
1

Part I

Logic Regression

2

Chapter 1

INTRODUCTION TO LOGIC REGRESSION

1.1 Introduction: Motivation and Goals

Regression is arguably the most important tool in the field of Statistics to analyze data and

make inference about associations between predictors and response. However, in most re-

gression problems a model is developed that only relates the predictors as they are (“main

effects”) to the response. Although interactions between predictors are considered as well,

those interactions are usually kept very simple (two- to three-way interactions at most). But

often, especially when all predictors are binary (0-1, on-off, true-false,. . .), the interaction

of many predictors is what causes the differences in response. For example, in a recent

publication by Lucek and Ott [28], the authors are concerned about analyzing the relation-

ship between disease loci and complex traits. In the introduction of the paper, Lucek and

Ott recognize the importance of interactions between loci and potential shortcomings of

methods that do not take those interactions appropriately into account:

“Current methods for analyzing complex traits include analyzing and localizing disease

loci one at a time. However, complex traits can be caused by the interaction of many loci,

each with varying effect.”

The authors state that although finding those interactions is the most desirable solution to

the problem, it seems to be infeasible.

“ . . . patterns of interactions between several loci, for example, disease phenotype caused

3

by locusA and locusB, or A but notB, or A and (B or C), clearly make identification

of the involved loci more difficult. While the simultaneous analysis of every single two-way

pair of markers can be feasible, it becomes overwhelmingly computationally burdensome

to analyze all 3-way, 4-way toN -way “and” patterns, “or” patterns, and combinations of

loci.”

The above is an example of the types of problems we are concerned about. Given a set

of binary predictorsX, we try to create new, better predictors for the response by consid-

ering combinations of those binary predictors. For example, if the response is binary as

well (which is not a requirement in general), we attempt to find decision rules such as “if

X1, X2, X3 and X4 are true, orX5 or X6 but not X7, then the response is more likely to

be in class 0”. In other words, we try to find Boolean statements involving the binary pre-

dictors that enhance the prediction for the response. In the near future, one such example

could arise from gene chip data, where one is interested in finding an association between

gene expressions and diseases, for example certain types of cancer.

The first part of this thesis contains the methodology we developed to find solutions to those

kind of problems. Given the tight association with Boolean Logic, we decided to call this

methodologyLogic Regression. We think that Logic Regression may be a tool that fills

a gap in the regression and classification methodology. Logic rules, especially the rules in

Disjunctive Normal Form [13], play a key role in many fields covered by the engineering

and machine learning literature. The similarity between these methods and our method-

ology is that they all partition the search space by investigating logic rules. However,

the methods from the engineering and machine learning literature only cover classification

problems in general, and do not include objective functions such as the deviance or likeli-

hood in generalized regression models to our knowledge. Also, almost all of those methods

aim for being computationally simplistic. These include forming logic rules growing one

rule at a time [31], constructing decision trees and deriving the logic rules modifying its

paths [36], deriving rules in a greedy fashion using swaps [52], among others. While com-

4

putational simplicity is a worthwhile goal to aim for, all the above mentioned methods do

not guarantee the minimality of the rules derived [22]. Most learning systems even make

the “noise free” data assumption, which prevents them from being applied to real world

learning problems [54]. Making it computationally feasible to search through the entire

space of models without compromising the desire for minimality, we think that Logic re-

gression models such asY = β0+β1×[X1 and(X2 orX3)]+β2×[X1 or (X4 orXc
5)] might

be able to fill the before mentioned void in the regression and classification methodology.

Analyzing data from heart attack patients admitted to the Medical Center at the University

of California at San Diego, Breiman et al [6] indeed acknowledged the need for such an

algorithm:

“Given the implicit concern CART has with relationships among variables, it may have

been preferable to use a variable selection scheme (possibly CART itself) that looked di-

rectly at ’interactions’ and not merely ’main effects’.”

In the remainder of Chapter 1 we introduce the basic terminology and rules of Boolean

Algebra, and define and discuss “Logic Trees”, a basic construct of Logic Regression. To

find the good logic combinations of predictors among the huge number of possible Boolean

expressions, we rely on search algorithms that we discuss in Chapter 2. In Chapter 3 we

introduce and discuss the models for Boolean regression that we consider in this thesis.

Chapter 4 explains some algorithmic details, technicalities, and tricks we use when search-

ing for good models. We introduce some tools in Chapter 5 for statistical inference and

model selection, designed to avoid over fitting. In Chapter 6 we use the Logic Regression

methodology in two real data case studies.

5

1.2 The Basics of Logic Regression

1.2.1 Terminology in Boolean Logic

Our task is to find those combinations of binary variables that have the highest predictive

power for the response variable. These combinations are Boolean Logic Expressions, and

since the predictors are binary, any of those combinations of predictors will be binary. The

data shown on page 6 is a simulated binary data set. Can we find a classification rule that

correctly assigns a case to either class 0 (Y = 0) or class 1 (Y = 1)? In this case, the

correct solution for this simulated data set is the Boolean Equation

L = [(X1 ∧X2) ∨ (Xc
3 ∧X4)] ∧ (X5 ∨Xc

6 ∨X7) (1.1)

We assume familiarity with the basic concepts of Boolean Logic, but briefly clarify the

terminology that will be used throughout this part of the thesis.

Values

The only two values that are used are 0 and 1 (False and True, Off and On,. . .)

Variables

Symbols such asX1, X2, X3 are variables; they represent any of the two possible values.

Operators

Operators combine the values and variables. There are three different operators:

∧ (AND), ∨ (OR), c (NOT).

6

Response Predictors

Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0 1 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1 1 0 1
0 1 0 0 1 0 1 0 0 1 0
1 1 1 1 0 1 1 0 1 0 0
0 1 1 0 1 0 1 0 1 1 0
1 1 1 0 1 1 0 0 0 1 0
1 1 1 0 0 1 1 0 1 0 1
0 0 1 0 1 0 1 0 0 1 1
0 0 0 1 1 1 0 0 1 1 0
1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0 1 1 1
0 1 0 0 0 0 1 0 0 0 1
0 0 1 1 0 1 1 1 1 0 0
1 1 0 0 1 1 0 1 1 1 0
0 0 0 1 0 1 1 1 0 1 0
0 0 0 0 0 1 0 1 0 1 1
1 0 1 0 1 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0 1 1 1
0 1 0 0 1 0 1 0 0 1 0
0 1 0 1 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1 1
1 1 1 0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0 1 1 1
1 0 0 0 1 1 1 1 0 1 1
1 1 1 1 1 0 1 1 1 1 0

7

Expressions

The combination of values and variables with operators results in expressions. For example,

X1 ∧Xc
2 (1.2)

is a logic (Boolean) expression built from two variables and two operators.X1 andXc
2 are

called the operands of∧.

Equations

An equation assigns a name to an expression. For example, using

L = X1 ∧Xc
2 (1.3)

we can refer to the expressionX1 ∧Xc
2 by simply statingL.

1.2.2 Rules and Laws in Boolean Algebra

Here we introduce the Boolean algebra precedence rules and give a summary of the most

important laws in Boolean algebra, taken from Peter Wentworth’s on-line tutorial “Boolean

Logic and Circuits” [53]. Here,L,L1, L2, L3 stand for any Boolean expression.

Boolean Algebra Precedence Rules

In Boolean algebra, as in any other algebra, brackets straightforwardly determine some

of the precedence of the terms involved in an expression. In addition, the rules below

determine the precedence of the operators in Boolean expressions. They allow to remove

or insert brackets in Boolean expressions.

8

1. First apply the complement operators (c),

2. Second apply the “AND” operators (∧),

3. Third apply the “OR” operators (∨),

4. Apply the operators at the same precedence from left to right.

Hence,L1 ∧ Lc
2 meansL1 ∧ (L2)

c, but not(L1 ∧ L2)
c.

Boolean Algebraic Laws

The following laws are stated here without proofs. Their validity can easily be shown for

example by considering all possibilities of 0/1 values that the Boolean variables can adopt.

• associative operators

(L1 ∧ L2) ∧ L3 = L1 ∧ (L2 ∧ L3) (1.4)

(L1 ∨ L2) ∨ L3 = L1 ∨ (L2 ∨ L3) (1.5)

• commutative operators

L1 ∧ L2 = L2 ∧ L1 (1.6)

L1 ∨ L2 = L2 ∨ L1 (1.7)

• double complement law

L = (Lc)c (1.8)

9

• identity laws

L ∧ 1 = L (1.9)

L ∨ 0 = L (1.10)

• null laws

L ∧ 0 = 0 (1.11)

L ∨ 1 = 1 (1.12)

• complement laws

L ∧ Lc = 0 (1.13)

L ∨ Lc = 1 (1.14)

• idempotent laws

L ∧ L = L (1.15)

L ∨ L = L (1.16)

• distributive laws

L1 ∨ (L2 ∧ L3) = (L1 ∨ L2) ∧ (L1 ∨ L3) (1.17)

L1 ∧ (L2 ∨ L3) = (L1 ∧ L2) ∨ (L1 ∧ L3) (1.18)

• de Morgan’s laws

(L1 ∨ L2)
c = (Lc

1 ∧ Lc
2) (1.19)

(L1 ∧ L2)
c = (Lc

1 ∨ Lc
2) (1.20)

• absorption laws

L1 ∧ (L1 ∨ L2) = L1 (1.21)

L1 ∨ (L1 ∧ L2) = L1 (1.22)

10

1.2.3 Representations of Logic Statements

The way to represent logic statements is not unique. Below, we briefly discuss the two

common choices, and introduce two forms of what we will call “Logic Trees”.

Logic Terms (LTE)

As described in the previous section, the most straightforward way to denote logic state-

ments (also called Boolean equations or Boolean expressions) such asA and Bor such as

C or D but not Eis by using the operators∨ (“or”), ∧ (“and”), c (“not”), and using brackets

for everyoperator∧ or∨. An example for such aLogic Term (or expression) is

{(A ∧Bc) ∧ [(C ∧D) ∨ (E ∧ (Cc ∨ F))]}. (1.23)

The outer (curly) brackets can be omitted. We will use this example throughout the remain-

der of this section.

Disjunctive Normal Forms (DNF)

A widespread notation of logic statements in the Engineering and Computer Science litera-

ture is theDisjunctive Normal Form , which is a special case of a Boolean expression (see

for example [13]). A Disjunctive Normal Form is a Boolean Expression, expressed as∨-

combinations of∧-terms. For example, the Logic Term in equation (1.23) can be rewritten

in Disjunctive Normal Form as

(A ∧Bc ∧ C ∧D) ∨ (A ∧Bc ∧ E ∧ Cc) ∨ (A ∧Bc ∧ E ∧ F) (1.24)

11

C F

C D E or

A B and and

and or

and

Figure 1.1: The Logic Tree representing the Logic Term in equation (1.25).

Logic Trees (LTR)

Using brackets, any Boolean expression can be generated by iteratively combining two

leaves, a leaf and a Boolean expression, or two Boolean expressions. For example, the

Logic Term in equation (1.23) can be generated as outlined below:

(A ∧Bc)︸ ︷︷ ︸
1

∧[(C ∧D)︸ ︷︷ ︸
2

∨ (E ∧ (Cc ∨ F)︸ ︷︷ ︸
3

)

︸ ︷︷ ︸
4

]

︸ ︷︷ ︸
5︸ ︷︷ ︸

6

(1.25)

The above expression can be understood as an “and” statement, generated from the Boolean

expressionsA∧Bc and(C ∧D)∨ (E ∧ (Cc∨F)). The latter can be understood as an “or”

statement, generated from the Boolean expressionsC ∧ D andE ∧ (Cc ∨ F), and so on.

This enables us to represent any Logic Term in a binary tree format. TheLogic Tree for the

Logic Term in equation (1.23) is shown in Figure 1.1. White letters on black background

12

denote the conjugate of the letter. The evaluation of the tree as a logic statement for a

particular case occurs in a “bottom-up” fashion.

We use the following terminology and rules for Logic Trees (similar to the terminology

used by Breiman et al [6] for classification trees):

• The location for each element (letter, conjugate letter or operators∧ and∨) in the

tree is a knot.

• Each knot has either zero or two sub-knots.

• The two sub-knots of a knot are called its children, the knot itself is called the parent

of the sub-knots.

• The knot that does not have a parent is called the root.

• The knots that do not have children are called leaves.

• Leaves can only be occupied by letters or conjugate letters (predictors), all other

knots are operators (∨’s, ∧’s).

Since the representation of a Boolean expression as a Logic Term is not unique, neither is

the representation as a Logic Tree. For example, the Boolean expression in equation (1.23)

or (1.25) can also be written as

((A ∧Bc) ∧ (C ∧D)) ∨ ((A ∧Bc) ∧ (E ∧ (Cc ∨ F))) (1.26)

The former leads to the tree as shown in Figure 1.1, the latter leads to the tree as shown in

Figure 1.2. This is not simply a matter of the complexity of the Boolean expression, since

it can also be written as

A ∧ {Bc ∧ [(C ∧D) ∨ (E ∧ (Cc ∨ F))]} , (1.27)

13

C F

A B C D A B E or

and and and and

and and

or

Figure 1.2: The Logic Tree representing the Logic Term in equation (1.26).

which would lead to yet another tree. A Boolean expression can be written in different

ways as a Logic Term, but each Logic Term corresponds to exactly one Logic Tree.

More details on how to construct a Logic Tree from a Logic Term are provided in Section

1.2.4.

Generalized Logic Trees (GLT)

We can introduce a hierarchy of the leaves in a Logic Tree by assigning a number to each

leaf (which we call the depth of the leaf), counting how often the types of operators (links)

change on the path between its parent (registered as change number one) and the root. For

example, leaf “D” in the tree in Figure 1.1 has an “and” as parent, which has an “or” as

parent etc. The entire sequence of links between leaf “D” and the root is∧ −→ ∨ −→ ∧,

which means there are three link changes (counting the parent of the leaf as change number

14

one), and hence leaf “D” has depth 3. The chart below shows the depth for each leaf in the

Logic Tree of Figure 1.1.

leaf A Bc C D E Cc F

depth 1 1 3 3 3 4 4

Using the depth information of its corresponding Logic Tree, it is possible to display every

Logic Term as aGeneralized Logic Tree. On each “level” of the tree there is only one type

of link (either∧ or∨), and leaves of the same depth. Note that those trees are not binary in

general, and hence the Generalized Logic Trees themselves are neither sub- nor superset of

the Logic Trees as introduced in Section 1.2.3. Loosely speaking, a Logic Tree is to a Logic

Term what a Generalized Logic Tree is to a Boolean expression with as many parenthesis as

possible removed. Figure 1.3 shows the Generalized Logic Tree for the Boolean expression

in equation (1.23).

0

1

2

3

4

depth

and

A

and

C

C

B

and

D

F

or

E or

Figure 1.3: The Generalized Logic Tree representing the Logic Term in equation (1.23).

15

1.2.4 Equivalence of Logic Terms, Disjunctive Normal Forms, Logic Trees and General-

ized Logic Trees

At first glance it is not clear whether or not the above stated representations of logic ex-

pressions are equivalent in the sense that the classes of logic expressions they represent are

the same. We show that these classes are indeed the same, by establishing the following

relations between classes:

Class(LTE)⊆ Class(LTR)⊆ Class(DNF)⊆ Class(GLT)⊆ Class(LTE) (1.28)

The above abbreviations are:

LTE : Logic Term

LTR : Logic Tree

DNF : Disjunctive Normal Form

GLT : Generalized Logic Tree

Class(LTE)⊆ Class(LTR)

In the previous section we already outlined how to construct a Logic Tree from a given

Logic Term. The steps are the following:

1. Combine all pairs of letters in brackets to initial subtrees.

2. Combine single letters with subtrees in brackets to new subtrees.

3. Combine subtrees.

The steps of the construction of the Logic Tree for the Logic Term in equation (1.23) are

illustrated in Figure 1.4.

16

C F

C D or

A B and

and

(a)

C F

C D E or

A B and and

and

(b)

C F

C D E or

A B and and

and or

(c)

C F

C D E or

A B and and

and or

and (d)

Figure 1.4: Illustration of the construction of the Logic Tree in Figure 1.1 from the Logic
Term in equation (1.25).

Class(LTR)⊆ Class(DNF)

In this section we establish that the class of logic expressions representable by Logic Trees

is a subset of the class of logic expressions representable by Disjunctive Normal Forms.

We show this by constructing an algorithm, that generates the Disjunctive Normal Form

of a boolean expression from its Logic Tree. The algorithm requires that the knots are

numbered as shown in Figure 1.5, starting with 1 at the root, and with the left most knot on

each level of the tree being numbered as a power of 2.

A Logic expressionL in Disjunctive Normal Form is a∨-combination of∧-terms. This

means thatL is true if (at least) one of the∧-terms is true, which is the case if within this

∧-term all predictors are true. Consider a Logic Tree with leaves{X1, . . . , Xk} (from “left

to right” in the tree, independent of the level, not in the sequence as indicated in Figure

1.5). The idea of the algorithm, to obtain the Disjunctive Normal Form of the Boolean

17

8 9 10 11 12 13 14 15

4 5 6 7

2 3

1

Figure 1.5: The labeling of knots in Logic Trees.

expression from this Logic Tree, is to split the set of leaves into subsets until we have

sets of leaves that represent the∧-terms in the Disjunctive Normal Form. We sequentially

check the Logic Tree for∨-operators, starting with the root. There are two subtrees of the

root, with the left and right child of the root as their respective roots. These subtrees have

the leavesX1, . . . , Xj andXj+1, . . . , Xk respectively. If the root is an∨-operator, it is

sufficient and necessary for the entire tree to be true that at least one subtree is true. If the

root is a∧-operator, both subtrees have to be true. In the former case we will consider the

set of leaves{X1, . . . , Xj} and{Xj+1, . . . , Xk} independently, and check what kind of

operators knot 2 and knot 3 are. In the latter case, check knot 2: If it is an∧, than both

subtrees of knot 2 and the subtree with knot 3 as root have to be true for the entire tree to

be true. If knot 2 is a∨, than it is necessary and sufficient if at least one subtree of knot

2 is true in addition to the subtree with knot 3 as root. Hence, if knot 2 is an∨, we have

to consider the sets{X1, . . . , Xl, Xj+1, . . . , Xk} and{Xl+1, . . . , Xj, Xj+1, . . . , Xk}. In

other words, at every knot that is an∨ operator we split the appropriate set of leaves, until

18

we have considered the last∨. Then, if for any of those subsets all leaves are true, the entire

tree is true.

Below is a rather cryptic version of the algorithm in a pseudo language.

WRITE all leaves -> set

DO j=1,maxknot

IF (SYMBOL(j)==OR)

SPLIT appropriate set

-> subsets (children OF j LEFT RIGHT)

ENDDO

WRITE subsets -> dnf

We clarify the idea of this algorithm in our example, using the tree in Figure 1.1. Using the

outlined algorithm, the initial set is

A B C D E F G

The first∨ is at node 3, and we split the set into two subsets, distinguished by the children

of node 3.

A B C D

A B E F G

There is one more∨ at node 15, hence we split the latter of the two above subsets, and get

19

A B C D

A B E F

A B E G

Hence the Disjunctive Normal Form for the tree in Figure 1.1 is

(A ∧B ∧ C ∧D) ∨ (A ∧B ∧ E ∧ F) ∨ (A ∧B ∧ E ∧G) (1.29)

Class(DNF)⊆ Class(GLT)

To construct a Generalized Logic Tree from a Boolean expression in Disjunctive Normal

Form is straightforward. The root is a∨ and its children are∧s. The number of children

the root has is simply the number of∧-terms in the Disjunctive Normal Form. All children

of the∧s in the tree are leaves, representing the predictors in the respective terms in the

Disjunctive Normal Form. Figure 1.6 shows a Generalized Logic Tree for the Boolean

expression in (1.29).

Class(GLT)⊆ Class(LTE)

Since any Generalized Logic Tree represents some Logic Term, there is nothing to show.

Outline of an Alternative Proof to show the Equivalences of all of the above Forms of

Representation:

The proofs we showed above served two purposes: they established the equivalence of all

forms of representation we considered, and also helped getting a better understanding of

those representation forms. There is a potentially faster, but more technical way to show

20

or

and

A

and

B

and

C D A B E C A B E F

Figure 1.6: The Generalized Logic Tree for the Boolean expression in Disjunctive Normal
Form from equation (1.29).

all of the above equivalences, and we outline the proof in this section. They idea is to show

that there are only finitely many unique Boolean expressions, as we will explain below.

Assume we havek predictors,X1, . . . , Xk. Since the predictors are all binary, there are

2k different possibilities how we can assign zeros and ones to the predictors (see Table

1.1). Each of the predictionsY1, . . . , Y2k can be zero or one, hence we have22k
possible

so-called prediction scenarios.

If the predictors have been assigned values (which corresponds to a row in the table), then

there is exactly one sequencea = (a1, . . . , ak) ∈ {1, c}k such that

Xa :=
k∧

i=1

Xai
i (1.30)

is true (if Xj is 0 (1), thenaj is 1 (c).) Name this sequencea∗. Now assumeY1, . . . , Y2k

have been assigned values, i. e. we pick one prediction scenario. How can we construct the

21

right prediction, i. e. givenX, how can we obtainY ? Let

M := {j : Yj = 1} = (m1, . . . , mn). (1.31)

Then

L =
n∨

j=1

X
a∗mj =

n∨
j=1

(
k∧

i=1

X
a∗imj

i

)
(1.32)

correctly predictsY . Hence, using this method, any prediction scenario can be obtained.

It then only remains to be shown how we can re-write (1.32) as Logic Tree, Disjunctive

Normal Form, etc. However, we decided to skip this part of the proof here.

Table 1.1: A table indicating all prediction scenarios.

X1 · · · Xk

0 · · · 0 Y1

...
...

...

1 · · · 1 Y2k

1.2.5 Relationship between Logic forms and Decision Trees (CART)

At first glance Logic Trees seem to be quite similar to classification trees as introduced by

Breiman et al [6]. However, there are some key differences between those types of trees.

We try to clarify these in this section.

In every classification tree, a leaf can be reached by a path through the tree, making deci-

sions at every knot. If the tree is binary, these decisions reduce to checking whether or not

22

the condition investigated at a particular knot is true or false. To reach a certain leaf, all con-

ditionsC1, C2, . . . , Ck along the path have to be satisfied (i. e.C1 ∧C2 ∧ · · · ∧Ck has to be

true). In general, there are multiple paths that reach a leaf that predicts class 1. Since there

are only two outcome classes (0 and 1), the collection of all pathsP1, P2, . . . , Pl that reach

a leaf predicting 1 is a complete description of the binary classification tree. Therefore, the

tree predicts class 1 for a case if the Boolean equation

L = P1 ∨ P2 ∨ · · · ∨ Pl (1.33)

is true, where

Pi = Ci
1 ∧ Ci

2 ∧ · · · ∧ C i
ki . (1.34)

Hence every binary classification tree can be written as a Boolean equation in Disjunctive

Normal Form. For example, the tree in Figure 1.7 predicts class 1 for a case if the Boolean

equation

L = (Cc ∧ A ∧B) ∨ (C ∧Dc ∧ A ∧B) ∨ (C ∧D) (1.35)

is true.

However, not every Boolean equation in Disjunctive Normal Form can directly be ex-

pressed as a classification tree. The reason for this is that in a classification tree the first

knot is part of every path. For example, in the tree in Figure 1.7, the first question asked is

always “isC true or not?”. Therefore, it is not immediately clear if a classification tree can

be constructed for the Boolean equation

L′ = (A ∧B) ∨ (C ∧D), (1.36)

althoughL′ is in DNF.

Using De Morgan’s rules and standard Boolean operations, we convinced ourselves that a

classification tree can be constructed from every Logic Term. However, these classification

23

Figure 1.7: An example of a CART tree.

trees often result in awkward looking constructions, much more complex than the simple

Logic Trees constructed from the Logic Term. For example, for the Tree in Figure 1.7, we

have

L = (Cc ∧ A ∧B) ∨ (C ∧Dc ∧ A ∧B) ∨ (C ∧D)

≡ (A ∧B ∧ [Cc ∨ (C ∧Dc)]) ∨ (C ∧D)

≡ (A ∧B ∧ [(Cc ∨ C) ∧ (Cc ∨Dc)]) ∨ (C ∧D)

≡ (A ∧B ∧ [1 ∧ (Cc ∨Dc)]) ∨ (C ∧D)

24

≡ (A ∧B ∧ (Cc ∨Dc)) ∨ (C ∧D)

≡ [(A ∧B) ∨ (C ∧D)] ∧ [(Cc ∨Dc) ∨ (C ∧D)]

≡ [(A ∧B) ∨ (C ∧D)] ∧ [(C ∧D)c ∨ (C ∧D)]

≡ [(A ∧B) ∨ (C ∧D)] ∧ 1

≡ (A ∧B) ∨ (C ∧D)

≡ L′ (1.37)

This means that the classification tree in Figure 1.7 corresponds to the simple Logic Term

(A ∧B) ∨ (C ∧D), which can also, very simply, be displayed as Logic Tree.

We established that every binary classification tree can be written in DNF, and we convinced

ourselves that from every Logic Term a binary classification tree can be constructed. We

previously showed that the classes of Disjunctive Norma Form and Logic Terms are equal,

hence the class representing the binary classification trees is equal to all previously dis-

cussed classes. However, the simplicity of Logic Trees is one of their big attractions, which

is one of the reasons we will not use classification trees in the development of our method-

ology for Logic Regression. This section was simply written to settle some of the questions

about classification trees in comparison to Logic Trees that will almost invariably arise.

Since we will not consider classification trees further, we also decided not to formally write

down the proof that a binary classification tree can be constructed from any Logic Term.

25

Chapter 2

SEARCH ALGORITHMS

In the previous chapter we showed that, given a fixed number of predictors, there are only

finitely many Boolean expressions that yield different predictions. If we havek predictors,

we showed that there are22k
different prediction scenarios. But given the values for the

predictors, how many Logic Trees are there that yield different predictions? If we havel

cases (and a sufficient number of predictors), there might be up to2l different Logic Trees.

For example, if we have 1000 cases and 10 predictors, this could mean more than10300

different Logic Trees! Besides the fact that we have to deal with huge numbers, it seems

that there is no straightforward way how to enlist all those Logic Trees that yield different

predictions. It seems impossible to us to carry out an exhaustive evaluation of all different

Logic Trees. To find the good Logic Trees among the huge number of possibilities, we have

to use some search algorithms that we discuss in this chapter in sections 2.2 (greedy search)

and 2.3 (probabilistic search). Section 2.1 introduces what we call moves, a pre-requisite

for the search algorithms.

2.1 Moving in the Search Space

In the search algorithms that we introduce in this chapter, we define the neighbors of a

certain Logic Tree to be the Trees that can be reached from this Logic Tree by a single

“move”. We allow the following moves:

26

• Alternating a leaf:

We pick a leaf, and replace it with another leaf at this position. For example, in

Figure 2.1(b) the leafB from the initial tree has been replaced with the leafDc. To

avoid tautologies, if the sibling of a leaf is a leaf as well, the leaf can not be replaced

with its sibling, or the complement of the sibling. It is clear that the counter move

to alternating a leaf is by changing the replaced leaf back to what it was before the

move (i. e. alternating the leaf again).

• Changing∧s and∨s:

Any ∧ can be replaced by a∨, and vice versa (for example, the operator at knot 1

from the initial tree in Figure 2.1 has been changed in Figure 2.1(e)). These two

moves complement each other as move and counter move.

• Branching (pruning):

At any knot that is not a leaf, we allow a new branch to grow. This is done by

declaring the subtree starting at this knot to be the right side branch of the new subtree

at this position, and the left side branch to be a leaf representing any predictor. These

two side trees are connected by a∧ or ∨ at the location of the knot. For example,

at knot 3 in the initial tree in Figure 2.1 we grew a branch (see Figure 2.1(f)). The

counter move to branching is called pruning. A leaf is trimmed from the existing

tree, and the subtree starting at the sibling of the trimmed leaf is “shifted” up to start

at the parent of the trimmed leaf. This is illustrated in Figure 2.1(d).

• Splitting (deleting):

Any leaf can be split by creating a sibling, and determining a parent for those two

leaves. For example, in Figure 2.1(c) the leafC from the initial tree in Figure 2.1 has

been split, with leafDc as its new sibling. The counter move is to delete a leaf in a

pair of siblings that are both leaves, illustrated in Figure 2.1(a).

27

Possible Moves

A B

and

Delete Leaf

(a)

D C

A or

and

Alternate Leaf

(b)

C D

B and

A or

and

Split Leaf

(c)

B C

A or

and

Initial Tree

B C

or

Prune Branch

(d)

B C

A or

or

Alternate Operator

(e)

B C

D or

A and

and

Grow Branch

(f)

Figure 2.1: Permissible moves in the tree growing process.

Note: In principle, a Logic Tree can be reached from any other Logic Tree in a finite number

of moves even if one omits pruning and branching. In this sense, pruning and branching

are not necessary in the move set. However, their inclusion in the move set can enhance the

performance of the algorithms that we will now introduce.

2.2 Greedy Search

Similar to the search algorithm in Classification and Regression Trees [6], a greedy algo-

rithm can be used to search for “good” Logic Trees. In the context of Logic Regression,

28

the first step is simply to find the variable that, used as a single predictor, minimizes the

scoring function. After this predictor is found, its neighbors (states that can be reached by

a single move from the given state) are investigated, and the new state is chosen as the state

that

1. has a better score than the original state,

2. has the best score among the considered neighbors.

If such a state does not exist, the greedy algorithm stops, otherwise the neighbors of the new

state are examined, and the next state is chosen according to the above described criterion,

etc.

Since the stop criterion is to be unable to find a move that improves the score, there is

no guarantee to find the lowest scoring state possible. This can happen if the search gets

“stuck”, for example if a better tree can be reached in two moves, but not one. Another

potential problem is that in the presence of noise in the data it can happen that even though

the true tree has been reached in the search, there exist one or more additional moves

that improve the score, and hence the final model involves some over fitting. It is also

noteworthy that in contrast to the greedy search for Classification and Regression Trees, a

greedy move for Logic Trees might actually result in a tree of lower or equal complexity

(for example by deleting a leaf or changing an operator respectively).

Figure 2.2 shows parts of the outcome of a greedy search for Logic Trees on a simulated

data set. The data was generated by simulating 20 binary predictors, with a total of 1000

cases each, and the value in each case of the predictors being a sample from a Bernoulli

random variable with probability1
2
. The underlying true Boolean equation was chosen to

be

L = X1 ∧ (X2 ∨X3) ∧ [X4 ∨ (X5 ∧ (X6 ∨X7))] (2.1)

29

4341 387

1 3

and 370

1 3

and 4

and

357

3 2

1 or

and 4

and 346

3 2

1 or 4 5

and or

and 336

3 2 5 6

1 or 4 and

and or

and

331

6 7

3 2 5 or

1 or 4 and

and or

and 326

6 7

3 2 4 12 5 or

1 or and and

and or

and

tree number

m
is

cl
as

si
fic

at
io

n
ra

te
 [%

]

1 2 3 4 5 6 7 8 9 10 11 12

32
34

36
38

40
42

Figure 2.2: The sequence of trees visited in the greedy search.

If for a certain caseL was true, the response was sampled from a Bernoulli random vari-

able with probability2
3
, otherwise it was sampled from a Bernoulli random variable with

probability 1
3
. The score in the greedy search was simply chosen to be the number of mis-

classification (i. e. how often a proposed tree predicted the wrong response).

The best single predictor turned out to be predictorX1, having a misclassification rate of

434 out of 1000 cases. The second step was splitting the first leaf intoX1 ∧X3, reducing

the misclassification rate to 387 out of 1000 cases, etc. After seven steps, the correct tree

was visited (lower left panel in Figure 2.2). The true misclassification rate in this example

30

is 331 out of 1000. However, the algorithm didn’t stop there. There were possible moves

from this tree that improved the score, the best being splitting leafX4 into X4 ∧ X12,

which resulted in a tree having 5 fewer misclassification than the tree representing the true

Boolean equation. After that, the greedy algorithm took four more steps (not displayed

as trees in Figure 2.2) until it stopped, yielding a low misclassification rate of 314 out of

1000. The misclassification rate (in percent) for each tree is displayed in the lower right

panel in Figure 2.2 as solid points. These misclassification rates were all calculated from

the simulated data set described above. To get an estimate of the true misclassification

rate, we generated a data set in the same manner as the training data set, except this time

with 100,000 cases. The open points in the lower right panel in Figure 2.2 represent those

estimates of the true misclassification rate. We see that through tree seven (which represents

the true underlying Boolean equation) the true misclassification rate is decreasing with the

tree number in the greedy search. After that, however, the following trees also predict some

noise, and the true misclassification rate increases, as expected. This emphasizes the need

for further statistical tools, since in real life problems the truth is unknown and the subject

of the search.

2.3 Simulated Annealing

A greedy search algorithm is very fast compared to a probabilistic search algorithm, such as

the one that we will introduce in this section. However, the greedy search can lead to wrong

results in certain cases, as illustrated for example by Chipman et al [10]. The search can

be trapped in a state that scores locally the best (i. e. all its neighbors have a worse score),

but the state is not the best scoring globally. This can be avoided if the search algorithm

is probabilistic, as we will explain below. There exists a profound analogy between this

algorithm and some phenomena in the fields of statistical mechanics and condensed matter

physics, which is the origin of the word “annealing” (see for example Kirkpatrick et al [24]

and Cerńy [9]).

31

In section 2.3.1 we introduce the terminology we use, and some basic definitions. The

terminology used in this section follows the terminology used in the book by Otten and

van Ginneken [35]. The definitions and theorems in this section were taken from this book

and the book by van Laarhoven and Aarts [50]. In section 2.3.2 we list some properties

of Markov chains and explain their connection to the simulated annealing algorithm that

enables us to find good solutions in optimization problems. This is also illustrated in a

simple example in section 2.3.4.

2.3.1 Terminology and Definitions

In this section we introduce most of the terminology we will use in context with simulated

annealing, and the building blocks for the simulated annealing algorithm.

The annealing algorithm is defined on astate spaceS, which is a collection of individual

states. Each of these states represents aconfiguration of the problem under investigation.

The states are related by a neighborhood system, and the set of neighbor pairs inS defines

a substructureM in S × S. The elements inM are calledmoves. Two statess, s′ are

calledadjacent, if they can be reached by a single move (i. e.(s, s′) ∈ M). Similarly,

(s, s′) ∈ Mk are said to be connected via a set ofk moves. We require the state space

to be finite. Th size of the state space is fixed, but can be arbitrarily large, therefore this

assumption does not result in a loss of generality - for our purposes a computer must be

able to distinguish all states anyways.

The following functions govern the search through the state space:

Definition 1

Thescore function

ε : S → IR+ (2.2)

assigns a positive real number (score) to each state.

32

The score is understood as a measure of the quality of the state. In the following we

always assume that lower scores are associated with states that represent better quality

configurations. Since the state space is finite, there exists at least one state with a minimal

score. This score is denoted byε0.

Definition 2

Theselection probability is a function

β : S × S → [0, 1] (2.3)

such that

∀(s,s′)/∈Mβ(s, s′) = 0, (2.4)

∀(s,s′)∈Mβ(s, s′) 6= 0, (2.5)

∀s∈S

∑

s′∈S

β(s, s′) = 1. (2.6)

The selection probability therefore is the probability that states′ is proposed as new state,

given that the current state iss. Therefore the move set can be defined as

M := {(s, s′) ∈ S × S : β(s, s′) > 0} (2.7)

We call the move setM symmetric if

∀s∈S∀s′∈S [(s, s′) ∈ M ⇒ (s′, s) ∈ M] (2.8)

Definition 3

Theacceptance function

α : IR3
+ → (0, 1] (2.9)

33

assigns a positive probability to a pair of scores and a positive real number, called the

temperature.

The acceptance function decides whether or not the proposed state will be accepted as the

new state. Note that for any fixed temperature, this probability only depends on the scores

of the current and proposed state, but not on those states themselves.

Definition 4

Thetransition probability is a function

τ : IR3
+ → [0, 1] (2.10)

defined as

τ(s, s′, t) :=





α(ε(s), ε(s′), t)× β(s, s′) s 6= s′

1−∑
s′′∈S α(ε(s), ε(s′′), t)× β(s, s′′) s = s′.

(2.11)

Therefore, the transition probabilityτ(s, s′, t) can be understood as the probability that the

next step is a move to states′, given that the current state iss and the temperature ist. The

probability that the state aftern moves iss′, given the current states and temperature thet,

will be denotedτn(s, s′, t).

A process that possesses the above property is called aMarkov process. A sequence of

events as a special case of such a Markov process is called aMarkov chain . A Markov

chain in which the transition probabilities between the pairs of states are constant through-

out the process is calledhomogeneous. A Markov chain is calledirreducible if any state

in the chain is connected to any other state by only a finite number of moves, i. e. if

⋃

k

Mk = S × S. (2.12)

A Markov chain is calledaperiodic if for every states the greatest common divisor of all

integersn ≥ 1 with τn(s, s, ·) > 0 is equal to 1.

34

2.3.2 Properties of Markov Chains

Theorem 1 below is usually referred to as the Chain Limit Theorem. It states that an

irreducible and aperiodic (homogeneous) Markov chain has a limiting distribution.

Theorem 1

For each irreducible and aperiodic chain there exists a density function

π : S × IR+ → (0, 1], (2.13)

in s for any givent > 0, with

π(s, t) = lim
n→∞

τn(s′, s, t), (2.14)

(independent ofs′) and satisfying the following equations:
∑

s′∈S

π(s′, t)τ(s′, s, t) = π(s, t), (2.15)

∑
s∈S

π(s, t) = 1. (2.16)

Hence, if we constructed an irreducible and aperiodic (homogeneous) Markov chain for the

annealing algorithm (i. e. run the chain at a fixed temperature), the distribution of states we

sample from approaches a limit. However, the search through the state space should yield

low scoring states. Some simple additional requirements will guarantee this.

Theorem 2

An irreducible and aperiodic chain with a symmetric move set has the property

∀s∈S[ε(s) 6= ε0 ⇒ lim
t↓0

π(s, t) = 0] (2.17)

if it has an acceptanceα function satisfying

ε ≥ ε′ ⇒ α(ε, ε′, t) = 1, (2.18)

ε > ε′ > ε′′ ⇒ α(ε, ε′, t)× α(ε′, ε′′, t) = α(ε, ε′′, t), (2.19)

ε < ε′ ⇒ lim
t↓0

α(ε, ε′, t) = 0. (2.20)

35

Hence, if the requirements (2.18), (2.19) and (2.20) are satisfied, the likelihood of a non-

optimal scoring state in the limiting distributions goes to zero as the temperature goes to

zero. Therefore, if the annealing is run as a sequence of homogeneous Markov chains with

decreasing temperatures, the search is guided towards optimal scoring states. The above

mentioned requirements only affect the acceptance function and do not pose any constraints

onβ or M . In general it is quite easy to construct a state space with a symmetric move set

that guarantees irreducibility and aperiodicity for the chain in the search algorithm. The

desirable properties of the chains as stated in Theorem 2 can be achieved by choosing the

right acceptance function.

Otten and van Ginneken [35] make the point that “it seems reasonable that smaller score

increases are accepted with higher probability than bigger ones, and that this probability

varies smoothly with the score difference”. Sufficient but not necessary for this would be

the requirement that the acceptance only depends on the score difference.

Theorem 3

The only acceptance functionsα(ε, ε′, t)

• that are differentiable inε′,

• whose values depend ont and the difference ofε andε′

• that satisfy the conditions of Theorem 2

have the form

α(ε, ε′, t) = min{1, e(ε′−ε)c(t)}, (2.21)

wherec(t) is a negative, monotonic and continuous function satisfying

lim
t↓0

c(t) = −∞. (2.22)

36

In our works we always usedc(t) = −1/t, yielding the acceptance function

α(ε, ε′, t) = min{1, e−(ε′−ε)/t}. (2.23)

This acceptance function has been used by far the most in the literature. This is presumably

the case because condensed matter physics is the origin of simulated annealing and the

above acceptance function has a striking similarity to the Boltzmann distribution, which

characterizes a system of particles in thermal equilibrium. However, it also has been estab-

lished that this acceptance function has many desirable properties, as described above.

2.3.3 Practical Aspects of Simulated Annealing

When we implemented the simulated annealing algorithm for the Logic Regression method-

ology, some practical aspects had to be considered how to run the search. In this section

we list what we believe are the most important issues.

• In theory, trees of any size can be grown, but considering that we want to be able to

interpret these models, it makes sense to limit the tree sizes to a reasonable number

of leaves. We always took this into consideration, and usually limited the number of

leaves to a maximum of 16 per tree.

• In the beginning of a simulated annealing run with high temperatures, virtually all

proposed moves are accepted. Towards the end, almost every proposed move is re-

jected. Somewhere in between those points in time of the run is the “crunch time”,

where we want to spend most of the run time in. To speed up the simulated annealing

and avoid spending too much time either at the beginning or the end of the run, we

implemented the following features:

37

– Running a Markov chain at fixed temperature, we keep track of how many

moves have been accepted. If this number reaches a pre-determined thresh-

old, we exit the Markov chain (even though the number of iterations specified

has not been reached) and lower the temperature to its next value. This avoids

spending too much time at the beginning of the run in “random models”. Later

in the annealing algorithm, we will not be able to reach this threshold and the

Markov chains run for their full lengths. The threshold typically is between 1%

and 10% of the pre-specified number of iterations for a chain at fixed tempera-

ture.

– We have to specify a lowest temperature before starting the simulated anneal-

ing run. Several criteria can be considered to exit the simulated annealing run

early when the search virtually has been finished, for example when no moves

were accepted within a substantial number of consecutive chains. This avoids

running the algorithm all the way to its end although no improvement can be

achieved anymore. It also allows setting the lowest temperature arbitrarily low,

since the exit criteria can be chosen independent of the lowest temperature con-

sidered.

• Every Logic Tree has a finite number of neighbors. Especially towards the end of

the run at very low temperatures, very few moves get accepted. Since simulated

annealing is a probabilistic search, a move might get rejected several times before it

is accepted. The worst “bottle neck” in terms of computing time is the evaluation of

the Logic Trees, i. e. deriving the values of their underlying Boolean equation from

the leaves for each case. Since the acceptance of a move, given the temperature and

the score of the current model, only depends on the score of the proposed model,

we implemented a subroutine that keeps track of all states visited, and their scores.

Therefore, for the decision whether or not to accept a certain move, the trees of

the proposed model have to be evaluated only once, which speeds up the search

38

dramatically especially at lower temperatures.

• To implement a simulated annealing run, we have make some decisions, such as

specifying a temperature scheme. That means we have to choose the starting (high-

est) temperature, the finishing (lowest) temperature and the cooling scheme, which

also determines the total number of chains we run at constant temperatures. In mak-

ing this decision, there is usually some trial and error involved, since the cooling

scheme etc depend on the data we are analyzing. The theory of simulated annealing

in the previous section tells us under which circumstances we can guarantee to find an

optimal scoring state. Since we cannot run chains of length infinity, the optimal state

is not guaranteed in practice. We need to make sure that the individual chains we run

come close to their limiting distributions, and cool sufficiently slowly such that this

can be achieved with a reasonable number of iterations in the chain. The choices for

the parameters we pick therefore influence each other. We already explained above

that picking the highest and lowest temperature is not a problem. We want the start-

ing temperature high enough such that the first chains are essentially random walks

This can be controlled by monitoring the acceptance rate. The lowest temperature is

chosen such that the above described exit criterion terminates the chain. Depending

on the size of the data set, we usually choose for the exit criterion the number of

chains without acceptance between 10 and 20. The temperatures are usually lowered

in equal increments on alog10 scale. The number of chains between to subsequent

powers of 10 depend on the data as well; usually, the number is between 25 and

100. The lengths of the individual chains for the data we looked at so far have been

between 10,000 and 100,000. The number of iterations might increase substantially

though for larger data sets. In Section 3.2.1 we will give a detailed example of such

a simulated annealing run.

39

2.3.4 An Example

For simplicity, we decided not to show how simulated annealing works for growing Logic

Trees before discussing the logic models that we consider (see Chapter 3). A much more

straightforward problem is the traveling salesman problem, a “classic” in theoretical com-

puter science. Similar to searching for Logic Trees, this is a very discrete problem and an

enumeration of states and therefore a sequential search is not really possible.

Our traveling salesman has to visitn cities. He wants to find the path that minimizes his

traveling expenses, assumed to be proportional to the length of his journey. In our example,

the cities are on a regular10 × 10 unit grid. A possible path for the sales man’s journey is

shown in Figure 2.3.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

S

Figure 2.3: A possible path for the traveling salesman, visiting 100 cities.

Here, the state space is a sequence of the numbers 1 through 100, each number representing

one city. A sequence of these 100 numbers is a path, and represents one configuration of

the traveling salesman problem.

Clearly, there are plenty of ways how to define the neighborhood system, and hence the

move set, for this problem.̌Cerńy [9] for example suggested the permutation of the cities

40

in a sub path. For any pair of cities, reverse the sub path between them. For example, if

· · · 52 42 43 44 35 36 37 47 46 56 55 45 34 24 14 13 23 33 32 · · ·

is a path, then reversing the sub path between cities44 and34 is a permissible move:

· · · 52 42 43 44 45 55 56 46 47 37 36 35︸ ︷︷ ︸
reversed subpath

34 24 14 13 23 33 32 · · ·

We also refer to these type of moves as swaps. Figure 2.4 shows such a move. It is clear

now that two states (i. e. paths through the cities) are neighbors if one can be generated by

the other using one swap.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

(a) The path before the swap.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

(b) The path after the swap.

Figure 2.4: A move in the traveling salesman problem (only a part of the path is shown).

The score of each state in this problem is simply the length of the path. For example, the

score for the path shown in Figure 2.4 (a) is2×√2−2×2 ≈ 0.83 units higher than the score

for the path shown in Figure 2.4 (b), and hence less favorable. The selection probability

is simply determined by randomly selecting two cities on the path, reversing the sub path

41

between them, and propose the resulting path as new state. Clearly, this makes the move

set symmetric. Also, every sequence of the numbers 1 through 100 can be generated from

any other sequence by successively exchanging two neighboring numbers in the sequence.

This is of course not the fastest way of doing so, but easily demonstrates that our Markov

chain is irreducible. It is also not too hard to see that the Markov chain is aperiodic. If a

state has a lower scoring neighboring state, there is a positive probability that this state will

be the new state in the chain. This state now has the original state as neighbor, and hence

there is a positive probability that the chain will not leave this state in the next step in the

chain (since the original state has a higher score). But there is also a positive probability

of returning to the original state, of course depending on the temperature. However, since

the chain can remain in the new state, the return to the original state could happen after

any number of steps. Hence the chain is aperiodic (if a state does not have a lower scoring

neighboring state, there is nothing to show, since there is a positive probability that the

chain will remain in this state). Therefore, all the necessary requirements in the above

theorems are fulfilled. Figure 2.5 shows the result of an annealing run. Each Markov chain

in the annealing algorithm is referred to as a step in this algorithm.

How simulated annealing works in the context of Logic Regression will be clarified after

we introduce Logic models in Chapter 3.

42

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

(a) The initial path.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

(b) The tour after 60 steps.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

(c) The tour after 90 steps.

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

(d) The tour after 125 steps.

Figure 2.5: Configurations obtained during a simulated annealing run of the 100 cities
traveling salesman problem.

43

Chapter 3

LOGIC MODELS

After describing the search algorithms that enable us to find good Logic Trees, we now in-

troduce the Logic models that we think are most useful in the Logic regression framework.

In principle, we distinguish Logic models with a single tree and Logic models with multiple

trees. The models we consider involving one Logic Tree are for classification and regres-

sion problems. In the former, we try to find a Boolean expressionL that classifies each case

into one of two possible classes. In other words, we are searching for a classification rule

C = I{L is true}. (3.1)

In the latter problem, we try to model a characteristic in each of two subpopulations, such

as the population mean of a certain variable in the subpopulations. Here, we search for a

logic rule and parameters that, for example, optimize the model

µ = a + b× I{L is true}. (3.2)

In both cases, a meaningful measure of goodness (i. e. scoring function) has to be defined.

Which measure to use depends of course on the type of problem. In Section 3.1.1 we

discuss these models and scoring functions in detail.

After we discussed models with one tree, we will generalize (3.2) to

µ = a +
k∑
i

bi × I{Li is true}. (3.3)

These models with multiple trees are discussed in Section 3.1.2. In Section 3.2 we describe

how all of the above mentioned models can be fit.

44

3.1 Introduction of Logic Models

3.1.1 Models with One Tree

3.1.1.1 Classification Problems

A common statistical problem is to classify members of a population in one of two possible

categories, solely based upon a set of “predictive” variables, measured for each member of

the population. For example, it is believed that certain types of cancer are partly caused

be genetic abnormalities. Is it possible to predict which class (cancer / no cancer) a person

belongs to, given a list of genes expressed? The type of model we could fit in this example

might be something like “if gene A and gene B are expressed, or gene C but not gene D,

then we predict that the person whose genes we analyzed belongs to the group with cancer,

otherwise he or she belongs to the no cancer group. below, we discuss which scoring

functions can be used for this type of problem.

Misclassification Rate: In the classification problems we consider, we search for rules

that enable us to assign each case into one of two possible classes (say class 0 and class

1). A Boolean expressionL predicts a classC for each case viaCpredicted = I{L is true}.

The scoring function for this case could simply be the total number of misclassifications

resulting from this predictionnmc, or the misclassification rate, the total number of mis-

classifications divided by the total number of cases (ε = nmc/n). In many applications, the

types of misclassification are not equally severe. For example in medical cases, predicting

that a person is healthy although he or she is sick and needs treatment immediately often

is a much more serious mistake than predicting the person is sick although he or she is

healthy. In those cases it is common to use (for example) a weighted version of the number

of misclassifications, such asε = w0nmc0 + w1nmc1 as scoring function, wherenmc0(nmc1)

is the number of cases falsely predicted as class 0 (1).

45

The above described scoring functions are pretty much the simplest scoring functions pos-

sible, and are the most commonly used in classification problems. Weights are also com-

monly used in situations where one class is much more common than the other class. An

alternative is to use the

Inter-rater Disagreement: An index called inter-rater agreementκ (see for example

Fleiss [14]) was developed to assess how two people agree in classifying (rating) the same

objects into different classes. In our case we can understand this as “how well does the

prediction agree with the response?”. The difference to the simple misclassification rate is

that we now take into account what one expects in terms of agreement between prediction

and response. Let the total number of cases considered ben, assume there arer0 zeros and

r1 ones in the response (r0 + r1 = n), and assume that we predicta0 zeros anda1 ones

(a0 +a1 = n). Letm := 2k +n−a0− r0 be the number of agreements between prediction

and response, as indicated in Figure 3.1.

•

•

c(0, 1)

c(
0,

 1
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k r0 - k

a0 - k

r1 - (a0 - k)
=

a1 - (r0 - k)
=

k + n - a0 - r0

Prediction

R
es

po
ns

e

a0 a1

r0

r1

Figure 3.1: The agreement between prediction and response.

The inter-rater agreementκ as in Fleiss [14] is defined as the ratio of the number of cases

by whichm exceeds its expectation, and the number by whichm could theoretically exceed

46

this expectation. Using our terminology, we can show that

κ = 1− n(n−m)

n(a0 + r0)− 2a0r0

. (3.4)

Since in our scoring function lower scores should be associated with better states, we define

the inter-rater disagreement as

γ := 1− κ =
n(n−m)

n(a0 + r0)− 2a0r0

. (3.5)

3.1.1.2 Regression Problems

In the regression problems that only involve a single tree we search for rules that charac-

terize parameters associated with measurements in two subpopulations. If the response is

binomial, the parameter of interest can be the odds of belonging to class 0 versus class 1.

If the response is continuous, the parameter can be the average response in each of the two

classes. For example, imagine there is a car dealer who sells new luxury cars all over the

country wants to target potential customers with advertisement. To find out which people

are willing to spend a lot of money for a new car, he carries out a survey. He questions

people who recently bought a new car how much they paid for it and gathers additional

information about these people, such as their gender, age, profession, residency, education,

etc. Quite possibly he might find out that for example professionals with a graduate de-

gree (lawyers, doctors,. . .) spend on average more money on new cars than the average

population. The same could be true for retired folks who made enough money to enjoy the

rest of their life in Florida or California. A good model could be the following: A person

who works professionally and has a graduate degree, or is retired and lives in Florida or

California, belongs to a population which spends about $40,000 on average on a new car,

otherwise this person belongs to a population which spends only about $25,000 on average

on a new car.

Below, we outline what we consider the two most important types of regression models:

47

linear regression and logistic regression, with residual sum of squares and binomial log-

likelihood (respectively) as scoring functions.

Residual Sum of Squares: In case of a continuous response, we want to model the means

of the responses in two different subpopulations, for example the average amount of money

spent on a new car in two subgroups, defined by variables recorded for the people in the

population of buyers of new cars. We assume the true underlying model for the measure-

ments taken to be

Y = β0 + β1I{L is true} + ε, with ε ∼ N(0, σ2) (3.6)

whereL is a Boolean expression that determines the means of the response variableY in

the two subpopulations: the meanIE [Y] of the response variable in class 0 (whenL = 0)

is β0, which isβ1 smaller than the mean of the response variable in class 1 (whenL = 1).

For a givenL, the model is fit using the method of least squares, which means finding the

estimateŝβ0, β̂1 that minimize the expression
∑

i(β0+β1I{Li=1}−Yi)
2. As scoring function

we select the residual sum of squares (RSS):

RSS=
n∑

i=1

(Yi − Ŷi)
2, (3.7)

whereŶ = β̂0 + β̂1I{L is true} are the fitted values of the model under consideration. In this

case, the fitted values are simplyβ̂0 = Ȳ{L is false} andβ̂1 = Ȳ{L is true} − β̂0.

Logistic Log-Likelihood: The case with binary response can also be considered as a

regression problem. Instead of predicting the outcome for each case as in the classification

case, we can model the probability (actually, the log odds) of belonging to class 1 instead

of class 0. We assume the true underlying model to be

log

(
π

1− π

)
= β0 + β1I{L is true}, (3.8)

48

•

•

c(0, 1)

c(
0,

 1
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n00 n10

n01 n11

Prediction

R
es

po
ns

e

0 1

0

1

Figure 3.2: Counts of cases in each bin of the table indicating the agreement between
prediction and response.

whereπ is the probability for a certain case to be in class 1 andL is a Boolean expression

that determines these probabilities: the log odds of being in class 1 whenL = 0 is β0,

which isβ1 smaller than the log odds of being in class 1 whenL = 1. As scoring function

we select the deviance (DEV), defined to be twice the difference between the maximum

achievable log likelihood and that attained under the fitted model (see for example McCul-

lagh & Nelder [30], p. 118ff).

In the case with only one Logic term (see Figure 3.2), the fitted probabilities for being in

class 1 givenL = 0 andL = 1 respectively are

π̂0 =
n01

n0·
, (3.9)

π̂1 =
n11

n1·
, (3.10)

wherenij is the number of cases for which we predicti and the response isj (i, j ∈ {0, 1}).

49

This deviance as given in [30] then simplifies to

DEV = 2×
[
n00 log

(
n0·
n00

)
+ n01 log

(
n0·
n01

)
+

n10 log

(
n1·
n10

)
+ n11 log

(
n0·
n11

)]
(3.11)

Although we only discussed linear and logistic regression, any regression model can be

used as long as a meaningful measure of goodness can be defined; in particular, this in-

cludes the generalized linear regression models, and the Cox model.

3.1.2 Models with Multiple Trees

Models involving a single Logic Tree always characterize two subpopulations. But cer-

tainly there are cases in which it is desirable to consider more than two subpopulations. For

example, when patients are admitted to hospital for a certain reason, a variety of variables

are measured upon arrival. Breiman et al [6] for example analyzed data from heart attack

patients admitted to the Medical Center at the University of California at San Diego. The

goal of a medical study was to identify high risk patients (patients who will not survive

at least 30 days) based on the data recorded within 24 hours upon arrival at the hospital.

It would be desirable to have a model that permits statements such as: the basic odds of

surviving at least 30 days isα0. If the minimum systolic blood pressure over the initial 24

hour period is higher thancmsbpand the patient is older thancageyears and sinus tachycardia

is present, than the odds areα1 times higher. If the patient is female and there is no history

of angina, the odds areα2 times lower, etc. Note that these statements are not exclusive and

that more than one of the conditions can apply. We will get back to those data analyzed by

Breiman et al [6] in Section 6.2.

The only models with multiple trees that we considered and implemented are in the context

of linear and logistic regression. Again, in principle any model can be considered, as long

50

as a meaningful scoring function can be determined. Classification problems in which

there are more than two possible classes for the outcome could also be targeted using a

polychotomous regression approach to Logic Regression (see for example Kooperberg et

al [27]).

3.1.2.1 Linear Regression

In an extension of the single tree case, we assume the true underlying model to be

Y = β0 + β1I{L1 is true} + · · ·+ βpI{Lp is true} + ε, with ε ∼ N(0, σ2) (3.12)

whereL1, . . . , Lp are a Boolean expressions that determine the means of the response

variableY in multiple subpopulations. For a given set of Boolean expressionsL1, . . . , Lp,

the model is fit using the method of least squares, and as scoring function we use the

residual sum of squares (RSS):

RSS=
n∑

i=1

(Ŷi − Yi)
2, (3.13)

where

Ŷ = β̂0 + β̂1I{L1 is true} + · · ·+ β̂pI{Lp is true} (3.14)

are the fitted values of the model under consideration. Note that this, in principle, defines

2p subgroups of cases. However, some of these groups might be empty, for example if ’L1

is true’ requires the gender “male” and ’L2 is true’ requires the gender “female”.

3.1.2.2 Logistic Regression

In another extension of the single tree case, we assume that the true underlying model is

log

(
π

1− π

)
= β0 + β1 × I{L1 is true} + · · ·+ βp × I{Lp is true} (3.15)

51

whereπ is the probability for a certain case to be in class 1 andL1, . . . , Lp are the Boolean

expressions that determine these probabilities. As scoring function we select the deviance

(DEV), defined to be twice the difference between the maximum achievable log likeli-

hood and that attained under the fitted model (see for example McCullagh & Nelder [30],

p. 118ff).

3.2 Model Fitting

3.2.1 Models with One Tree

As introduced in Chapter 2, we basically have two search algorithms: the greedy search

and the simulated annealing. Both of them involve a step-wise search through the space

of possible models. In every step, we alter the Boolean expression currently under inves-

tigation, according to the set of permissible moves (also introduced in Chapter 2). Given

the new tree, we then calculate the new score, and decide whether or not to accept the

new model based on old score and new score, and we adjust the temperature if we carry

out a simulated annealing algorithm. In some of the models this might involve re-fitting

parameters. For example if we consider a linear regression type of model, a change in the

Boolean expressionL also alters the parametersβ0 andβ1. These are then used to calculate

the goodness of fit, e. g. the residual sum of squares. Below we show as an example the

outcome of a simulated annealing run for a classification problem, which involved a Logic

model with a single tree. We simulated a dataset with 20 binary predictors, having a total

of 1000 cases each. The value in each case of the predictors was a sample from a Bernoulli

random variable withp = 0.5. The underlying Boolean equation was chosen to be

L = [X1 ∨X2] ∧ [(Xc
3 ∨X4) ∧ (Xc

5 ∨X6)]. (3.16)

If for a certain caseL was true, the response was sampled from a Bernoulli random variable

with p = 2
3

(class 1), otherwise the response was sampled from a Bernoulli random variable

52

with p = 1
3

(class 0). The score in the simulated annealing run was chosen to be the number

of misclassifications (i. e. how often a tree under consideration predicted the wrong class).

Figure 3.3 displays some information about the scores throughout the simulated annealing

run. We started the first Markov chain at a temperature of104, and ended the run with

a Markov chain at temperature of10−2. The temperature was decreased after each run of

the Markov chain in increments of1
25

on a log10 scale. Each Markov chain had a fixed

length, 50000 iterations in our case. For each Markov chain at a fixed temperature, we

recorded the median and the upper and lower2.5 percentile of the scores of the Logic Trees

accepted in the chain. For simplicity, only trees with a maximum of 16 leaves (depth 4)

were considered. The median scores for each temperature are connected by a solid line

in Figure 3.3, and the upper and lower2.5 percentile define the shaded area around the

median. We see how the median scores drop with the temperature, together with the range

log10(temperature)

sc
or

e
35

0
40

0
45

0
50

0
55

0

-2 -1 0 1 2 3 4

330

314

Figure 3.3: Temperature versus score in a simulated annealing run, trying to solve a classi-
fication problem.

53

and the variability of the scores of the accepted tree. The true Logic Tree has a score of 330

(330 out of 1000 cases are misclassified underL). There is noise in the data, and we see

that eventually we start predicting some of that noise by visiting trees that have a score less

than 330. In the end, we found a Logic Tree with a score of 314.

Figure 3.4 compares the correct Logic Tree (Figure 3.4(a)) with the Logic Tree that had the

lowest score in the simulated annealing run (Figure 3.4(b)). The Logic Tree with score 314

captures the information of the underlying Boolean equation (3.16) (which means that the

predictorsX1, X2, X
c
3, X4, X

c
5, X6 are all in the model), but has, as already stated, some

additional predictors not part of the true model. We discuss in Chapter 5 how to deal with

noisy data, or data for which the Logic model is only an approximation.

3 4 5 6

1 2 or or

or and

and

(a) The true Logic Tree.

5 17 3 4 15 17 16 8 1 2 10 5

and or or or or and 5 6

or or or or

and and

and

(b) The Logic Tree with the lowest score.

Figure 3.4: Trees associated with the simulated annealing run.

54

3.2.2 Models with Multiple Trees

Considering models with one tree, we only had the choice of picking a greedy or a stochas-

tic search algorithm. In a model with multiple trees, we have more options.

Fitting all trees simultaneously

Again, the search can be carried out either using a greedy algorithm or simulated annealing.

In the former case, we start out with an empty model (equivalent to no trees), and find the

best single move according to our scoring function. This is the start of the first tree in the

model. Then we search for the next move, finding the best model we can reach from the

given model. The move can either be altering the first tree, or starting a second tree. The

next move could be altering any of the trees in the model, or starting a new tree. The greedy

search stops when we can not improve the score of the model anymore.

For computational reasons, fitting all trees simultaneously requires that we pre-select the

numberp of trees when we use simulated annealing. The number of trees can be chosen

arbitrarily large (although computer memory permitting), so this is not a major restriction.

Unless we have an idea of how many trees we maximally want to fit, it may not be clear

a priori what this number should be. We generally pickp conservatively, which means we

pick p larger than necessary, and trim the model down if needed. In Chapter 5 this will

be discussed in detail. For now, we assume thatp is known. In theory, we could run the

program with an undetermined number of trees.

When we use simulated annealing, we have two possibilities. We can either change one tree

at a time, or change all trees simultaneously. The latter requires that we slightly change the

move set, allowing “no move” as a possibility at an individual tree. We select a move for

each tree from the move set described in section 2.1 or we do not alter this tree.

55

Fitting one tree at a time

In certain cases, we could grow one tree at a time. The main advantage compared to fitting

all trees simultaneously is that it is computationally less expensive. However, it is a some-

what “semi-greedy” approach, which bears a risk of a non-optimal result of the search. We

can grow the first tree as described in Section 3.2.1. Then we add a second tree, keeping

the first tree fixed, etc. We stop when we reach a certain criterion, for example in linear

regression when the significance (p-value) of the slope parameter exceeds a certain value.

This method yields a sequence of Boolean expressions that we can use to find the final

parameters in the linear regression model, using all trees in one fit.

Below we show the outcome of a simulated annealing run, trying to solve a regression

problem which involved a Logic model with multiple trees. Exactly as in the example in

the previous section, we simulated a dataset with 20 binary predictors, having a total of

1000 cases each. The value in each case of the predictors was a sample from a Bernoulli

random variable withp = 0.5. The response was generated according to the model

Y = 3 + 2× I{L1 is true} − 1× I{L2 is true} + ε, (3.17)

1 2 3 4

or or

and

5 6

and 7

or

Figure 3.5: The Logic Trees of the correct regression model.

56

whereε ∼ N(0, 1), and

L1 = (X1 ∨Xc
2) ∧ (Xc

3 ∨X4) (3.18)

L2 = (X5 ∨Xc
6) ∧Xc

7 (3.19)

(see Figure 3.5).The score in the simulated annealing run was the residual sum of squares.

For simplicity, we limited the number of Logic Trees in the model to 3, and only trees with

a maximum of 16 leaves (depth 4) were considered.

We started the first Markov chain at a temperature of103, and ended the run with a Markov

chain at temperature of10−2. The temperature was decreased after each run of the Markov

chain in increments of1
25

on alog10 scale. Each Markov chain had a fixed length, 50000

iterations in our case. The final model had a score of 896.9, compared to 1005.6 for the true

model. Figure 3.6 displays the change in the parameter estimates throughout the simulated

annealing run.

log10(temperature)

pa
ra

m
et

er
s

-2
0

2
4

-2 -1 0 1 2 3

1

2

3

Figure 3.6: The temperature versus the estimates of regression parameters at the end of the
Markov chain at the respective temperature. The solid line represents the estimates for the
interceptβ̂0, the dashed lines represents the estimates for the parametersβ̂1, β̂2, β̂3.

57

6 5 17 16 10 2

6 or and and

or and

or 7

and

2 1 4 3

and and

or

8 17 17 20 10 18 1 20 10 9 11 1

or or or or and 18 and 4

and or or and

and or

and

Figure 3.7: The Logic Trees of the regression model with the lowest score.

Figure 3.7 shows the Logic Trees of the resulting model. This model can be written as

Ŷ = 4.05 + 1.00× I{T1 predicts 1} − 1.94× I{T2 predicts 1} − 0.49× I{T3 predicts 1} (3.20)

The first tree (T1) resembles the Logic Tree forL2. The subtreeX6 ∨ (X6 ∨Xc
5) contains

redundancy, it is equivalent toX6 ∨Xc
5. The subtree representing the Boolean expression

(Xc
17 ∧X16) ∧ (X10 ∧Xc

2) rarely predicts one, since all four leaves involved in the subtree

have to have prediction one, so the Boolean equation underlyingT1 is essentially the com-

plement ofL2 (using DeMorgan’s rules). Hencêβ1 is very close to+1 instead of−1. T2

58

is exactly the complement ofL1, henceβ̂2 is very close to−2. Knowing the underlying

model, we realize thatT3 is a result of over fitting. In the following chapters we deal with

model simplification (removing redundancies, statistical inference, model selection, etc),

necessary to distinguish noise from signal.

59

Chapter 4

TRICKS AND TECHNICALITIES

In general, if we fit models as described in Chapter 3, there is the possibility of over-fitting.

Therefore it is crucial to have tools for statistical inference and model selection that help

us remove the noise from the signal. These tools will be introduced in Chapter 5. In this

chapter we describe some tricks and technical aspects important in the search for the best

model, and for the development of the above mentioned inference tools.

4.1 Growing Trees of Fixed Size

In certain situations it is of interest to know what the best scoring tree or model of a certain

size is. In this thesis, we use the total number of leaves in the Logic Trees involved in a

model as the model size (see also introduction to Chapter 5 on page 70). For example, this

is essential when using cross-validation to determine the best overall model size, as we will

see later. To find the best scoring tree or model of a fixed size, we have to use simulated

annealing (a greedy search could end before the desired model size is reached, and if it is

reached, the model is not guaranteed to have the best score among models of that size).

However, if the simulated annealing run is carried out with the move set as described in

Section 2.1, the tree or model size changes constantly, and we cannot guarantee that the

final model is of the desired size. To determine the best overall model of a fixed size, we

considered the following possibilities:

60

• Changing the move set:

When altering a leaf or operator in a Logic Tree, the tree size does not change. When

splitting a leaf or growing a branch, the tree size grows by one. When deleting a leaf

or pruning a branch, the tree size decreases by one. Hence we can alter the move

set in the following way: if we split a leaf, we also have to delete a leaf, and vice

versa. If we grow a branch, we also have to prune a branch, and vice versa. These

operations do not necessarily have to occur on the same tree if we have a model with

multiple trees. We can choose our new move set using those moves, and including

alternating a leaf or an operator as before. Regardless whether we have a model

with one or multiple trees, the model size stays always constant. To find the best

scoring model of a certain size, we can simply start a simulated annealing run with a

randomly chosen tree or model of the desired size, and use the above described move

set.

• Prohibiting moves past the limit:

A simpler solution, without altering the move set, is to prohibit moves that increase

the tree when its desired size has been reached. In other words, we can carry out the

simulated annealing as before, except we do not suggest branching a tree or splitting

a leaf if the tree has already the desired size. Strictly speaking, this guarantees us only

to find the best ofup to the desired size. However, smaller tree sizes are desirable

in general, so this would not be a problem. In reality, the maximum (desired) tree

size always seems to be reached anyways, which is hardly surprising. Besides being

the simpler solution compared to the above method (since we don’t have to alter the

move set), it is also the more efficient way to grow models of a pre-specified size. The

way the code is implemented, the first method mentioned requires a different form of

evaluation, which is way more expensive computationally, since certain moves now

have two “steps” (such as splitting and deleting leaves simultaneously).

61

4.2 Including Continuous Predictors and Factors

The methodology described so far requires that all predictors are binary. But often some

of the predictors are continuous variables or factors with more than two possible outcomes.

Below, we discuss possible solutions how to include those predictors in the Logic Regres-

sion framework.

4.2.1 Continuous Predictors

Fitting Continuous Predictors in a Model

In certain cases, we can incorporate a continuous variable just ”as is” into the model. For

example, assume the binary predictors areXb,1, . . . , Xb,k, and the continuous predictors

areXc,1, . . . , Xc,k. If we consider a logistic regression model, we could fit a model such as

log

(
π

1− π

)
= β0 + + β1I{L1 is true} + βpI{Lp is true} + βc,1Xc,1 + · · ·+ βc,kXc,k (4.1)

whereL1, . . . , Lp are Logic Trees generated from the binary predictors. The model is

fit exactly as described in Section 3.1.2, simply including the continuous predictors when

calculating the score (deviance).

However, one of the main advantages of the Logic regression models with exclusively bi-

nary predictors is their simplicity, having easily interpretable rules that ”slice” the predictor

space into few classes. Therefore, even though the inclusion of the continuous predictors

might results in a model with the lowest deviance possible, this might not necessarily be a

desirable thing to do.

62

Dichotomizing the Continuous Predictors before Fitting the Model

Using a splitting rule, we can dichotomize the continuous predictors before fitting the

model. For example, so-called regression stumps are often used for dichotomizing vari-

ables. Regression stumps are the result of a single step fit of a decision tree. We split a

continuous predictor (assigning zero to one class, one to the other) at the value that mini-

mizes a certain criterion (for example the binomial log-likelihood or the misclassification

rate). After dichotomizing all continuous predictors, we can include those with the other

binary predictors into the model search.

Dichotomizing the Continuous Predictors while Fitting the Model

Dichotomizing a continuous predictor as described above is fast and simple. However, the

split point for the variables found that way might not be optimal: if a dichotomized predictor

is used in a model, a slightly different split might result in a lower score. Below we describe

a method how we can optimize the split point, which however is computationally more

expensive than the method described above. We usually use this technique when the search

is via simulated annealing, but theoretically this can also be done during a greedy search.

We dichotomize the continuous predictors at an arbitrarily chosen point. We enlarge the

move set by allowing the split point to shift during the search. During a simulated annealing

run, this shift is chosen randomly, during a greedy search all possible splits are considered.

Below we show the results of this technique for a simulated annealing run in a simple

example.

The data were generated having seven binary and three continuous variables. The predictors

1−7 were binary with a total of 1000 cases each, and the value in each case of the predictors

being a sample from a Bernoulli random variable with probability1
2
. The predictors8 −

10 were samples from uniform distributions between 0 and 50, 50 and 100, and 100 and

63

150 respectively. The distributions were chosen to have different supports for clarity in

the figure we show. The underlying true Boolean equation from which the response was

smapled chosen to be

L = (Xc
1 ∨X2) ∧ [(X8 > 25) ∨ (X9 > 50) ∨ (Xc

1 ∧ (X10 > 75)] (4.2)

If for a certain caseL was true, the response was sampled from a Bernoulli random variable

with probability 2
3
, otherwise it was sampled from a Bernoulli random variable with prob-

ability 1
3
. Using simulated annealing, we found a model that involved all those predictors,

and Figure 4.1 shows the splitpoints for each of the continuous predictors at the end of each

Markov chain during the simulated annealing. A missing mark for a variable at a certain

temperature indicates that the variable was not part of the current model at that state during

the simulated annealing run. At higher temperatures, the splitpoints “jump”, and frequently

the variables are not part of the model at all. As the temperature decreases, the splitpoints

converge to a limit that we use to dichotomize the continuous predictors in the final model.

log10(temperature)

sp
lit

s
of

 c
on

tin
uo

us
 p

re
di

ct
or

s
20

40
60

80
10

0
12

0
14

0

-1 0 1 2

Predictor 8
Predictor 9
Predictor 10

Figure 4.1: Split points in the simulated annealing run.

64

4.2.2 Categorical Variables with more than two Classes

Dummy Variables

A factor variableX with k possible outcomes can be re-written ask − 1 so-called dummy

variables, sayZ1, . . . , Zk−1. Without loss of generality, letX ∈ {1, . . . , k}. If X = 1,

thenZ1 = · · · = Zk−1 = 0, and if X = j > 1, thenZj−1 = 1 and all other dummy

variables are zero. Hence, instead of one variable withk factors we can includek − 1

binary predictors into the search. This however might not always be a desirable solution,

since introducingk − 1 new binary variables might increase the complexity of the Logic

Trees in the good scoring models substantially. Below we describe two possibilities how to

generate one binary variable from the factor variable.

Ordered Factors

Often there is a natural ordering to factors, for example excellent, good, fair and poor

as grades or rankings. Then the factors could be split into two groups, respecting the

ordering. For example the above grades could be grouped as acceptable (excellent, good,

fair) and non-acceptable (poor). The split point that defines those groups can either be pre-

determined or updated during the simulated annealing, exactly as described in the above

section on continuous predictors. If there is no natural ordering to the factors (for example

if the factors are colors), an ordering could be induced by the association of each factor

with the response (“the CART trick”, see Breiman et al [6]). This however might not be

very desirable, and a potentially better way to handle those variables is described below.

65

Subgroups

Thek factors can be classified into two groups, which will be determined throughout the

simulated annealing. Initially, each factor gets randomly assigned to one group, assuring

that there is at least one member per group. Then, as additional move in the simulated

annealing, a factor can be transferred from one group to another, again assuring that there

is at least one member per group. At the end of the simulated annealing we have two groups

that represent an optimal assignment of thek factors into two groups.

4.3 Removing Redundancy from Logic Trees

As we have seen in for example in Section 3.1.2, the resulting Logic Trees from a simulated

annealing run can contain redundancy. The two trees below in Figure 4.2 are equivalent in

the sense that they yield exactly the same predictions for any possible case. How can we

check if two trees predict the same (i. e. the underlying Boolean expressions are equivalent),

or if a certain tree can be simplified (reduce the number of leaves, the depth of the tree, etc)?

B C

A and

or

B C

C and C B

A and B or

or and

or

Figure 4.2: Two equivalent Logic Trees of different complexity.

66

One possibility is computational, using so-called truth tables, which will be discussed in

Section 4.3.1. In Section 4.3.2 we investigate an alternative method, applying algebraic

laws to Boolean expressions.

4.3.1 Comparing Trees using Truth Tables

Assume there arek predictors involved in a Logic Tree. Since every predictor is binary,

there are at most2k different cases to consider. The prediction of the Logic Tree can

be checked using a truth table, that presents the prediction of the tree for each of the2k

different cases.

Table 4.1 and Table 4.2 show the truth tables for the Logic Trees in Figure 4.2(a) and Figure

4.2(b) respectively. In a truth table, we assign for a given prediction (A, B, C ∈ {0, 1}3)

a value to each occupied knots in the tree. We start with the leaves, and evaluate the tree

bottom to top. The values in knot 1, the root, are the predictions for the respective cases.

Table 4.1: The truth table for the Logic Tree in Figure 4.2(a).

leaves knots

A B C 7 6 3 2 1

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 1 0 0 0

0 1 1 1 1 1 0 1

1 0 0 0 0 0 1 1

1 0 1 1 0 0 1 1

1 1 0 0 1 0 1 1

1 1 1 1 1 1 1 1

67

Table 4.2: The truth table for the Logic Tree in Figure 4.2(b).

leaves knots

A B C 22 21 15 14 11 10 7 6 5 4 3 2 1

0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0

0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0

0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1

1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1

1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1

1 1 0 1 1 0 0 1 0 0 1 0 1 0 1 1

1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1

Comparing Tables 4.1 and 4.2, we see that no matter what value we assign toA,B, C, the

prediction of the two trees is always the same, hence they are equivalent.

This method enables us to determine whether or not two trees are equivalent. It does not

enable us to simplify a given tree if used as described above, unless the tree always predicts

one or always predicts zero. A computationally and logistically very burdensome way

could be to compare all subtrees of the tree under investigation to simple leaves or trees of

smaller size, and replace a subtree with a smaller tree if a match is found.

4.3.2 Simplification of a Boolean Expression using Algebraic Laws

A tree can also be simplified if we write down the Logic Term it represents, and apply the

algebraic laws introduced in Section 1.2.2. This strikes us as paper and pencil work, since

the Logic Trees we consider are usually of reasonable size and the implementation of those

algebraic laws on a computer seems very tricky.

68

As an example, the Logic Term for the tree in Figure 4.2(b) is

L = [A ∨ (C ∧ (B ∧ Cc))] ∨ [B ∧ (C ∨Bc)]. (4.3)

Using the algebraic laws, we get

A ∨ (C ∧ (B ∧ Cc)) ≡ A ∨ ((B ∧ Cc) ∧ C)) commutative operators

≡ A ∨ (B ∧ (Cc ∧ C)) associative operators

≡ A ∨ (B ∧ (Cc ∧ (Cc)c)) double complement

≡ A ∨ (B ∧ 0) complement law

≡ A ∨ 0 null law

≡ A identity law

B ∧ (C ∧Bc) ≡ (B ∧ C) ∨ (B ∧Bc) distributive law

≡ (B ∧ C) ∨ 0 complement law

≡ B ∧ C identity law

HenceL = A∨ (B∧C), which is the underlying Boolean Term of the tree in Figure 4.2(a).

4.3.3 Removing Redundancy by Numerical Means

Each model (or state)S has a scoreε(S), and we denote the lowest global score byε0. If

a tree in a model contains redundancy it means that this tree could be simplified without

changing the score of the model. To find the simplest model among the best scoring models,

we can distinguish all best scoring models by giving each of those models a bonus score,

relative to its complexity:

• ∀S : [ε(S) > ε0] =⇒ εnew(S) := ε(S),

• ∀S : [ε(S) = ε0] =⇒ εnew(S) := ε0 − bonus(S),

69

where bonus(S) is a positive function of the stateS, that rewards states of low complexity.

In our algorithms, we used for example the inverse of the number of leaves involved in

the Logic Trees as bonus. This method requires that we know the optimal score. This can

for example be achieved by running a simulated annealing twice. First without a bonus to

determineε0, and then adding the bonus to the models that achieve this score.

70

Chapter 5

STATISTICAL INFERENCE AND MODEL SELECTION

Using simulated annealing gives us the good chance to find a model that has the lowest

possible score. However, in the presence of noise in the data, we know that this model

over-fits the data in general. This can also happen when using a greedy algorithm (see

Section 2.2), although there is no guarantee of finding a lowest scoring model. In this

section we describe some methods that allow to get a better grip on “what is signal, and

what is noise” for models obtained through simulated annealing and greedy search.

To compare models, we also need a measure of model complexity. In this thesis, we use

the total number of leaves in the Logic Trees involved in a model as a measure of model

complexity, and call it themodel size. Different measures are also possible, such as the

maximum number of leaves per Logic Tree, or the maximum of the depths of the Logic

Trees involved in the model.

5.1 Cross-Validation

5.1.1 Standard Cross-Validation

We use cross-validation when the search is via simulated annealing. In principle, we can

also use cross-validation when the search is greedy. However, the greedy search does not

guarantee that we find the globally best scoring model, and hence cross-validation can lead

to incorrect results and conclusions.

71

We chose the model size as the number of leaves in the Logic Trees involved in the model.

Finding the globally best scoring model on the entire data, we know that we possibly have

too many leaves in the Logic Tree, i. e. the optimal model possibly has a smaller size than

the model found. We want to compare the performance of the best models for different

sizes. Now assume that we want to assess how well the best model of sizek performs in

comparison to models of different sizes. We split the cases of the data set intom (approxi-

mately) equally sized groups. For each of them groups of cases (say groupi), we proceed

as follows: remove the cases from groupi from the data. Find the best scoring model of

sizek (as described in Section 4.1), using only the data from the remainingm− 1 groups,

and score the cases in groupi under this model. This yields scoreεki. The cross-validated

score for model sizek is εk = 1
m

∑
i εki.

Figure 5.1 shows the results of such a cross-validation. As in some previous examples, the

data was generated by simulating 20 binary predictors, with a total of 1000 cases each, and

25
30

35
40

45
50

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

model size

sc
or

e

Figure 5.1: Cross-validated scores for a simple classification problem.

72

the value in each case of the predictors being a sample from a Bernoulli random variable

with probability 1
2
. For simplicity, the underlying true Boolean equation was chosen to be

L = (X1 ∧Xc
2) ∨ (Xc

3 ∧X4) (5.1)

If for a certain caseL was true, the response was sampled from a Bernoulli random vari-

able with probability2
3
, otherwise it was sampled from a Bernoulli random variable with

probability 1
3
. The score in the search was chosen to be the number of misclassifications

(i. e. how often a proposed tree predicted the wrong response). We split the data inm = 10

subgroups, and the cross-validated scores for a fixed tree size is summarized in a box-plot in

Figure 5.1. The means of the 10 cross-validated scores for each tree size are super-imposed

onto the box-plots and connected by a solid line. The results are very typical for cross-

validation: The average cross-validated score in general drops rapidly when the model size

is increased, until the correct size is considered. Then, the scores very slowly increase with

model size. There is usually a fair amount of variability in those cross-validated scores,

and the average cross-validated score for the correct model size is not always the smallest

among the averaged cross-validated scores. But cross-validation definitely provides a way

to sensibly pick a reasonable model size.

An alternative, fairly similar method to the above described cross-validation is the training

set/test set approach. If we have sufficient data, we can randomly assign the cases to two

groups with pre-determined sizes, using one part of the data as the training set, and the

other part as test set. That means, instead of using the entire data in the model fitting and

model evaluation process as described above, we fit models of fixed size using the training

set, and then pick a model size by scoring those models using the independent test set.

5.1.2 Simplified Cross Validation

The cross-validation described in Section 5.1.1 is a fairly unbiased method to select the

optimal model size. However, computationally it is extremely expensive. For each model

73

size under consideration (say sizes1, . . . , k), and for each of the predetermined subsets

(say1, . . . ,m) of the data for a specific model size, simulated annealing has to be used to

find the best model. Hence a total ofm× k simulated annealing runs have to be carried out

to obtain the cross-validating scores. It would be desirable to have a computationally less

expensive method that approximates those scores.

Assume we find the best scoring model of sizek. We can prune each of thek leaves at a

time and compare the scores of the resulting models. The best scoring model among those

might not be the best overall scoring model of sizek − 1, but it usually is very similar.

We pick the first of them predetermined subsets as described in Section 5.1.1. We find

the best scoring model of sizek using them − 1 remaining subsets of cases as training

set, and evaluate the first subset of cases, obtaining the scoreεk,1. We then find the best

model among those we can obtain by pruning one leaf. We evaluate the first subset of

cases, and obtain the scoreεk−1,1. We repeat this until we have scoreε1,1. We then pick

the second subset of cases as test set, and repeat the above described procedure, obtaining

scoresεk,2, . . . , ε1,2. We repeat this for the remaining subsets of cases, and obtain scores

εk,j, . . . , ε1,j for j = 3, . . . , m. We then calculateεj =
∑

i εj,i, j = 1, . . . , k, and use those

as approximations of cross-validation scores. This procedure requires onlym simulated

annealing runs. The computing expense for them × k pruning steps is negligible relative

to the expense for the simulated annealing runs.

5.2 Randomization

5.2.1 Randomization for Greedy Searches

In a greedy search, we consider all possible moves from a given state, and select the move

that improves the score the most. There is no guarantee that we will find the overall best

74

scoring state this way, but as we have seen in Section 2.2, it is also possible that we over-fit

the model. To distinguish what is signal and what is noise, we use randomization tests.

For each step in the greedy search, we calculate a p-value that reflects the evidence against

the assumption (null hypothesis) that the improvement in score from the given model to

the new model is due to noise. Figure 5.2 illustrates how the randomization test works

for a model with a single tree. For one subset of the cases, the Logic Tree predicts zero,

•

•

c(0, 16)

c(
0,

 1
1)

0 5 10 15

0
2

4
6

8
10 X T Y P(Y)

permutation

permutation

1

0

1

0

1

0

Figure 5.2: The setup for the randomization test for models with a single tree.

for the remaining cases it predicts one. If we randomly permutate the observations in the

response within each of those subgroups, the model still scores the same, and the correlation

structure between the predictors does not change. If we now again consider all moves from

the given state, the move that improves the score the most might be different from the move

selected given the original data, and the scores of the models resulting from those moves

might be different, sayε0 for the move using the original data, andεπ(1) for the move using

the data after the permutation. We repeat this procedure a predetermined number of times,

75

and obtain the scoresεπ(1), . . . , επ(n). We compare those scores toε0 and calculate the

proportion of scores amongεπ(1), . . . , επ(n) that are lower thanε0. In case of a tie (this

can happen for example when the score is the misclassification rate), we consider each tie

as a ”half” count when calculating the above described proportion. If the null hypothesis

is correct, we expect about half the scores amongεπ(1), . . . , επ(n) to be lower thanε0. If

the proportion is very low, this is evidence that the improvement might actually be due

to ”signal” in the data. The above described proportion is an exact p-value, reflecting the

evidence against the assumption (null hypothesis) that the improvement in score from the

given model to the new model (with scoreε0) is due to noise.

Figure 5.3 shows the outcome of the randomization test for the data used in the example in

Section 2.2. We plotted the tree number as indicated by the sequence of trees in Figure 2.2

versus the p-values obtained in the randomization test. For the first six trees, we obtain low

p-values (less or around 0.05). When testing tree 6 versus tree 7, we obtain a p-value of

about 0.25, and hence pick tree 6 as the tree in our model. The correct tree is tree 7 however

- it seems that we do not have enough cases in the data, and the randomization test does not

have sufficient power.

tree number

p-
va

lu
e

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

Figure 5.3: The p-values for a one-tree classification model obtained by a randomization
test.

76

•

•

c(0, 16)

c(
0,

 1
1)

0 5 10 15

0
2

4
6

8
10

• • •

X T1 T2 T3 • • •

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Figure 5.4: The setup for the randomization test for models with multiple trees.

If we have a model with multiple trees, the randomization is slightly different, which we

try to illustrate in Figure 5.4. Assume we havek trees. For one subset of the cases, the

first Logic Tree predicts zero, for the remaining cases it predicts one. For the first of those

subsets, the second tree also predicts zero, but there might be cases for which it predicts one.

For the second of those subsets, the second tree also predicts one, but there might be cases

for which it predicts zero. This defines four subclasses. The third tree then determines two

subclasses for each of those four classes, yielding a total of eight classes of cases, and so on.

Hence there are2k groups of cases to consider. If we randomly permutate the observations

in the response within each of those subgroups, the model still scores the same, and the

correlation structure between the predictors does not change, and we can obtain a p-value

in the same way as described above. Of course there should not be too many trees (and

hence subgroups) relative to the number of cases.

77

5.2.2 Randomization for Simulated Annealing

In the previous sections we showed how to find the best scoring model of a certain class

via greedy search or simulated annealing. The search will always find a best model, but the

question whether or not there is any signal in the data at all still needs to be answered. Here,

we introduce a randomization test that targets that problem and show a simple example.

Null Model Test: A Test for Signal in the Data

•

•

c(0, 14)

c(
0,

 1
1)

0 2 4 6 8 10 12 14

0
2

4
6

8
10 X Y Perm(Y)

permutation

1

0

Figure 5.5: The setup for the null model randomization test.

For any model class we consider in our methodology (linear regression, logistic regression,

etc) we first find the best scoring model, given the data. Then, the null hypothesis we want

to test is: ”there is no signal in the data”. Now if that hypothesis was true, then the best

model fit on the data with the response randomly permutated (as indicated in Figure 5.5)

should yield about the same score as the best model fit on the original data. We can repeat

78

this procedure as often as desired, and claim the proportion of scores better than the score

of the best model on the original data as a p-value, indicating evidence against the null

hypothesis.

A Test to Detect the Optimal Model Size

For any model class we consider in our methodology (linear regression, logistic regression,

etc) we first find the best scoring model, given the data, with scoreε∗. We also find the

best scoring models for a range of sizes, say0 throughk. To find out which model size is

optimal, we carry out a sequence of randomization tests. The null hypothesis in each test

is: ”The optimal model has sizej, the lower score obtained by models of larger sizes is due

to noise.” Here,j can be each model size we consider (j ∈ {0, . . . , k}). Assume the null

hypothesis was true, and the optimal model size wasj, with scoreεj. We now “condition”

on this model, considering the classes that the Logic Trees predict. For a model withp

•

•

c(0, 18)

c(
0,

 1
1)

0 5 10 15

0
2

4
6

8
10 X T1 T2 Y Perm(Y)

1

0

1

0

1

0

1

0

1

0

1

0

1

0

permutation

permutation

permutation

permutation

Figure 5.6: The setup for the sequential randomization test.

79

trees, those can be up to2p classes. Figure 5.6 shows the setup for models with 2 trees.

We now randomly permute the response within each of those classes. The model of sizej

considered best still scores exactly the same (εj). If we now grow the overall best model

(of any size), it will have a score (ε∗∗) as least as good, but usually better thanεj. However,

we know that this is due to noise! If the null hypothesis was true, and the model of sizej

was indeed the best, thenε∗ would be a sample from the same distribution asε∗∗. We can

estimate this distribution as closely as desired by repeating this procedure multiple times.

On the other hand, if the best model had a size larger thanj, then the randomization would

yield on average lower scores than the average of scores obtained by conditioning on the

model of optimal size (larger thanj).

We carry out a sequence of randomization tests, starting with the test using the null model,

which is exactly the test for signal in the data as described in the previous subsection. We

then condition on the best model of size one and generate randomization scores. Then we

condition on the best model of size two, etc. Comparing the distributions of the random-

ization scores, we can make a decision which model size to pick. See the applications in

Chapter 6 for some examples.

80

Chapter 6

APPLICATIONS

6.1 The Cardiovascular Health Study

In this section we analyze some data that were gathered as part of the Cardiovascular Health

Study. We briefly introduce the basics of the study and the data we use, and refer the reader

to Fried et al [15] for a more detailed description of the study protocol and the goals of the

study.

The Cardiovascular Health Study (CHS) is a study of coronary heart disease and stroke in

elderly people. Between 1989 and 1990, 5201 subjects over the age of 65 were recruited in

four communities in the United States. To increase the minority representation in the study,

an additional 687 African Americans were recruited between 1992 and 1993. During 1992

and 1994, a subset of these patients agreed to undergo an MRI scan. Neuroradiologists,

blinded to the identity and characteristics of those patients read the images and attempted to

identify the presence and locations of infarcts, defined as an area of brain tissue damaged by

lack of oxygen due to compromised blood flow. For 3647 CHS participants, MRI detected

strokes (infarcts bigger than 3mm that led to deficits in functioning) were recorded as entries

into a 23 region atlas of the brain. Up to five infarcts were identified per subject, and each

of those infarcts was present in up to four of the 23 locations (that is, a single infarct was

detectable in up to four regions). For every patient the infarcts were recorded as binary

variables (absent/present) in 23 regions. For more details on the scanning procedure, see

Bryan et al [7]. In Table 6.1 we list the 23 regions of the CHS atlas and the number of

81

Table 6.1: The 23 regions of the Cardiovascular Health Study brain atlas. The predictor
number will be used later to display Logic Trees and to describe linear models we fit.

Clus
te

r

Pre
dic

to
r

Reg
ion

Cou
nt

s

A 1 Anterior Cerebral Artery (frontal lobe) 16

2 Anterior Cerebral Artery (parietal lobe) 4

3 Middle Cerebral Artery (frontal lobe) 62

4 Middle Cerebral Artery (parietal lobe) 43

5 Middle Cerebral Artery (temporal lobe) 64

6 Posterior Cerebral Artery (parietal lobe) 6

7 Posterior Cerebral Artery (temporal lobe) 12

8 Posterior Cerebral Artery (occipital lobe) 31

B 9 Superior Cerebellar Artery 23

10 Anterior Inferior Cerebellar Artery (AICA) 7

11 Posterior Inferior Cerebellar Artery (PICA) 53

C 12 Cerebellar White Matter 58

D 13 Caudate 110

14 Lentiform Nuclei 601

15 Internal Capsule (anterior limb) 156

16 Internal Capsule (posterior limb) 77

17 Thalamus 236

E 18 Midbrain 15

19 Pons 29

20 Medulla Oblongata 0

F 21 Watershed (ACA to MCA) 10

22 Watershed (MCA to PCA) 12

23 Cerebral White Matter 217

82

Table 6.2: The standard anatomical clusters of the 23 locations in the CHS atlas of the
brain.

A Regions 1-8 Cerebral Cortex

B Regions 9-11 Cerebellar Cortex

C Region 12 Cerebellar White Matter

D Regions 13-17 Basal Ganglia

E Regions 18-20 Brain Stem

F Regions 21-23 Cerebral White Matter

patients with infarcts in those regions. The letters in the first column of Table 6.1 represent

the standard anatomical clusters of the above 23 locations, as labelled in the thesis of Robyn

McClelland [29], and shown in Table 6.2.

One of the goals of the Cardiovascular Health Study is to assess the association between

stroke locations and various response variables. One of those response variables is a score

derived from the mini-mental state examination, a screening test for dementia. Patients

participate in a question and answer session, and score points for each correct answer. The

final score, the sum of all points earned, is a number between 0 (no correct answer) and 100

(everything correct). For more details about this test see Teng and Chui [49].

The objective of our analysis was mainly to demonstrate the use of the Logic Regression

methodology. To seriously analyze those data, it would be crucial to interact with people

more familiar with the study, the anatomy of the brain, etc. Maybe only a subset of the

predictors should be included in the analysis since for example there are obviously spatial

correlations between predictors. McClelland [29] also reported an improved performance

of her algorithm after adjusting for gender, age, etc. These variables were not available to

us when we started analyzing the data, so we did not include those into our model, although

the methodology to do so was introduced in Section 4.2.

83

For technical reasons we used a modified version of the mini-mental score as response.

Since most patients scored in the upper 90s in the mini-mental test, a logarithmic trans-

formation seemed beneficial after investigating potential model violations such as non-

normally distributed (skewed) residuals. Since the mini-mental score is a number between

0 and 100, we defined as response variable

Y := log(101−mini-mental score). (6.1)

Usually such a transformation is avoided because it makes the parameter interpretation

and their association to the original mini-mental score almost impossible, but since in our

methodology we only deal with a very small number of classes of patients (see analysis

below), this is of no importance, as the few fitted values associated with the mini-mental

score can simply be listed, without causing confusion.

The models we investigated were linear models of the form

Y = β0 + β1 × I{L1 is true} + · · ·+ βp × I{Lp is true} + ε, (6.2)

with ε ∼ N(0, σ2) and various numbersp of Logic Terms. We used the residual sums of

squares as scoring function. These models define groups of patients with similar stroke

patterns in the brain atlas within each group, and different average scores between groups.

We first carried out a ”null model” randomization test as described in Section 5.2.2. Figure

6.1 shows the results from the randomization test fitting only one tree, allowing up to 16

leaves in tree. The null model, simply fitting the interceptβ0 with β1 = 0 had a score

of 2618.5. Using simulated annealing, the best scoring model had a score of 2555.7. We

permuted the response as decribed in Section 5.2.2, refit the model, recorded the score, and

repeated this procedure 250 times. In Figure 6.1 we compare the score for the best scoring

model [a], the score for the null model [b], and a histogram of the scores obtained from the

randomization procedure. Since all of those scores are considerably higher than the score

[a], we can safely conclude that there is information in the predictors with disrciminatory

84

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

score
2550 2560 2570 2580 2590 2600 2610 2620

a b

a deviance of lowest scoring model
b deviance of null model

Figure 6.1: The results of the null model randomization test. The scores in the histogram
came from linear models with a single tree, allowing up to 16 leaves.

power for the (transformed) mini-mental score. The results we got using models with more

than one tree were very similar.

To get a better idea of the effect of varying model sizes, we show the training scores of

linear models with one, two and three trees, and varying tree sizes in Figure 6.2. Any

model in the class of models with up tok trees andn leaves is also in the class of models

with up to k + 1 trees andn leaves. Further, any model in the class of models with up

to k trees andn leaves is also in the class of models with up tok trees andn + 1 leaves.

Therefore the results are as expected: comparing two models with the same number of trees

allowed, the model involving more leaves has a lower (training) score. The more trees we

allow in the model, the lower the score for a fixed number of leaves. Allowing a second

tree in the linear models seems to has a larger effect in the training scores (relative to the

models with only one tree), than the effect of allowing a third tree in addition to the two

85

number of leafs

tr
ai

ni
ng

 s
co

re
22

90
23

00
23

10
23

20
23

30

1 2 3 4 5 6 7 8 9 10 11 12

1

1

1

1

1
1

1
1

1
1 1

1

2

2

2

2

2
2

2
2

2
2

2

3

3

3

3
3

3

3
3 3

3

Figure 6.2: Training scores of the best linear models for a fixed number of leaves and trees.
The number of trees allowed in the linear model is the white number super-imposed on the
black squares.

trees.

However, the comparison of effects allowing additional trees in the models does not hold

up for the cross-validated scores, as shown in Figure 6.3. The cross-validated scores for

models with identical number of leaves but different tree sizes look remarkably similar.

The scores of the models with only one tree are connected by a solid line, since obviously

allowing for more trees does not seem very benefitial, and a model with only one tree and

four leaves is the best choice in terms of simplicity among the models with low cross-

validated scores. We also added cross-validated scores obtained from ”standard” linear

models to the plot (open circles): a linear model with main effects only is fit for the training

set, and using thestepfunction in the Splus software package1 we trim the model of one

1Splus uses the AIC criterion to select which predictor to drop, which might not be the one that results in
the lowest residual sum of squares in the training set (say modelM). In this case, the cross-validated score

86

number of leafs

cr
os

s
va

lid
at

ed
 s

co
re

25
7

25
8

25
9

26
0

26
1

1 2 3 4 5 6 7 8 9 10 11 12

1

1

1

1

1

1
1

1

1

1

1

1
2

2

2

2

2 2

2

2

2

2

2

3

3

3

3
3

3
3

3

3 3

Figure 6.3: Test scores of the linear models obtained from the trainig set for a fixed number
of leaves and trees. Again, the number of trees allowed in the linear model is the white
number super-imposed on the black squares. The open circles indicate cross-validated
scores obtained from ”standard” linear models.

predictor at a time, and calculate the score for the test data under the given model. Although

the scores from the models using Logic Trees and the scores from linear models with main

effects only are not quite comparable, we aligned the cross-validated scores in Figure 6.3

such that the number of predictors involved (but not the number of parameters fitted!) in

the models are the same. It seems surprising at first glance that those scores and the scores

from the Logic Models are very much alike. We will see why this happens when we further

investigate those models.

We used ten-fold cross-validation in this example, so we multiplied the training scores by

a factor of10
9

and the cross-validated scores by a factor of 10, which enabled us to compare

those scores with the scores of models fit on the entire data set, plotted in Figure 6.4. While

can actually be higher or lower than the cross-validated score underM .

87

number of leafs

sc
or

e
25

60
25

70
25

80
25

90
26

00
26

10

1 2 3 4 5 6 7 8 9 10 11 12

Complete data
Training CV data
Test CV data

Figure 6.4: Comparison of (adjusted) scores from cross-validation and model fitting on the
complete data.

the adjusted training scores from the cross-validation and the scores from the models fit on

the entire data set are very similar, the vast gap between those scores and the test scores

from the cross-validation, in particular for the models with one or two leaves only, is quite

remarkable and strongly discourages the selection of the smallest models.

The best results using cross-validation were obtained for the models with with four leaves,

and we prefer the simplest model with only one tree. This selection is encouraged by the

results of the randomization test for model selection, as described in Section 5.2.2. Figure

6.5 shows histograms of the randomization scores after conditioning on 0 (null model),

1, 23, 4 and 5 trees, indicated by the number in the upper left corner of each panel. The

right bar in each panel indicates the score of the null model, and the left bar indicates the

lowest overall score found for the original data. This score looks like another sample from

the distribution of scores of the randomized data after conditioning on four trees.

88

0

1

2

3

4

5

2540 2544 2548 2552 2556 2560 2564 2568 2572 2576 2580 2584 2588 2592 2596 2600 2604 2608 2612 2616 2620

Figure 6.5: The results of the randomization test for model selection, supporting the choice
of four leaves in the selected model.

Searching for the best linear model with a single tree of size four using the complete data

yielded

Y = 2.32− 0.36× I{L is true} (6.3)

with the Logic Term

L = Xc
12 ∧ [(Xc

19 ∧Xc
4) ∧Xc

17] = Xc
12 ∧Xc

19 ∧Xc
4 ∧Xc

17, (6.4)

shown as Logic Tree in Figure 6.6.

89

19 4

and 17

12 and

and

Figure 6.6: The Logic Tree in the selected model in equation (6.3)

Using the complement rule, the above model can also be written as

Y = 1.96 + 0.36× I{Lc is true} (6.5)

with

Lc = X12 ∨X19 ∨X4 ∨X17. (6.6)

It now becomes clear why the linear model using main effects only looked so similar to the

Logic Models in the comparison of the cross-validated scores. There are 58 patients with

an infarct in region 12, 29 patients with an infarct in region 19, 43 patients with an infarct

in region 4, and 236 patients with an infarct in region 17. However, it can be seen in Figure

6.7 that for example among those 236 patients with an infarct in region 17, only 2 have also

an infarct in region 4.

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

3

0

2

0

1

1

2

0

0

3

3

0

0

0

0

1

0

0

4

4

5

1

16

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

2

1

4

1

5

1

1

0

3

0

7

3

3

22

1

1

5

0

0

0

1

0

16

13

62

1

5

6

3

0

0

1

0

2

0

1

8

2

3

2

1

1

5

3

1

16

43

13

2

4

5

1

0

0

1

0

12

4

4

20

4

4

4

1

0

4

1

1

64

16

16

1

4

1

0

0

0

1

0

1

0

2

2

2

1

3

2

0

5

0

6

1

1

0

0

0

1

1

0

0

0

0

3

1

0

4

1

0

0

0

1

7

12

0

1

3

1

0

0

2

3

1

0

3

0

6

1

2

6

3

3

5

2

2

31

7

5

4

5

0

0

1

2

0

0

0

0

0

2

1

2

7

2

6

4

1

23

2

1

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

3

1

3

5

7

1

2

0

2

1

1

0

0

0

4

1

0

0

1

1

7

3

3

18

2

13

53

5

4

5

0

3

4

2

5

0

0

5

0

0

0

1

0

7

5

5

21

2

58

13

3

6

3

0

1

4

3

1

0

0

24

0

1

0

3

1

16

6

33

48

109

2

2

1

2

3

1

2

4

2

1

0

3

94

3

3

0

11

3

89

57

102

599

48

21

18

3

7

6

4

2

20

8

22

0

3

26

1

0

0

2

0

31

13

156

102

33

5

3

0

2

2

0

2

4

1

3

0

0

8

0

0

0

2

2

22

77

13

57

6

5

3

0

1

1

1

0

4

0

3

0

0

17

2

3

0

6

1

236

22

31

89

16

7

7

0

2

6

3

1

12

2

7

1

2

1

0

0

0

1

15

1

2

0

3

1

0

1

1

0

0

0

0

0

0

0

0

1

4

1

0

0

29

1

6

2

2

11

3

1

1

0

0

3

0

1

1

1

3

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3

4

10

0

0

0

3

0

0

3

1

0

0

0

0

1

0

0

0

0

1

0

2

3

12

4

0

1

0

2

0

1

3

0

0

1

0

0

3

1

0

1

3

1

0

0

217

3

3

0

4

1

17

8

26

94

24

5

4

1

2

2

1

1

5

6

5

1

3

Figure 6.7: The counts of patients having strokes in at least two locations. Along the
diagonal are the counts of patients having a stroke in one particular region of the brain,
with the marginal distribution added to the plot.

91

Considering the presence of infarcts, these four predictors are pairwise almost exclusive.

Since the Logic Term in (6.6) has only∨ operators, the above model is very similar to a

linear model with these four predictors as main effects, summarized below.

β̂ σ̂ t-value p-value

Intercept 1.961 0.015 133.98< 0.001

Region 4 0.524 0.129 4.06< 0.001

Region 12 0.460 0.112 4.09< 0.001

Region 17 0.236 0.057 4.17< 0.001

Region 19 0.611 0.157 3.89< 0.001

If we fit those four predictors with a single paramter, we get which is almost exactly the

same model as (6.5).

β̂ σ̂ t-value p-value

Intercept 1.960 0.015 133.84< 0.001

Region 4 0.344 0.044 7.84< 0.001

Region 12 0.344

Region 17 0.344

Region 19 0.344

However, even though the linear models look very similar to the model in (6.5), the Logic

Model clearly has a much simpler interpretation: using the Logic regression methodology,

we found two classes of patients that differ in health history and the performance in the

mini-mental test. Using the fitted values from model (6.5), we can state that the estimated

median mini-mental score for patients with infarcts in either region4, 12, 17 or 19 was 90.8,

compared to 93.9 for patients that did not have an infarct in any of those regions.

92

6.2 Prognosis after Acute Myocardial Infarction

We briefly introduce the data we use in this section and describe the basics of the study

they arouse from. We refer the reader to Henning et al [19] and Gilpin et al [17] for a

more detailed description of the study and data. A subset of the data were also analyzed by

Breiman et al [6].

The data investigated in this section of the thesis were gathered in the 1970s at the Univer-

sity of California Medical Center, San Diego and the Vancouver General Hospital, British

Columbia. The subjects in the study are patients who were admitted to the hospital within

Table 6.3: Thirteen variables with predictive power for early mortality after acute myocar-
dial infarction.

Ty
pe

Pre
dic

to
r

Nam
e

1 Gender

2 History of previous myocardial infarctions

3 History of previous congestive heart failure

4 History of angina

5 Persistent pain

6 Atrial fillrilation

7 Sinus brachiacardia

B
in

ar
y

8 Sinus tachycardia

9 Age

10 Maximum heart rate

11 Minimum systolic blood pressure (24h)

12 Maximum creatine kinaseC
on

tin
uo

us

13 Maximum blood urea nitrogen

93

24 hours of the onset of the symptoms of acute myocardial infarction, and who survived

at least for 24 hours after admission. One goal of the study was to identify high risk pa-

tients (patients who will not survive the first 30 days) on the basis of measurements, taken

within 24 hours after admission, that were considered indicators of each patient’s condition.

Henning et al [19] find that nineteen of those variables measured had predictive power for

early mortality. Available to us were measurements of thirteen of those variables on 1780

patients, plus a variable indicating which patients did not survive the first 30 days. Table

6.3 separately lists the names of the binary and continuous predictors.

In Section 4.2 we described possibilities how to include continuous predictors in Logic

Regression. However, the objective of the analysis was to keep it simple and only find a

few subclasses of patients with vastly different prognosis of early mortality after acute my-

ocardial infarction, we decided to dichotomize the continuous predictors instead of fitting

them as separate predictors in the model. For simplicity we used regression stumps from

decision trees to dichotomize these continuous variables, instead of estimating a split point

during simulated annealing. The continuous predictors after being dichotomized now have

two classes, say high and low, with the low class being defined in the chart below.

Age less than 64.

Maximum heart rate lower than 103.

Minimum systolic blood pressure lower than 79.

Maximum creatine kinase lower than 1638.

Maximum blood urea nitrogen lower than 28.

The models we investigated were logistic regression models of the form

log

(
p

1− p

)
= β0 + β1 × I{L1 is true} + · · ·+ βk × I{Lk is true} (6.7)

with at mostk = 3 Logic Terms, andp denoting the probability of not surviving the first 30

days. Using the deviance as scoring function, we can find groups of patients with similar

94

measurements of condition within groups and different prognosis of early mortality after

acute myocardial infarction between groups, as desired. Of the 1780 patients, 315 died

within 30 days after admission to the hospital. For those cases, a weight of 3 (compared to

weight 1 for the survivors) has been suggested in the literature, which we use in the model

fitting process.

We first carried out a ”null model” randomization test as described in Section 5.2.2. Figure

6.8 shows the results from the randomization test fitting three trees, allowing up to 16 leaves

in each tree. The null model, simply fitting the interceptβ0 with β1 = β2 = β3 = 0 had a

score of 3227.9. Using simulated annealing, the best scoring model we found had a score

of 2641.7. We permuted the response as decribed in Section 5.2.2, refit the model, recorded

the score, and repeated this procedure 250 times. In Figure 6.8 we compare the score for

the best scoring model [a], the score for the null model [b], and a histogram of the scores

0.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5

score
2600 2700 2800 2900 3000 3100 3200

a b

a deviance of lowest scoring model
b deviance of null model

Figure 6.8: The results of the null model randomization test. The scores in the histogram
came from a logistic regression model with three trees, allowing up to 16 leaves in each
tree.

95

obtained from the randomization procedure. Since all of those scores are considerably

higher than the score [a], we can safely conclude that there is information in the predictors

with disrciminatory power for the prognosis of surviving 30 days after admission. The

results we got using models with fewer trees were very similar.

In Figure 6.9 we show the training scores of logistic regression models with one, two and

three trees, and varying tree sizes. Again, the results are as expected: comparing two

models with the same number of trees allowed, the model involving more leaves has a

lower (training) score. The more trees we allow in the model, the lower the score for a

fixed number of leaves. Adding a tree seems to have a rather large affect, both in going

from one to two and from two to three trees.

number of leafs

tr
ai

ni
ng

 s
co

re
24

00
25

00
26

00
27

00

1 2 3 4 5 6 7 8 9 10 11 12

1

1

1

1

1

1
1

1

2

2

2

2

2
2

2
2

2
2

2

3

3

3

3

3
3

3
3

3
3

Figure 6.9: Training scores of the best logistic regression models for a fixed number of
leaves and trees. The number of trees allowed in the linear model is the white number
super-imposed on the black squares.

In the plot of the cross-validated scores for the models with up to three trees (Figure 6.10),

96

number of leafs

cr
os

s
va

lid
at

ed
 s

co
re

28
0

29
0

30
0

31
0

1 2 3 4 5 6 7 8 9 10 11 12

1 1

1 1

1

1

1

1

2

2

2

2
2

2
2

2 2

2

2

3

3 3

3
3

3

3 3

3
3

Figure 6.10: Test scores of the logistic models obtained from the training set for a fixed
number of leaves and trees. Again, the number of trees allowed in the logistic model is
the white number super-imposed on the black squares. The open circles indicate cross-
validated scores obtained from ”standard” logistic regression models.

we aligned the cross-validated scores obtained from ”standard” logistic regression2 (open

circles) such that the number of predictors involved (but not the number of parameters

fitted) in the models are the same. The cross-validated scores improve with the number

of trees allowed in the model. For models with three trees six leaves seem to be optimal,

for models with only two trees the decision is not very clear. More informative are the

plots in Figure 6.11, showing the results of the randomization test for model selection (see

Section 5.2.2). For both cases, logistic models with two and three Logic Trees, we get a

substantial improvement in the randomization score when we increase the model size we

condition on, until about models with six leaves. After that, adding a seventh, eighth, etc

leaf to condition on still improves the randomization scores somewhat, but not as much

2Again, we used thestepfunction in the Splus. See the previous section for a more detailled description.

97

0

1

2

3

4

5

6

7

8

9

10

2680 2760 2840 2920 3000 3080 3160 3240

(a) Results for logistic models with two Logic

Trees.

0

1

2

3

4

5

6

7

8

9

10

2600 2680 2760 2840 2920 3000 3080 3160 3240

(b) Results for logistic models with three Logic

Trees.

Figure 6.11: The results of the randomization test for selection, of logistic models with two
and three tress. The right bar in each panel indicates the score of the null model, and the left
bar indicates the lowest overall score found for the original data. The number in the upper
left corner of each panel indicates the model size we condition on in the randomization test.

98

as we saw before. The cross-validation scores in Figure 6.10 are the averages obtained

from the ten-fold cross-validation. The variation of the cross-validation scores for any

model is actually much larger than the differences of means we observe between models

with the same number of trees and similar sizes (number of trees), which explains why

the cross-validation scores do not strictly decrease with the increase of model size, as the

randomization scores in Figure 6.11 illustrate.

The objective of our analysis was to find a few subclasses of patients with different prog-

nosis of early mortality after acute myocardial infarction. We wanted these subclasses to

be defined as simple as possible, and considered models with up to ten leaves that generate

not more than eight classes. Among those we found that the model fit can be increased by

adding on predictors. This is hardly a surprise, considering that all variables had predictive

power for the outcome (Henning et al [19]). However, with our desire of simplicity, we de-

cided that the increase in model size does not warrant the smaller and smaller enhancement

in model fit after about six leaves, in both models with two or three trees.

As an example and to give an interpretation of our results we searched for the best logistic

regression model with two trees and six leaves using the complete data, which yielded the

following:

log

(
p

1− p

)
= −0.05− 1.32× I{L1 is true} − 1.20× I{L2 is true} (6.8)

with the Logic Terms

L1 = (X13 ∧Xc
3) ∧ (X9 ∨Xc

5) = X13 ∧Xc
3 ∧ [X9 ∨Xc

5] (6.9)

and

L2 = X10 ∧Xc
11 (6.10)

shown as Logic Trees in Figure 6.12.

99

13 3 9 5

and or

and

10 11

and

Figure 6.12: The Logic Trees in the model in equation (6.8). The leaves represent the
predictors listed in Table 6.3.

Since we used weights in the logistic regression model, we actually first found the Logic

Trees, and then refit the model without weights. This leaves the parameters for the Logic

Trees unchanged, but yields an intercept that we can use in interpreting the model. The

fitted probabilities and counts for the four classes defined by the above model are shown in

Table 6.4.

The simple model interpretation is the following:

• If one of the two following conditions are true, the patient has roughly an 80% chance

of survival:

– The patient has a maximum blood urea nitrogen measure of at least 28, no

history of previous congestive heart failure and is either at least 64 years of age

or does not report persistant pain (or both).

100

– The patient’s maximum heart rate is at least 103 and his minimum systolic

bloodpressure within the first 24 hours after admission is lower than 79.

• If both of the above conditions are true, the patient’s chance of survival is higher than

90%.

• If none of the above conditions is true however, the patient’s chance of survival is

only 50%.

The result that older patients have a better chance of survival seems odd, but in the data

we observe indeed an 88% survival rate among patients who are at least 64 years of age,

compared to 76% among the younger patients.

Table 6.4: The fitted probabilities of mortality and counts for the four classes defined by
the model in (6.8). F stands for false, T for true. For example, for 884 patients bothL1 and
L2 were true. These 884 patients have an estimated 7% mortality chance.

probabilities counts

L1 L1

F T F T

F 50 21 224 209

L
2

T 22 7 463 884

