Mean Integrated Squared Error (MISE) for two piecewise-planar
test functions.

length. For example, it will reduce the length of a unit interval [0,1] to
1/10946 (= .00009136) with only 20 evaluations. In the case of a finite
set, Fibonacci search finds the maximum value of a unimodal function on
10,946 points with only 20 evaluations, but this can be improved – see
lattice search.

For very large N , the placement ratio (gN) approaches the golden mean,
and the method approaches the golden section search. Here is a comparison
of interval reduction lengths for Fibonacci, golden section and dichotomous
search methods. In each case N is the number of evaluations needed to
reduce length of the interval of uncertainty to 1/FN . For example, with
20 evaluations dichotomous search reduces the interval of uncertainty to
.0009765 of its original length (with separation value near 0). The most
reduction comes from Fibonacci search, which is more than an order of
magnitude better, at .0000914. Golden section is close (and gets closer as
N gets larger).

10.5 Other optimization methods

Charles. This material is not totally empty. I have notes that I have been
taking from two texts and also Pitt man’s thesis. It will be added before
you get back from Hawaii.
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10.5.1 Simulated annealing

10.5.2 Genetic algorithms

10.5.3 Gradient descent machines

10.6 Combining models

Discuss a full Bayesian approach and illustrate the improvements with
model averaging.


