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Logic regression is an adaptive regression methodology that attempts to construct
predictors as Boolean combinations of binary covariates. In many regression problems a
model is developed that relates the main effects (the predictors or transformations thereof)
to the response, while interactions are usually kept simple (two- to three-way interactions
at most). Often, especially when all predictors are binary, the interaction between many
predictors may be what causes the differences in response. This issue arises, for example,
in the analysis of SNP microarray data or in some data mining problems. In the proposed
methodology, given a set of binary predictors we create new predictors such as “X1, X2 ,
X3, and X4 are true,” or “X5 or X6 but not X7 are true.” In more speci� c terms: we try to
� t regression models of the form g(E[Y ]) = b0 + b1L1 + ¢ ¢ ¢ + bnLn , where Lj is any
Boolean expression of the predictors. The Lj and bj are estimated simultaneously using
a simulated annealing algorithm. This article discusses how to � t logic regression models,
how to carry out model selection for these models, and gives some examples.

Key Words: Adaptive model selection; Boolean logic; Binary variables; Interactions;
Simulated annealing; SNP data.

1. INTRODUCTION

In most regression problems a model is developed that only relates the main effects
(the predictors or transformations thereof) to the response. Although interactions between
predictors are sometimesconsideredas well, those interactionsare usuallykept simple (two-
to three-way interactions at most). But often, especially when all predictors are binary, the
interaction of many predictors is what causes the differences in response. For example,
Lucek and Ott (1997) were concerned about analyzing the relationship between disease
loci and complex traits. In the introduction of their article, Lucek and Ott recognized the
importance of interactions between loci and potential shortcomings of methods that do not
take those interactions appropriately into account:
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Current methods for analyzing complex traits include analyzing and localizing disease loci one
at a time. However, complex traits can be caused by the interaction of many loci, each with
varying effect.

The authorsstated that, although� nding those interactionsis themostdesirable solution
to the problem, it seems to be infeasible.

: : : patterns of interactions between several loci, for example, disease phenotype caused by
locus A and locus B, or A but not B, or A and (B or C), clearly make identi� cation of the
involved loci more dif� cult. While the simultaneous analysis of every single two-way pair of
markers can be feasible, it becomes overwhelmingly computationally burdensome to analyze
all 3-way, 4-way to N-way “and” patterns, “or” patterns, and combinations of loci.

The above is an example of the typesof problemswe are concernedabout.Given a set of
binary (true and false, 0 and 1, on and off, yes and no, : : :) predictorsX , we try to create new,
better predictors for the response by considering combinations of those binary predictors.
For example, if the response is binary as well (which is not a requirement for the method
discussed in this article), we attempt to � nd decision rules such as “if X1; X2; X3; and X4

are true,” or “X5 or X6 but not X7 are true,” then the response is more likely to be in class
0. In other words, we try to � nd Boolean statements involving the binary predictors that
enhance the prediction for the response. In the near future, one such example could arise
from SNP microarray data (see Daly et al. 2001 for one possible application), where one
is interested in � nding an association between variations in DNA sequences and a disease
outcome such as cancer. This article introduces the methodology we developed to � nd
solutions to those kind of problems. Given the tight association with Boolean logic, we
decided to call this methodology logic regression.

There is a wealth of approaches to building binary rules, decision trees, and decision
rules in the computer science, machine learning and, to a lesser extent, statistics literature.
Throughout this article we provide a literature review that also serves to highlight the
differences between our methodologyand other methods, which we hope will become clear
in the following sections.To our knowledge, logic regression is the only methodologythat is
searching for Boolean combinationsof predictors in the entire space of such combinations,
while being completely embedded in a regression framework, where the quality of the
models is determinedby the respectiveobjectivefunctionsof the regressionclass. In contrast
to themethodsdiscussed in the literaturereview,othermodels—such as theCoxproportional
hazards model—can also be used for logic regression, as long as a scoring function can be
de� ned. Making it computationally feasible to search through the entire space of models
without compromising the desire for optimality,we think that logic regression models such
as Y = ­ 0 + ­ 1 £ [X1 and (X2 or X3)] + ­ 2 £ [X1 or (X4 or Xc

5 )] might be able to � ll
a void in the regression and classi� cation methodology. Section 2 introduces the basics of
logic regression. Sections 3 (search for best models) and 4 (model selection) explain how
we � nd the best models. Section 5 illustrates these features in a case study using simulated
data and data from the Cardiovascular Health Study, and describes the results obtained by
analyzing some SNP array data used in the 12th Genetic Analysis Workshop. The article
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concludes with a discussion (Section 6). Explanations of some technical details of logic
regression have been deferred to the Appendix.

2. LOGIC REGRESSION

Before describing in the second part of this section which models we are interested in,
we introduce some terminology that we will use throughout this article.

2.1 LOGIC EXPRESSIONS

We want to � nd combinations of binary variables that have high predictive power for
the response variable. These combinations are Boolean logic expressions such as L =

(X1 ^ X2) _ Xc
3 ; since the predictors are binary, any of those combinations of predictors

will be binary as well. We assume familiarity with the basic concepts of Boolean logic.
We closely follow Peter Wentworth’s online tutorial “Boolean Logic and Circuits” (http:
//diablo.cs.ru.ac.za/func/bool/), which containsa thorough introductionto Booleanalgebra.

° Values: The only two values that are used are 0 and 1 (true and false, on and off, yes
and no, : : :).

° Variables: Symbols such as X1; X2; X3 are variables; they represent any of the two
possible values.

° Operators: Operators combine the values and variables. There are three different
operators: ^ (AND), _ (OR), c (NOT). Xc is called the conjugate of X .

° Expressions: The combination of values and variables with operators results in
expressions. For example, X1 ^ Xc

2 is a logic (Boolean) expression built from two
variables and two operators.

° Equations: An equation assigns a name to an expression. For example, using L =

X1 ^ Xc
2 we can refer to the expression X1 ^ Xc

2 by simply stating L.

Using brackets, any Boolean expression can be generated by iteratively combining two
variables, a variable and a Boolean expression, or two Boolean expressions, as shown in
Equation (2.1):

(X1 ^ Xc
2 ) ^ [(X3 ^ X4) _ (X5 ^ (Xc

3 _ X6))]: (2.1)

Equation (2.1) can be read as an “and” statement, generated from the Boolean expres-
sions X1 ^ Xc

2 and (X3 ^ X4) _ (X5 ^ (Xc
3 _ X6)). The latter can be understood as an

“or” statement, generated from the Boolean expressions X3 ^ X4 and X5 ^ (Xc
3 _ X6),

and so on. Using the above interpretation of Boolean expressions enables us to represent
any Boolean expression in a binary tree format, as shown in Figure 1. The evaluation of
such a tree, as a logic statement for a particular case, occurs in a “bottom-up” fashion via
recursive substitution. The prediction of the tree is whatever value appears in the root (see
the de� nition below) after this procedure.
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Figure 1. The logic tree representing the Boolean expression (X1 ^ Xc
2 ) ^ [(X3 ^ X4) _ (X5 ^ (Xc

3 _ X6))].
For simplicity, only the index of the variable is shown. White letters on black background denote the conjugate of
the variable.

We use the following terminology and rules for logic trees [similar to the terminology
used by Breiman, Friedman, Olshen, and Stone (1984) for decision trees]:

° The location for each element (variable, conjugate variable, operators ^ and _) in
the tree is a knot.

° Each knot has either zero or two subknots.
° The two subknots of a knot are called its children, the knot itself is called the parent

of the subknots. The subknots are each other’s siblings.
° The knot that does not have a parent is called the root.
° The knots that do not have children are called leaves.
° Leaves can only be occupied by letters or conjugate letters (predictors), all other

knots are operators (_’s, ^’s).

Note that since the representation of a Boolean expression is not unique, neither is the
representation as a logic tree. For example, the Boolean expression in Equation (2.1) can
also be written as

[(X1 ^ Xc
2 ) ^ (X3 ^ X4)] _ [(X1 ^ Xc

2 ) ^ (X5 ^ (Xc
3 _ X6))]:

Using the method described above to construct a logic tree from Boolean expressions, the
result is a logic tree that looks more complex, but is equivalent to the tree in Figure 1 in the
sense that both trees yield the same results for any set of predictors. See Ruczinski (2000)
for a discussion of simpli� cation of Boolean expressions in the context of logic regression.

In the above we described standard Boolean expressions, and introduced logic trees
as a way to represent those Boolean expressions conveniently, because they simplify the
implementationof the algorithm discussed in Section 3. Appendix A discusses the relation
of those trees and other well-known constructs—for example, to Boolean expressions in
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disjunctivenormal form—that play a key role in many publicationsin the computer science
and engineering literature (see, e.g., Fleisher, Tavel, and Yeager 1983), and to decision trees
as introduced by Breiman et al. (1984) (see also Section 2.3).

2.2 LOGIC REGRESSION MODELS

Let X1; : : : ; Xk be binary predictors, and let Y be a response variable. In this article
we try to � t regression models of the form

g(E[Y ]) = ­ 0 +

t

j = 1

­ jLj ; (2.2)

where Lj is a Boolean expression of the predictors Xi, such as Lj = (X2 _ Xc
4 ) ^ X7: We

refer to those models as logic models. The above framework includes, for example, linear
regression (g(E[Y ]) = E[Y ]) and logistic regression (g(E[Y ]) = log(E[Y ]=(1 ¡ E [Y ]))).
For every model type we de� ne a score function that re� ects the “quality” of the model
under consideration. For example, for linear regression the score could be the residual
sum of squares and for logistic regression the score could be the binomial deviance. We
try to � nd the Boolean expressions in (2.2) that minimize the scoring function associated
with this model type, estimating the parameters ­ j simultaneously with the search for the
Boolean expressions Lj . In principle, other models such as classi� cation models or the Cox
proportional hazards model can be implemented as well, as long as a scoring function can
be de� ned. We will come back to this in Section 6.

2.3 OTHER APPROACHES TO MODELING BINARY DATA

There are a large number of approaches to regression and classi� cation problems in
the machine learning, computer science, and statistics literature that are (sometimes) ap-
propriate when many of the predictor variables are binary. This section discusses a number
of those approaches. Boolean functions have played a key role in the machine learning and
engineering literature in the past years, with an emphasis on Boolean terms in disjunctive
normal form (e.g., Fleisher, Tavel, and Yeager 1983;Michalski,Mozetic, Hong, and Lavrac
1986; Apte and Weiss 1997; Hong 1997; Deshpande and Triantaphyllou 1998). Especially
in the machine learning literature, the methods and algorithms using Boolean functions are
generally based on either decision trees or decision rules. Among the former are some of
the well-known algorithms by Quinlan, such as ID3 (Quinlan 1986), M5 (Quinlan 1992),
and C4.5 (Quinlan 1993). CART (Breiman et al. 1984) and SLIQ (Mehta, Agrawal, and
Rissanen 1996) also belong to that category. The rule-based methods include the AQ family
(Michalski et al. 1986), the CN2 algorithm (Clark and Niblett 1989), the SWAP1 algo-
rithms (Weiss and Indurkhya 1993a,b, 1995), RIPPER and SLIPPER (Cohen 1995; Cohen
and Singer 1999), the system R2 (Torgo 1995;Torgo and Gama 1996), GRASP (Deshpande
and Triantaphyllou 1998), and CWS (Domingos 1996). Other approaches to � nding opti-
mal association rules have been recently proposed for the knowledge discovery and data
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mining community by Bayardo and Agrawal (1999) and Webb (2000, 2001). Some authors
proposed to combine some of the simpler, existing rule-based models into more complex
classi� ers (Liu, Hsu, Ma 1998; Meretakis and Wuthrich 1999). Also mentioned should be
the very nice review article by Apte and Weiss (1997), which describes the use of decision
trees and rule induction for some data mining examples.

Within each of those two categories (trees versus rules), the methods differ by the aim
classi� cationversus regression (CART and MARS are exceptionswhich work in bothclassi-
� cation and regression settings). The vast majority of algorithms published in the literature
are concerned only with classi� cation. Among the previously mentioned are ID3, C4.5,
CN2, SLIQ, RIPPER/SLIPPER, and SWAP1. A myriad of other algorithms or derivations
of the former methods exist for a variety of applications; see, for example, Apte, Damerau,
and Weiss (1994). Weiss and Indurkhya (1993b) introduced an extension to their SWAP1
algorithm that learns regression rules in the form of ordered disjunctivenormal form (DNF)
decision rules. SWAP1R deals with regression by transforming it into a classi� cation prob-
lem. Torgo and Gama (1996) extended this idea by proposing a processor that works on
almost every classi� cation method to be used in a regression framework. Methods that do
not transform regression into classi� cation are R2, which searches for logical conditions
in IF THEN format to build piece-wise regression models, and M5, which constructs tree-
based piece-wise linear models. These models, trees with linear regression components in
the terminal nodes, are known in the statistical literature as treed models (Chipman, George,
and McCulloch 2002). The commercial package CUBIST developed by Quinlan learns IF
THEN rules, with linear models in the conclusion. An example of such a CUBIST rule is
“IF (x1 > 5) & (x2 < 3) THEN y = 1 + 2x1 ¡ 8x3 + x5.” There is a similarity between
this algorithm and the tree-based algorithm M5, which has linear functional models in the
terminal nodes.

Another noteworthy difference in objectivesacross the methods is the desired format of
the solutions, and in particular their interpretability.Although some authors strongly argue
for compact, easily interpretable rules (e.g., Clark and Niblett 1989; Quinlan 1993; Weiss
and Indurkhya 1995; Cohen 1995), others emphasize that they care about accuracy and
predictive power the most. This is in particular the case when Boolean neural networks are
the method of choice to � nd logic rules (Gray and Michel 1992; Thimm and Fiesler 1996;
Lucek and Ott 1997; Anthony 2001). A nice review article by Wnek and Michalski (1994)
compares a decision tree learning method (C4.5), a rule-learning method (AQ15), a neural
net trained by a backpropagation algorithm (BpNet) and a classi� er system using a genetic
algorithm (CFS) with respect to their predictive accuracy and simplicity of solutions.

Multivariateadaptive regression splines (MARS; Friedman 1991) is not a methodology
intended for binary predictors, but rather a regression methodology to automatically detect
interactions between smooth, nonlinear spline-transformed continuouspredictors. Because
of its high amount of adaptivity, we will see in Section 5.1 that even for classi� cation
problems with binary predictors, a problem that MARS was not designed for, it can still
produce quite reasonable results.
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Figure 2. Permissible moves in the tree-growing process. The starting tree is in the panel in the lower left, the
moves are illustrated in the panels (a)–(f). As in the previous � gure, only the index of the variable is shown, and
white letters on black background denote the conjugate of a variable.

3. SEARCH FOR BEST MODELS

The number of logic trees we can construct for a given set of predictors is huge, and
there is no straightforward way to enlist all logic trees that yield different predictions. It
is thus impossible to carry out an exhaustive evaluation of all different logic trees. Instead
we use simulated annealing, a stochastic search algorithm (discussed in Section 3.3). We
also implemented a greedy search algorithm which, together with an example, is shown in
Section 3.2. But � rst we introduce the move set used in both search algorithms.

3.1 MOVING IN THE SEARCH SPACE

We de� ne the neighbors of a logic tree to be those trees that can be reached from this
logic tree by a single “move.” We stress that each move has a counter move (i.e., a move to
potentiallyget back from the new tree to the old tree), which is important for the underlying
Markov chain theory in simulated annealing,discussed later. We allow the followingmoves:

° Alternating a leaf: We pick a leaf and replace it with another leaf at this position.
For example, in Figure 2(a) the leaf X2 from the initial tree has been replaced with
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the leaf Xc
4 . To avoid tautologies, if the sibling of a leaf is a leaf as well, the leaf

cannot be replaced with its sibling or the complement of the sibling. It is clear that
the counter move to alternating a leaf is by changing the replaced leaf back to what
it was before the move (i.e., alternating the leaf again).

° Changingoperators: Any ^ can be replacedby a _, and viceversa (e.g., the operator
at the root in the initial tree in Figure 2 has been changed in Figure 2(b)). These two
moves complement each other as move and counter move.

° Growing and pruning: At any knot that is not a leaf, we allow a new branch to grow.
This is done by declaring the subtree starting at this knot to be the right side branch
of the new subtree at this position, and the left side branch to be a leaf representing
any predictor. These two side trees are connected by a ^ or _ at the location of the
knot. For example, in the initial tree in Figure 2 we grew a branch in the knot that the
“or” occupied (panel (c)). The counter move to growing is called pruning. A leaf is
trimmed from the existing tree, and the subtree starting at the sibling of the trimmed
leaf is “shifted” up to start at the parent of the trimmed leaf. This is illustrated in
Figure 2(d), where the initial tree has been pruned at the “and.”

° Splitting and deleting: Any leaf can be split by creating a sibling, and determining
a parent for those two leaves. For example, in Figure 2(e) the leaf X3 from the initial
tree in Figure 2 has been split, with leaf Xc

6 as its new sibling. The counter move
is to delete a leaf in a pair of siblings that are both leaves, illustrated in Figure 2(f),
where X3 has been deleted from the initial tree.

Given this move set, a logic tree can be reached from any other logic tree in a � nite
number of moves, referred to irreducibility in Markov chain theory. This is true even if one,
for example, omits some moves such as pruning and growing. In this sense, these moves
are not absolutely necessary in the move set. But inclusion of those additional moves in
the move set enhances the performance of the search algorithm. Section 4 discusses how to
choose the optimal model from all candidates. For now we simply consider the maximum
number of trees � xed. But note that if a model does not have the maximum of trees allowed,
a permissible move is to add another tree with a single leaf. Vice versa, if a model has a
tree with a single leaf, a permissible move is to delete this tree from the model.

3.2 GREEDY SEARCH

Similar to the search algorithm in CART (Breiman et al. 1984), a greedy algorithm can
be used to search for “good” logic models. In the context of logic regression, the � rst step is
to � nd the variable that, used as a single predictor, minimizes the scoring function (without
loss of generalization, lower scores are better). After this predictor is found, its neighbors
(states that can be reached by a single move from the given state) are investigated, and the
new state is chosen as the state that

1. has a better score than the original state; and
2. has the best score among the considered neighbors.
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If such a state does not exist, the greedy algorithmstops, otherwise the neighborsof the new
state are examined and the next state is chosen according to the above described criterion.
There is no guarantee that this algorithm � nds the best scoring state possible. This does
happen if the search gets “stuck,” for example, if a better tree can be reached in two moves,
but not in one move. Another potential problem is that in the presence of noise in the data
it can happen that, even though the tree representing the correct underlying model has been
reached in the search, there exist one or more additional moves that improve the score, and
hence the � nal model over-� ts the data. In contrast to the greedy search for CART, a greedy
move for logic trees might actually result in a tree of lower or equal complexity (e.g., by
deleting a leaf or changing an operator, respectively).

As an example, Figure 3 shows parts of the outcome of a greedy search for a logic tree
in a classi� cation problem on a simulated dataset. The data were generated by simulating
20 binary predictors, with a total of 1,000 cases each, with each value of each predictor
being an independent sample from a Bernoulli random variable with probability 1=2. The
underlying Boolean equation was chosen to be

L = X1 ^ (Xc
2 _ X3) ^ [X4 _ (Xc

5 ^ (X6 _ X7))]: (3.1)

For a certain case i, where the Boolean equation L was true, the response Yi was sampled
from a Bernoulli random variable with probability 2=3, otherwise it was sampled from a
Bernoulli random variable with probability 1=3. The score in the greedy search was chosen
to be the number of misclassi� ed cases (i.e., how often a proposed tree predicted the wrong
response).

The best single predictor turned out to be predictor X1, having a misclassi� cation
rate of 43.4% (434 out of 1,000 cases). The second step was splitting the � rst leaf into
X1 ^ X3, reducing the misclassi� cation rate to 38.7%. After seven steps, the correct tree
was visited (lower left panel in Figure 3). The true misclassi� cation rate in this example is
33.1% However, the algorithm did not stop. There were possible moves from this tree that
improved the score, the best being splitting leaf X4 into X4 ^ X12, which resulted in a tree
having � ve fewer misclassi� cations than the tree representing the true Boolean expression.
After that, the greedy algorithm took four more steps (not displayed as trees in Figure 3)
until it stopped,yieldinga low misclassi� cation rate of 31.4%. These misclassi� cation rates
are displayed in the lower right panel in Figure 3 as solid squares. The true misclassi� cation
rates for the respective trees were calculated using model (3.1) and displayed in the panel
as open squares. Through tree number seven (which represents the true underlyingBoolean
expression) the true misclassi� cation rate is decreasing with the tree number in the greedy
search. After that, however, the following trees also � t noise, and the true misclassi� cation
rate increases, as expected.This emphasizes the need for statistical tools for model selection,
since in real-life problems the truth is unknown and the subject of the search. The emphasis
in this article is on model selection using simulated annealing, as discussed in the next
section. However, we also developed randomization tests, similar to those described in
Section 4.3 for simulated annealing, for the greedy search. See Ruczinski (2000) for details
of these tests.
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Figure 3. The sequence of the � rst eight trees visited in the greedy search. The number in the upper right corner
is the percentage of misclassi� ed observations in the simulated data (1,000 cases), using the respective tree as
predictor. The panel on the lower right shows those mis-classi� cation rates (solid squares), together with the true
misclassi� cation rates calculated from model (3.1) (open squares).

Unlike in the above example, it is possible that the correct tree is not visited at all.
This can happen when the search gets stuck or, as shown below, if an incorrect variable gets
chosen. This happens frequently, particularlywhen some of the predictors are correlated. To
show this, we generated a dataset exactly as above, except this time we substituted variable
X8 (not in the model) by a surrogate of X3 _ X4. For every case i we chose X i

8 to be a
Bernoulli random variable with probability 0:9 if Xi

3 _ X i
4 was true, and Bernoulli with

probability 0:1 otherwise. The outcome of the search is displayed in Figure 4. Now in the
the second step the variable X8 is selected, and remains in the model until the very end.
The true misclassi� cation rate takes a big dip in Step 2, and the resulting tree is basically a
surrogate for (X1 ^ (X3 _ X4)) which is a better tree than any other tree with two leaves.

3.3 SEARCH VIA SIMULATED ANNEALING

The simulated annealingalgorithm and its statisticalproperties are discussed in numer-
ous publications such as the books by Otten and van Ginneken (1989) and van Laarhoven
and Aarts (1987). Below, we brie� y outline the basics of simulated annealing and describe
how we use it to � nd good-scoring logic models.
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Figure 4. The sequence of the � rst seven trees visited in the greedy search on the data in which the predictors are
not independent. Again, the number in the upper right corner is the percentage of misclassi� ed observations in
the simulated data (1,000 cases), using the respective tree as predictor. The panel on the lower right shows those
misclassi� cation rates (solid squares), together with the true misclassi� cation rates calculated from the correct
model (open squares).

The annealingalgorithmis de� ned on a state space S; which is a collectionof individual
states. Each of these states represents a con� guration of the problem under investigation.
The states are related by a neighborhood system, and the set of neighbor pairs in S de� nes
a substructure M in S £ S. The elements in M are called moves. Two states s; s0 are called
adjacent, if they can be reached by a single move (i.e., (s; s0) 2 M ). Similarly, (s; s0) 2 M k

are said to be connected via a set of k moves. In all our applications, the state space is � nite.
The basic idea of the annealing algorithm is the following: given a certain state, pick a

move according to a selection scheme from the set of permissible moves, which leads to a
new state. Compare the scores of the old and the new state. If the score of the new state is
better than the score of the old state, accept the move. If the score of the new state is not better
than the score of the old state, accept the move with a certain probability. The acceptance
probability depends on the score of the two states under consideration and a parameter that
re� ects at which point in time the annealing chain is (this parameter is usually referred to as
the temperature). For any pair of scores, the further ahead we are in the annealing scheme,
the lower the acceptance probability, if the proposed state has a score worse than the score
of the old state. This algorithm generally leads to good-scoring states, see Otten and van
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Ginneken (1989) and van Laarhoven and Aarts (1987).
There are various options how to implement the annealing algorithm and � t the logic

models.We � t all trees in the model simultaneously.This requires for computationalreasons
that we preselect the maximum number t of trees, which can be chosen arbitrarily large
(hardware permitting), which is a conservative choice if we have no a priori idea of how
many trees we maximally want to � t. If t larger than necessary, and the model can be
trimmed down if needed. In Section 4 this will be discussed in detail. For now, we assume
that t is known and � xed.

We usually select one tree in the current logicmodel, and then randomly pick (following
a predetermined distribution)a move from the move set for this tree. We re� t the parameters
for the new model, and determine its score, which we then compare to the score of the
previous state (logic model), as described above. More details about simulated annealing
in general and our implementation in particular is given in Appendix B.

3.4 FITTING OTHER MODELS WITH BINARY DATA

The methods discussed in Section 2.3 can further be distinguishedby their mechanism
that guides the search to � nd solutions. In general, scalability is one of, if not the, highest
priority in analyzing data to � nd Boolean functions that have predictive power. Especially
in data mining problems, fast and ef� cient search algorithms are crucial. Therefore, greedy
type algorithms, similar to the one discussed in Section 3.2 are standard, and often give
satisfactory results (Murthy and Salzberg 1995). In recent years, other search methods have
gained popularity. As is the case for logic regression, greedy algorithms do not necessarily
� nd a global optimum, and it has been recognized that alternatives should be considered
if their computational expense is not prohibitive. Among those alternatives proposed are
genetic algorithms (Vafaie and DeJong 1991; Bala, DeJong, Pachowicz 1991; Giordana
and Saitta 1993; Wnek and Michalski 1994), Simulated Annealing (Fleisher et al. 1985;
Sutton 1991; Lutsko and Kuijpers 1994), and a thermal training procedure that is somewhat
similar to simulated annealing (Frean 1990). The recent statistics literature has seen a
wealth of alternatives to straight greedy tree searches. Buntine (1992) proposed a Bayesian
approach as a stochastic search tool for classi� cation trees, and Chipman, George, and
McCulloch (1998) and Denison, Mallick, and Smith (1998) published Bayesian algorithms
for CART trees. Other approaches were proposed using the EM algorithm (Jordan and
Jacobs 1994), bootstrapping based techniques such as bagging (Breiman 1996), bumping
(Tibshirani and Knight 1999), and iterative reweighting schemes such as boosting (Freund
and Schapire 1996), and randomized decision trees (Amit and Geman 1997; Dietterich
1999). Comparisons of some of those methods were, for example, carried out by Quinlan
(1996), Dietterich (1999), and Breiman (1999). Another alternative to greedy searches is
the “patient” rule induction method (PRIM) used by Friedman and Fisher (1999).

4. MODEL SELECTION

Using simulated annealing gives us a good chance to � nd a model that has the best or
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close to best possible score. However, in the presence of noise in the data, we know that
this model likely over� ts the data. This section introduces some model selection tools for
the simulated annealing search algorithm. Similar tools for the greedy search are discussed
in Ruczinski (2000).

In this article, we use the total number of leaves in the logic trees involvedin a model as
a measure of model complexity, and call it the model size. Different measures are certainly
possible and easily implemented, but not further discussed in this article. The � rst part
of this section describes how we ensure � nding the best models of a given size, which is
necessary in certain types of model selection.The other two parts of this section describe the
model-selection techniqueswe used in the case studies. Examples of these model selection
techniques are found in Section 5. A potential alternative method of model selection is to
penalize the score function for the size of the model, in the spirit of AIC, BIC, and GCV.
One difference between our models and traditional setups where these measures are used is
that for logic regression more complicatedmodels do not necessarily have more parameters.
We plan to investigate such measures in future work.

4.1 MODELS OF FIXED SIZE

In certain situations it is of interest to know the best scoring tree or the best model of
a certain size. This is the case, for example, when cross-validation is used to determine the
best overall model size, as we will see below. If the simulated annealing run is carried out
with the move set as described in Section 3, the tree or model size changes constantly, and
we cannot guarantee that the � nal model is of the desired size. To determine the best overall
model of a � xed size, we prohibitmoves that increase the tree when its desired size has been
reached. In other words, we can carry out the simulated annealing as before, except we do
not suggest branchinga tree or splitting a leaf if the tree has already the desired size. Strictly
speaking, this guarantees that we � nd the best of up to the desired size. However, smaller
tree sizes are desirable in general, so this is not be a problem. In reality, the maximum
(desired) tree size almost always is reached anyway, provided this size is not too large.
An alternative approach would be to alter the move set discussed in Section 3.1 to include
only moves that keep the size of the model unchanged (this requires the de� nition of some
new moves). However, in our experience the altered move set approach is computationally
considerably less ef� cient, both for the programmer (it complicates the code considerably)
and for the computer (as the simulated annealing algorithm converges slower), than the
approach described above.

4.2 TRAINING/TEST SET AND CROSS-VALIDATION

We can use a trainingand test-set or a cross-validationapproach to determine the size of
the logic tree model with the best predictive capability. When suf� cient data are available,
we can use the training set/test set approach. That is, we randomly assign the cases to two
groups with predetermined sizes, using one part of the data as the training set, and the other
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X Y Perm(Y)

permutation

1

0

Figure 5. The setup for the null model randomization test, shown for binary response Y . In this test, we randomly
permute the entire response.

part as test set. Thus, insteadof using the entire data in the model � ttingand model evaluation
process as described above, we � t models of � xed size using the training set, and then pick
a model size by scoring those models using the independent test set. When suf� cient data
for an independent test set is not available, we can use cross-validation instead. Assume
we want to assess how well the best model of size k performs in comparison to models
of different sizes. We split the cases of the dataset into m (approximately) equally sized
groups. For each of the m groups of cases (say group i), we proceed as follows: remove
the cases from group i from the data. Find the best scoring model of size k (as described
in Section 3), using only the data from the remaining m ¡ 1 groups, and score the cases in
group i under this model. This yields score ° ki. The cross-validated (test) score for model
size k is ° k = (1=m) i ° ki: We can then compare the cross-validated scores for models
of various sizes.

4.3 RANDOMIZATION

We implemented two types of randomization tests. The � rst one, referred to as “null
model test,” is an overall test for signal in the data. The second test, a generalization of this
test, is a test for model size which can be used to determine an optimal model size. This
section introduces the ideas behind those tests.

4.3.1 Null Model Test: A Test for Signal in the Data

For any model class we consider in our methodology (linear regression, logistic re-
gression, etc.) we � rst � nd the best scoring model, given the data. Then, the null hypothesis
we want to test is: “There is no association between the predictors X and the response Y .”
If that hypothesis was true, then the best model � t on the data with the response randomly
permuted, as indicated in Figure 5 for a binary Y , should yield about the same score as
the best model � t on the original data (Y does not have to be binary in general; it was
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Figure 6. The setup for the sequential randomization test: in this test, we permute the response within the group
of cases with the same � tted values for all existing trees (here T1 and T2).

chosen binary solely to illustrate the randomization technique in Figure 5). We can repeat
this procedure as often as desired, and claim the proportion of scores better than the score
of the best model on the original data as an exact p value, indicating evidence against the
null hypothesis.

4.3.2 A Test to Detect the Optimal Model Size

If the above described test showed the existence of signal in the data, we want to
determine the model that best describes the association between predictors and response.
Assume that the best-scoring model has score ° ¤ and size k. We also � nd the best scoring
models of sizes 0 throughk. To � nd out which model size is optimal,we carry out a sequence
of randomization tests. The null hypothesis in each test is: “The optimal model has size j,
the better score obtainedby models of larger sizes is due to noise,” for some j 2 f0; : : : ; kg.
Assume the null hypothesis was true, and the optimal model size was j, with score ° j . We
now “condition”on this model, considering the � tted values of the logic model. For a model
with p trees, there can be up to 2p � tted classes. Figure 6 shows the setup for models with
two trees.

We now randomly permute the response within each of those classes. The exact same
model of size j considered best still scores the same (° j ), but note that other models of size
j potentiallycould now score better. We now � nd the overall best model (of any size) on the
randomizeddata. This model will have a score ( ° ¤ ¤

j ) that is at least as good,but usuallybetter
than ° j . If the null hypothesiswas true, and the model of size j was indeed optimal, then ° ¤

would be a sample from the same distribution as ° ¤ ¤
j . We can estimate this distribution as

closely as desired by repeating this procedure many times. On the other hand, if the optimal
model had a size larger than j , then the randomizationwould yield on average worse scores
than ° ¤ .

We carry out a sequence of randomization tests, starting with the test using the null
model, which is exactly the test for signal in the data as described in the previous subsection.
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We then condition on the best model of size one and generate randomization scores. Then
we condition on the best model of size two, and so on. In general, model selection is now
best carried out by comparing the successive histograms of randomization scores ° ¤ ¤

j . If we
need an automatic rule, we pick the smallest model size where a fraction less than p of the
randomization scores have scores better than ° ¤ . Typically we choose p about 0.20, that is,
larger than 0.05, as we do not want to exclude any possibly useful association.

4.4 APPROACHES TO MODEL SELECTION FOR OTHER MODELS WITH BINARY DATA

Model selectiondiffers greatly among the methods discussed in Section 2.3. Especially
in the early works on Boolean functions, it was often assumed that there was no noise in the
data, and the authors strived for minimal complete and consistent rules, that is, the simplest
Boolean functions that perfectly classify all examples (e.g., Michalski et al. 1986; Quinlan
1986; Hong 1997). In real-life examples, this “no-noise” assumption usually does not hold,
and the above methods result in over-� tting.To account for that, a variety of algorithmswere
proposed. Some of those were simply modi� cations of previously mentioned algorithms.
For example, Clark and Niblett (1989) pointed out that ID3 can easily modi� ed and showed
that extensions exist that circumvent this “no-noise” assumption, and Zhang and Michalski
(1989) proposed a method called SG-TRUNC, which they implemented into AQ15 and
released as version AQ16. Cross-validation is also commonly used for model selection;
for example, in M5 (Quinlan 1992) and R2 (Torgo and Gama 1996). Some other pruning
techniques are based on the minimum description length principle, such as the one used
in SLIQ (Mehta, Agrawal, Rissanen 1996), or based on cost-complexity consideration, for
example, used in CART (Breiman et al. 1984). More pruning techniques and a comparison
between those can be found in Mehta, Rissanen, and Agrawal (1995).

5. EXAMPLES

5.1 A SIMULATION STUDY

As discussed in Section 2.3, there exist many algorithms in the � elds of machine
learning, computer science, and statistics to model binary data. In the statistics literature,
the two best-knownadaptivealgorithmsare CART (Breiman et al. 1984),which is especially
useful for modeling binary predictor data, and MARS (Friedman 1991), which was actually
designed for continuous predictors, but can still be applied to binary data. As the type of
models considered for each of these approaches is different, it is not hard to come up with an
example where logic regression outperforms MARS and CART, or vice versa. The intent of
the simulation study in this section is therefore not to show that logic regression is better or
as least as good (in some sense) as CART and MARS, but rather to provide an example that
shows that there exist situations in which the underlying model is particularly complicated,
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Table 1. The Results for the Classi� cation Part of the Simulation Study. The results are averages over
ten runs. Logic regression can � t the true model using four terms, CART needs seven terms,
and MARS needs two terms. The error rate is calculated using the differences between the
true signal L and the predictions of the classi� er, L̂.

Method Logic CART MARS

Selection Truth CV Random CV GCV

true model size — 4.0 4.0 7.0 2.0
� tted model size — 3.4 3.9 3.2 3.7
number of predictors used 4 3.4 3.9 2.1 4.1
number of predictors X1; : : : ; X4 used 4 3.3 3.3 1.0 2.9
number of predictors X5; : : : ; X10 used 0 0.1 0.6 1.1 1.2
fraction of times X10 used 0 0.0 0.1 0.9 0.8
error rate relative to truth 0.0% 5.5% 8.4% 23.7% 15.4%

and logic regression outperforms CART and MARS. Coming up with reverse examples
would be straightforward as well. One simulation considers an example that is especially
dif� cult for CART. It was designed in a way that CART tends to choose a wrong initial split,
from which it can not easily “recover.” The true model is a fairly simple logic regression
rule. Although there exists a CART tree that is equivalent to the logic regression rule used
in the model, CART does not produce that tree in practice. MARS fares better in this study
than CART, but not as well as logic regression.

We generated ten datasets, with 250 cases and 10 binary predictors each. Predictors X1

throughX9 had an independentBernoulli(0.5)distribution.Let L = (X1 ^X2)_(X3^X4).
Predictor X10 was equal to L with probability 0:5, and otherwise was a Bernoulli(7/16)
random variable (note that P (L = 1) = 7=16 in our simulation). For each of the ten
datasets, we generated a response for classi� cation and a response for linear regression. For
classi� cation, the response for each case was sampled from a Bernoulli(0.7) distribution
if L was true, and from a Bernoulli(0.3) distribution otherwise. In the regression case, the
model was chosen as Y = 5 + 2L + N (0; 1). For both classi� cation and regression, we
picked the best logic model for each of the ten datasets, separately using the cross-validation
and the randomizationprocedure. The best model for CART was chosen by minimizing the
10-fold cross-validation estimates of the prediction error. The MARS models were chosen
to minimize the GCV score with penalty = 3. MARS models were restricted to have no
more than fourth order interactions and a maximum model size of 15 terms. The results are
shown in Tables 1 and 2. We used the S-Plus program tree to run CART, and a version of
MARS written by Tibshirani and Hastie available from http://www.stats.ox.ac.uk/pub/. For
classi� cationusingMARS, we � t a regressionmodel usingbinary response, and thresholded
the � tted values at 0.5. The smallest model that logic regression can � t to model L has size
four; the smallest CART model for L is shown in Figure A.1 (p. 506), and has seven terminal
nodes; the smallest MARS model for L is ­ aX1X2 + ­ bX3X4 ¡ ­ cX1X2X3X4, which
has three terms. For the classi� cation problem, MARS can produce the correct � tted values
with the model ­ aX1X2 + ­ bX3X4, however. In Tables 1 and 2 we refer to the number of
terminal nodes for CART models and the number of terms in a MARS model as “model
size.”

For logic regression, model selectionusing randomizationyields models of similar size

http://www.stats.ox.ac.uk/pub/
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Table 2. The Results for the Regression Part of the Simulation Study. The results are averages over
ten runs. Note: Logic regression can � t the true model using four terms, CART needs seven
terms, and MARS needs three terms. The root mean squared error is calculated using the
squared differences between the true signal 5 + 2L and the predictions of the � tted model,
­̂ 0 + ­̂ 1L̂.

Method Logic CART MARS

Selection truth CV Random. CV GCV

true model size — 4.0 4.0 7.0 3.0
� tted model size — 4.0 4.0 10.0 5.0
number of predictors used 4 4.0 4.0 5.4 4.4
number of predictors X1; : : : ;X4 used 4 4.0 4.0 4.0 3.9
number of predictors X5; : : : ;X10 used 0 0.0 0.0 1.4 0.5
fraction of times X10 used 0 0 0 1.0 0.2
root mean squared error

relative to truth 0.00 0.07 0.07 0.47 0.34

as cross-validation. This is using the automated procedure, as described in Section 4.3.2,
with a cut-off of p = 0:2. When we visually examined plots like Figure 11 in Section
5.2, we sometimes selected different models than the automated procedure, and actually
ended up with results for the randomizationprocedure that are better than those using cross-
validation.CART selects much larger models, and often includes the “wrong” predictors. In
general it is very much tricked by predictor X10. For classi� cation, MARS often substitutes
one of the correct predictors by X10. Although MARS often has the correct predictors in the
selected model, the model is usually larger than the smallest model that is needed, leading
to less interpretable results. For the regression part of the simulation study all methods
perform better as the signal was stronger. Both logic regression approaches get the correct
model each time; CART still is tricked by X10; MARS actually picks the correct predictors
seven out of ten times, but usually with a too-complicatedmodel. For the regression part of
the simulation study, CART always ends up with models with considerably more terminal
nodes than needed.

Tables 1 and 2 also provide the error rate of the � tted model relative to the true model
L = (X1^X2)_(X3^X4) for classi� cation and 5+2L for regressionover the design points
(see table captions). For the classi� cation problem we note that logic regression yields error
rates of under 10%, while MARS and CART have error rates of 15% and 23%, respectively.
This should be compared with the 30% noise that we added to the truth. For the regression
problem, both logic regression approaches always � nd the correct model, but since there is
random variation in the estimates of the coef� cients, the root mean squared error (RMSE)
relative to the truth is not exactly 0. Again, for the regression problem MARS does much
better than CART. The RMSE for these approaches can be compared to the noise, which
had standard deviation 1.

5.2 THE CARDIOVASCULAR HEALTH STUDY

The CardiovascularHealth Study (CHS) is a study of coronary heart disease and stroke
in elderly people (Fried et al. 1991). Between 1989 and 1990, 5,201 subjects over the age
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Table 3. The 23 Regions of the Cardiovascular Health Study Brain Atlas. The predictor number will
be used later to display logic trees and to describe linear models we � t. The counts are the
number of CHS patients for whom an infarct was diagnosed. The letters in the � rst column
indicate the standard anatomicalclusters of the above 23 locations.They are Cerebral Cortex
(Cluster A), Cerebellar Cortex (Cluster B), Cerebellar White Matter (Cluster C), Basal Ganglia
(Cluster D), Brain Stem (Cluster E) and Cerebral White Matter (Cluster F).

Cluster Predictor Region Counts

A 1 Anterior Cerebral Artery (frontal lobe) 16
2 Anterior Cerebral Artery (parietal lobe) 4
3 Middle Cerebral Artery (frontal lobe) 62
4 Middle Cerebral Artery (parietal lobe) 43
5 Middle Cerebral Artery (temporal lobe) 64
6 Posterior Cerebral Artery (parietal lobe) 6
7 Posterior Cerebral Artery (temporal lobe) 12
8 Posterior Cerebral Artery (occipital lobe) 31

B 9 Superior Cerebellar Artery 23
10 Anterior Inferior Cerebellar Artery 7
11 Posterior Inferior Cerebellar Artery 53

C 12 Cerebellar White Matter 58

D 13 Caudate 110
14 Lentiform Nuclei 601
15 Internal Capsule (anterior limb) 156
16 Internal Capsule (posterior limb) 77
17 Thalamus 236

E 18 Midbrain 15
19 Pons 29
20 Medulla Oblongata 0

F 21 Watershed (ACA to MCA) 10
22 Watershed (MCA to PCA) 12
23 Cerebral White Matter 217

of 65 were recruited in four communities in the United States. To increase the minority
representation in the study, an additional 687 African Americans were recruited between
1992 and 1993. During 1992 and 1994, a subset of these patients agreed to undergo an
MRI scan. Neuroradiologists, blinded to the identity and characteristics of those patients,
read the images and attempted to identify the presence and locations of infarcts, de� ned
as an area of brain tissue damaged by lack of oxygen due to compromised blood � ow. For
3,647 CHS participants, MRI detected strokes (infarcts bigger than 3mm) were recorded
as entries into a 23 region atlas of the brain. Up to � ve infarcts were identi� ed per subject,
and each of those infarcts was present in up to four of the 23 locations (i.e., a single infarct
was detectable in up to four regions). For every patient the infarcts were recorded as binary
variables (absent/present) in 23 regions. Table 3 lists the 23 regions of the CHS atlas and
the number of patients with infarcts in those regions. For more details on the scanning
procedure, see Bryan et al. (1994).

One of the goals of the MRI substudy of the CHS is to assess the associations between
stroke locations and various response variables, such as the one resulting from the mini-
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mental state examination, a screening test for dementia. Patients participate in a question-
and-answer session, and score points for each correct answer. The � nal score, the sum of
all points earned, is a number between 0 (no correct answer) and 100 (everything correct).
For more details about this test see Teng and Chui (1987). In our analysis we focused
on demonstrating the use of the logic regression methodology. In practice, maybe only a
subset of the predictors should be included in the analysis since, for example, there are
spatial correlations between predictors. Using a clustering approach, McClelland (2000)
reported improvements after adjusting for gender, age, and so on. These variables were not
available to us when we started analyzing the data, and we did not include those into our
model. Ruczinski (2000) discussed several approaches to include continuous predictors in
logic regression models. See also the example on SNP data in Section 5.3, in which we
included continuous predictors as additional variables.

Most patients scored in the 90s in the mini-mental test, and we found that a logarithmic
transformation was bene� cial after investigatingpotentialmodel violations such as nonnor-
mally distributed (skewed) residuals. Since the mini-mental score is a number between 0
and 100, we de� ned the response variable as

Y := log(101 ¡ [mini-mental score]):

Usually such a transformation is avoided because it makes the parameter interpretation
and their association to the original mini-mental score rather dif� cult, but since in our
methodology we only deal with a very small number of classes of patients (see further
analysis below) this is of no importance, as the few � tted values associated with the mini-
mental score can simply be listed, without causing confusion.

The models we investigated were linear models of the form

Y = ­ 0 + ­ 1 £ IfL1 is trueg + ¢ ¢ ¢ + ­ p £ IfLp is trueg + ° ;

with ° ¹ N (0; ¼ 2) and various numbers p of Boolean expressions. These models de� ne
groups of patients with similar stroke patterns in the brain atlas within each group, and
different average scores between groups. In the following analysis, we used the residual
variance (residual sums of squares divided by the number of cases considered) as scoring
function.

We � rst carried out a “null model” randomization test as described in Section 4.3.1,
� tting only one tree, and allowing up to 16 leaves in the tree. The null model, � tting
the intercept ­ 0 with ­ 1 = 0 had a score of 0.7202. Using simulated annealing, the best
scoring model we found had a score of 0.7029. We permuted the response, re� t the model,
recorded the score, and repeated this procedure 1,000 times. In Figure 7 we compare the
score for the best scoring model [a], the score for the null model [b], and a histogram of
the scores obtained from the randomization procedure. Since all of those randomization
scores are considerably worse than the score [a], we conclude that there is information
in the predictors with discriminatory power for the (transformed) mini-mental score. The
results we got using models with more than one tree were similar.

To get a better idea of the effect of varying model sizes, we show the training scores
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Figure 7. The residual variance scores of the null model randomization test. The scores in the histogram came
from linear models with a single tree, allowing up to 16 leaves.
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(averages of all ten training scores from ten-fold cross-validation) of linear models with
one, two, three trees and varying tree sizes in Figure 8 combined. Any model in the class
of models with up to k trees and n leaves is also in the class of models with up to k + 1
trees and n leaves. Further, any model in the class of models with up to k trees and n leaves
is also in the class of models with up to k trees and n + 1 leaves. Therefore the results
are as expected: comparing two models with the same number of trees allowed, the model
involving more leaves has a better (training) score. The more trees we allow in the model,
the better the score for a � xed number of leaves. Allowing a second tree in the linearmodels
seems to have a larger effect in the training scores (relative to the models with only one
tree), than the effect of allowing a third tree in addition to the two trees.

However, larger models do not imply better cross-validation test scores, as shown
in Figure 9. The cross-validated scores for models with identical number of leaves but
different numbers of trees look remarkably similar. Regardless whether we allow one, two,
or three trees, the models of size four seem to be favored. Since allowing for more than
one tree obviously is not very bene� cial with respect to the cross-validation error, we pick
for simplicity the model with only one tree and four leaves. We should keep in mind that a
model with k trees involves estimating k + 1 parameters. Thus, a model with three trees,
with the same number of leaves as a model with one tree, is more complex.

We compare the cross-validated trainingand test scores to the scores using the complete
data in Figure 10. For all model sizes, the scores obtainedusing the complete data are almost
the same as thescores obtainedfrom the cross-validationtrainingdata.This indicatesthat the
same predictors were selected in most models in the cross-validationtrainingdata compared
to the same sized models � tted using the complete data. As expected, the scores from the
cross-validation test data are worse than the training scores. However, the test score for the
model with four leaves is remarkably close to the training scores, indicating that the same
predictors were selected in most models of size four using the cross-validationtraining data.
The vast gap between training and test scores for the models of any size other than four
strongly discourages the selection of those models.

Figure 11 shows histograms of the randomization scores after conditioning on various
numbers of leaves, indicated by the number in the upper left corner of each panel. The
averagesof the randomizationscores decrease when we increase themodelsize we condition
on, until we condition on the model with four leaves. The overall best score for models
with one tree (indicated by the left vertical bar in the � gure) looks like a sample from
the distribution estimated by the randomization scores after conditioning on four or more
leaves, supporting the choice of four leaves in the selected model. The model with four
leaves would also be selected by the automated rule with p = 0:20, described in Section
4.3.2.

Searching for the best linear model with a single tree of size four using the complete
data yielded

Y = 1:96 + 0:36 £ IfL is trueg (5.1)

with the logic tree as shown in Figure 12.
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Figure 11. The residual variance scores of the randomizationtest for model selection. Randomization scores were
obtained conditioningon 0, 1, 2, 3, 4, and 5 leaves, indicated by the number in the upper left corner of each panel.
The solid bar on the right in the panels indicates the score of the null model, the solid bar more to the left indicates
the best overall score found using the original (non-randomized)data. The dashed bar in each panel indicates the
best score found for models with one tree and the respective size, using the original (nonrandomized) data.
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Figure 12. The Logic Tree of the selected model in Equation (5.1), representing the Boolean equation L =

X12 _ X19 _ X4 _ X17.

5.2.1 Comparison to Other Modeling Approaches

There are 58 patients with an infarct in region 12, 29 patients with an infarct in region
19, 43 patients with an infarct in region 4, and 236 patients with an infarct in region 17.
These 366 infarcts occurred in 346 different patients, thus these four predictors are pairwise
almost exclusive. Since the Boolean expression in (5.1) has only _ operators, the above
model is very similar to a linear regression model with these four predictors as main effects,
summarized in Table 4. (This linear regression model was also found using backwards
stepwise regression. The initial model contained all predictors and no interactions.) Note
that 0.36, the parameter estimate for ­ 1 in the logic model, is almost within the 95%
con� dence region for each region parameter in the linear regression model.

Even though the linear model looks very similar to the model in (5.1), the logic model
clearly has a much simpler interpretation: using the Logic Regression methodology, we
found two classes of patients that differ in health history and the performance in the mini-
mental test. Using the � tted values from model (5.1), we can state that the estimated median
transformed mini-mental score for patientswith infarcts in either region 4; 12; 17, or 19 was
2.32, compared to 1.96 for patients who did not have an infarct in any of those regions. This
translates to a median mini-mental score of 90.8 for patients with infarcts in either region

Table 4. Summary of the Regular Regression Model that Compares with the Logic Regression Model
for the Mini Mental Score Data.

­̂ ˆ¼ t value

Intercept 1.961 0.015 133.98
Region 4 0.524 0.129 4.06
Region 12 0.460 0.112 4.09
Region 17 0.236 0.057 4.17
Region 19 0.611 0.157 3.89
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4; 12; 17, or 19, compared to a median mini-mental score of 93.9 for patients that did not
have an infarct in any of those four regions. The residual error is almost exactly the same in
these two models. However, the “standard” linear regression model, by using four binary
predictors, de� nes 24 = 16 possible classes for each patient. But there is no patient with
three or four strokes in regions 4; 12; 17, and 19. Therefore, 5 of those 16 classes are empty.
There is also a signi� cant difference in the performance in the mini-mental test between
patients with no strokes in regions 4; 12; 17, and 19, and those who do. But there is no
signi� cant “additive” effect, that is, patients with two strokes in regions 4; 12; 17, and 19
did not perform worse than people with one stroke in either of those regions. The logic
model therefore, besides being simpler, also seems to be more appropriate.

The MARS model is very similar to the linear regression model. It was chosen to
minimize the GCV score, with penalty equal 3. The maximum number of terms used in
the model building was set to 15 and only interactions up to degree 4 were permitted. The
model search yielded

Y = 1:96 + 0:53X4 + 0:37X12 + 0:24X17 + 0:61X19 + 1:05(X12 ¤ X15): (5.2)

The additional term compared to the linear regression model concerns patients who have a
stroke in both regions12 and 15; there are only � ve patients for which this applies.However,
these � ve patients indeed performed very poorly on the mini-mental state examination.
Although this term certainly is within the search space for the logic model, it did not show
up in the logic model that was selected using cross-validation and randomization, because
it applied only to 5 out of more than 3,500 patients. The score (residual error) of the MARS
model is almost identical to the previously discussed models. CART returned a model that
used the same variables as the linear and the logic model, shown in Figure 13. Only if all
of the four variables are zero (i.e., the patient has no stroke in either of the four regions),
a small value (less than 2) is predicted. In fact, a simple analysis of variance test does not
show a signi� cant difference between the four other group means (and if one bundles them,
one obtains the logic model). So while the model displayed in Figure 13 is a fairly simple
CART tree, we feel that the logic model is easier to interpret.

5.3 APPLICATION TO SNP DATA

This section brie� y describes an applicationof the logic regression algorithm to genetic
SNP data. This applicationwas described in detail by Kooperberg, Ruczinski,LeBlanc, and
Hsu (2001). Single base-pair differences, or single nucleotide polymorphisms (SNPs), are
one form of natural sequence variation common to all genomes, estimated to occur about
every 1,000 bases on average.SNPs in the coding regioncan lead to aminoacid substitutions
and therefore impact the function of the encoded protein. Understanding how these SNPs
relate to a disease outcome helps us understand the genetic contribution to that disease. For
many diseases the interactions between SNPs are thought to be particularly important (see
the quote by Lucek and Ott in the introduction). Typically with any one particular SNP
only two out of the four possible nucleotides occur, and each cell contains a pair of every
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Figure 13. CART tree for the mini-mental score data.

autosome. Thus, we can think of an SNP as a random variable X taking values 0, 1, and
2 (e.g., corresponding to the nucleotide pairs AA, AT/TA, and TT, respectively). We can
recode this variable corresponding to a dominant gene as Xd = 1 if X ¶ 1 and Xd = 0 if
X = 0 and as a recessive gene as Xr = 1 if X = 2 and Xr = 0 if X µ 1. This way, we
generate 2p binary predictors out of p SNPs. The logic regression algorithm is now well
suited to relate these binary predictors with a disease outcome.

As part of the 12th Genetic Analysis Workshop (Wijsman et al. 2001), the workshop
organizers provideda simulatedgenetic dataset. These data were simulatedunder the model
of a common disease. A total of 50 independent datasets were generated, consisting of 23
pedigrees with about 1,500 individuals each, of which 1,000 were alive. The variables
reported for each living subject included affection status, age at onset (if affected), gender,
age at last exam, sequence data on six genes, � ve quantitative traits, and two environmental
variables. We randomly picked one of the 50 datasets as our training set, and another
randomly chosen dataset as our test set. In the sequence data were a total of 694 sites with
at least 2% mutations distributed over all six genes. We coded those into 2 £ 694 = 1;388
binary variables. In the remainder we identify sites and coding of variables as follows:
Gi:D:Sj refers to site j on gene i, using dominant coding, that is, Gi:D:Sj = 1 if at
least one variant allele exist. Similarly, Gi:R:Sj refers to site j on gene i, using recessive
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coding, that is, Gi:R:Sj = 1 if two variant alleles exist. We identify complements by the
superscript c, for example, Gi:D:Sjc.

As our primary response variables we used the affected status. We � tted a logistic
regression model of the form

logit(affected) = ­ 0 + ­ 1 £environ1 + ­ 2 £environ2 + ­ 3 £gender+
K

i = 1

­ i + 3 £Li: (5.3)

Here gender was coded as 1 for female and 0 for male, environj , j = 1; 2, are the two
environmental factors provided, and the Li, i = 1; : : : ; K are logic expressions based on
the 1,388 predictors that were created from the sequence data.

Initially we � t models with K = 1; 2; 3, allowing logic expressions of at most size 8 on
the training data. Figure 14 shows the devianceof the various � tted logic regression models.
As very likely the larger models over-� t the data, we validated the models by computing
the � tted deviance for the independent test set. These test set results are also shown in
Figure 14. The difference between the solid lines and the dotted lines in this � gure shows
the amount of adaptivity of the logic regression algorithm. From this � gure we see that the
models with three logic trees with a combined total of three and six leaves have the lowest
test set deviance. As the goal of the investigation was to identify sites that are possibly

linked to the outcome, we preferred the larger of these two models. In addition, when we
repeated the experiment on a training set of � ve replicates and a test set of 25 replicates, the
model with six leaves actually had a slightly lower test set deviance than the model with
three leaves (results not shown). We also carried out a randomization test which con� rmed
that the model with six leaves actually � tted the data better than a model with three leaves.
The trees of the model with six leaves that was � tted on the single replicate are presented
in Figure 15. The logistic regression model corresponding to this logic regression model is

logit(affected) = 0:44 + 0:005 £ environ1 ¡ 0:27 £ environ2

+1:98 £ gender ¡ 2:09 £ L1 + 1:00 £ L2 ¡ 2:82 £ L3: (5.4)

All but the second environment variable in this model are statistically signi� cant.
As the GAW data is simulated data, there is a “correct” solution (although this is not

a logic regression model). The solution, which we did not look at until we selected model
(5.4), showed that there was no effect from genes 3, 4, and 5, that all the effect of gene
1 was from site 557, that all the effect of gene 6 was from site 5782, and that the effect
of gene 2 was from various sites of the gene. In addition the model showed an interaction
between genes 1 and 2, while the effect of gene 6 was additive (but on a different scale than
the logit scale which we used). For all 1,000 subjects with sequence data in replicate 25
(which we used), site 76 on gene 1 is exactly the opposite of site 557, which was indicated
as the correct site on the solutions (e.g., a person with v variant alleles on site 76 always has
2 ¡ v variant alleles on site 557 in the copy of the data which we used). Similarly, the logic
regression algorithm identi� ed site 5,007 on gene 6, which is identical for all 1,000 persons
to site 5,782, the site which was indicated on the solutions. We note that the “correct” site
on gene 1 appears twice in the logic tree model. Once, as a recessive coding (G1:R:S557)
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Figure 14. Training (solid) and test (open) set deviances for Logic Regression models for the affected state. The
number in the boxes indicate the number of logic trees.

and one effectively as a dominant coding (G1:R:S76c ² G1:D:S557 on this replicate) for
site 557, suggesting that the true model may have been additive.The three remaining leaves
in the model are all part of gene 2: two site close to the ends of the gene and one site in the
center. All three sites on gene two are dominant.

In summary, the logic regression model identi� ed all sites that were related to the
affected status, the correct interaction between genes 1 and 2, and identi� ed no false posi-
tives. As described by Witte and Fijal (2001), the logic regression approach was out of ten
different approaches the only one that identi� ed all correct sites and had no false positive
SNPs.

6. DISCUSSION

Logic regression is a tool to detect interactions between binary predictors that are
associated with a response variable. The strength of logic regression is that it can � nd even
complicated interactions between predictors that may play important roles in application
areas such as genetics or identifying prognostic factors in medical data. Logic regression
considers a novel class of models, different from more established methodologies, such
as CART and MARS. Clearly, depending on the application area, there will be situations
where any method outperforms other method. We see logic regression as an additional tool
in the statistical modelers’ toolbox.

The logic regression models are not restricted to classi� cation or linear regression, as
many of the existing methodologiesare. Any other (regression) model can be considered as
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Figure 15. Fitted Logic Regression model for the affected state data with three trees and six leaves. Variables that
are printed white on a black background are the complement of those indicated.

long as a scoring function can be determined. In our software for logic regression, we also
implemented the Cox proportional hazards model, using partial likelihood as score. Simple
classi� cation problems are trivial to implement, using for example the (weighted) number
of misclassi� cations as score. More complicated models also need to be considered when
analyzing data with family structure, which is often the case in genetic data. Since family
members are genetically related and often share the same environment, observations are no
longer independent and one has to take those dependencies into account in modeling the
covariance structure. As we envision that logic regression will be useful analyzing genetic
data, we plan to investigate scoring functions that take familial dependence into account.

As the class of models thatwe consider in logic regression can be very large, it is critical
to have a good search algorithm. We believe that the simulated annealing algorithm that we
use is much more ef� cient in � nding a good model than standard greedy algorithms. In fu-
ture work we plan to investigate the use of Markov chain Monte Carlo algorithms, to assess
uncertainty about the selected models. Because of the similarity between simulated an-
nealing and McMC, computationally (but not conceptually) this should be straightforward.
As is the case for many adaptive regression methodologies, straightforward application of
the logic regression algorithm would likely over-� t the data. To overcome this, we have
discussed a variety of model selection techniques that can be used to select the “best” logic
regression model. At this point, these techniques are computationally fairly expensive (the
running time for � nding the best model or the best model of a particular size for the mini
mental data took about a minute on a current generation Linux machine; therefore 10-fold
cross-validation, where we investigated models of 30 different sizes, and the randomiza-
tion tests took several hours). Other techniques, some of them much less computationally
intense, seem to be feasible. This includes, for example, using a likelihood penalized by
the size of the model as score, which would require only one run of the search algorithm.
This is similar to using quantities such as AIC, BIC, or GCV in other adaptive regression
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methodologies. We did not discuss this approach as we wanted to restrict the length of this
article.

The logic regression software is available from bear.fhcrc.org/¹ingor/logic. The algo-
rithm also includesan option to search for models using only conjunctiveor only disjunctive
Boolean expressions. This was achieved in a straightforward manner by altering the move
set to only allow one type of operator. Future versions will include several approaches to
include continuous predictors in logic regression models.

APPENDIXES

A. RELATIONSHIP BETWEEN LOGIC TREES, DECISION
TREES (CART), AND BOOLEAN EXPRESSIONS IN

DISJUNCTIVE NORMAL FORM

The disjunctivenormal form (DNF) is a widespread type of notationof logic statements
in the engineeringand computer science literature. A DNF is a Boolean expression, written
as _-combinations of ^-terms. For example, the Boolean expression

(A ^ Bc) ^ [(C ^ D) _ (E ^ (Cc _ F ))]

can be written in disjunctive normal form as

(A ^ Bc ^ C ^ D) _ (A ^ Bc ^ E ^ Cc) _ (A ^ Bc ^ E ^ F ):

It can be shown thatBooleanexpressionsand logictrees, as well as otherlogicconstructs
such as Boolean expressions in DNF are equivalent in the sense that the classes of logic
expressions they represent are the same. That means, for example, that every Boolean
expression can be represented in DNF, and as a logic tree (Ruczinski 2000).

The logic trees introduced in this article may appear to resemble classi� cation trees
(e.g., Breiman et al. 1984). In every classi� cation tree, a leaf can be reached by a path
through the tree, making decisions at every knot. If the tree is binary, these decisions reduce
to checking whether or not the condition investigated at a particular knot is true or false.
To reach a certain leaf, all conditions C1; C2; : : : ; Ck along the path have to be satis� ed
(i.e., C1 ^ C2 ^ ¢ ¢ ¢ ^ Ck has to be true). In general, there are multiple paths that reach a leaf
that predicts class 1. Since there are only two outcome classes (0 and 1), the collection of
all paths P1; P2; : : : ; Pl that reach a leaf predicting 1 is a complete description of the binary
classi� cation tree. Therefore, the tree predicts class 1 if the Boolean equation

L = P1 _ P2 _ ¢ ¢ ¢ _ Pl

is true, where

Pi = C i
1 ^ C i

2 ^ ¢ ¢ ¢ ^ Ci
ki :
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FigureA.1. Equivalence of trees: the binaryclassi� cation tree and the Logic Tree predict exactly the same outcome
for any set of values of A, B, C, D.

Hence every binary classi� cation tree can immediately be written as a Boolean equation in
DNF. For example, the tree in Figure A.1(a) predicts class 1 if the Boolean equation

L = (Cc ^ A ^ B) _ (C ^ Dc ^ A ^ B) _ (C ^ D)

is true.
However, it is not obvious whether every Boolean expression in DNF can directly be

expressed as a classi� cation tree. The reason for this is that in a classi� cation tree the � rst
knot is part of every path. Using De Morgan’s rules and standard Boolean operations, it
can be shown that a classi� cation tree can be constructed from every Boolean expression.
However, these classi� cation trees often result in awkward looking constructs, much more
complex than the simple logic trees constructed from the Boolean expression.For example,
for the tree in Figure A.1(a), we have

L = (Cc ^ A ^ B) _ (C ^ Dc ^ A ^ B) _ (C ^ D) ² (A ^ B) _ (C ^ D) = L0:

This means that the classi� cation tree in Figure A.1(a) corresponds to the simple Boolean
expression (A ^ B) _ (C ^ D), which can be displayed as very simple logic tree, as done
in Figure A.1(b) (which, incidentally, is also in DNF). We feel that the simplicity of logic
trees is one of their big attractions.

B. PRACTICAL ASPECTS OF SIMULATED ANNEALING

For simulated annealing, in addition to the previously described scoring functions and
the move set, we have to specify a selection probability for the moves, an acceptance
function, and a cooling scheme. Further, when we implemented the simulated annealing
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algorithmfor the logic regression methodology,some practical aspects had to be considered
how to run the search. This section lists what we believe are the most important issues.

° At every stage of the algorithm there is a temperature T (see Section 3.3 and below).
Suppose that the current state of the algorithm has score ° old, and the new proposed
state has score ° new, where smaller scores are better. The new state is accepted with
probability p = min 1; exp [ ° old ¡ ° new] =T (note that Markov chain Monte
Carlo Metropolis–Hastings can be seen as simulated annealing algorithm where
T remains constant). See Otten and van Ginneken (1989) and van Laarhoven and
Aarts (1987) for a discussion of this acceptance probability. In general, the selection
probability for the moves affects the performance of the annealing algorithm. For
logic regression, we found that it is bene� cial to give the highest preference to the
moves that alternate the leafs. Alternating operators can change the prediction of
the logic tree under consideration considerably, and we usually assign those moves
a somewhat lower probability.

° There are two fundamentally different ways how to implement a simulated anneal-
ing algorithm. One way is to slightly decrease the temperature at each step in the
algorithm. The other way is to keep the temperature constant for a certain num-
ber of iterations, and then decrease the temperature by a somewhat larger amount.
The performances of both algorithms have been studied (Otten and van Ginneken
1989; van Laarhoven and Aarts 1987), and in general one cannot claim that one
way of running the chain is superior to the other. However, we � nd that monitoring
the convergence process is more straightforward using a sequence of homogeneous
Markov chains (runs at constant temperature).

° In the beginning of a simulated annealing run with high temperatures, virtually all
proposed moves are accepted. Towards the end, almost every proposed move is
rejected. Somewhere in between is the “crunch time,” where we want to spend most
of the computing time. To speed up the simulated annealing and avoid spending
too much time either at the beginning or the end of the run, we implemented the
following features:

– Runninga Markov chain at � xed temperature, we keep track of how many moves
have been accepted. If this number reaches a predetermined threshold, we exit
the Markov chain (even though the number of iterations speci� ed has not been
reached) and lower the temperature to its next value. This avoids spending too
much time at the beginningof the run in “random models.” Later in the annealing
algorithm, we will not be able to reach this threshold and the Markov chains run
for their full lengths. The threshold typically is between 1% and 10% of the
prespeci� ed number of iterations for a chain at a � xed temperature.

– We have to specify a lowest temperature before starting the simulated annealing
run. Several criteria can be considered to exit the simulated annealing run early
when the search virtually has been � nished, for example the case when no moves
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were accepted for a substantial number of consecutive chains. This avoids run-
ning the algorithmall the way to its end althoughno improvementcan be achieved
anymore. It also allows setting the lowest temperature arbitrarily low, since the
exit criteria can be chosen independently of the lowest temperature considered.

° To implement a simulated annealing run, we have to specify a temperature scheme.
That means we have to choose the starting (highest) temperature, the � nishing
(lowest) temperatureand thecoolingscheme,whichalsodeterminesthe totalnumber
of chains we run at constant temperatures. In making this decision, there is usually
some trial and error involved, since in practice the cooling scheme depends on the
data we are analyzing. The theory of simulated annealing is thoroughly discussed,
for example, in the books by van Laarhoven and Aarts (1987) and Otten and van
Ginneken (1989), stating conditions for the simulated annealing run under which
we can guarantee to � nd an optimal scoring state. One obvious problem is that
we cannot run chains of length in� nity as required, the optimal state may not be
reached in practice. We need to make sure that the individual chains we run come
close to their limiting distributions, and cool suf� ciently slowly such that this can
be achieved with a reasonable number of iterations in the chain. The choices for the
parameters we pick therefore in� uence each other. We already explained above that
picking the highest and lowest temperature is not a problem. We want the starting
temperature high enough such that the � rst chains are essentially random walks
This can be controlled by monitoring the acceptance rate. The lowest temperature is
chosen such that the above described exit criterion terminates the chain. Depending
on the size of the dataset, we usually choose for the exit criterion the number of
chains without acceptancebetween 10 and 20. The temperatures are usually lowered
in equal increments on a log10 scale. The number of chains between two subsequent
powers of 10 depend on the data as well; usually, the number is between 25 and
100. This translates to decreasing the temperature between homogeneous chains by
a factor between 0.91 and 0.98. The lengths of the individualchains for the data we
looked at so far have been between 10,000 and 100,000.The search for a single best
model usually takes only a few minutes on a Pentium processor, the randomization
tests (depending on the number of permutations carried out) usually require several
hours of CPU time.

° Every logic tree has a � nite number of neighbors. Especially toward the end of the
run at low temperatures, very few moves get accepted. Because simulated annealing
is a probabilisticsearch, a move mightget rejected several times before it is accepted.
The worst “bottle neck” in terms of computing time is the evaluation of the logic
trees, that is, deriving the values of their underlying Boolean equation from the
leaves for each case. Because the acceptance of a move, given the temperature and
the score of the current model, depends only on the score of the proposed model,
we implemented a subroutine that keeps track of all states visited and their scores
in a table. Therefore, for the decision whether or not to accept a certain move from
a given state, the trees of the proposed model have to be evaluated only once, which
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speeds up the search dramatically at lower temperatures. After a move is accepted,
the old table is � ushed and a new table is generated.

° In theory, trees of any size can be grown, but considering that in our applicationswe
want to be able to interpret these models, it makes sense to limit the tree sizes to a
reasonable number of leaves. We usually limit the number of leaves to a maximum
of 8 or 16 per tree. As previously noted, we also limit the number of trees we allow.
In the case studies we carried out, optimal logic regression models typically had
between one and three logic trees. However, we usually allow up to � ve trees at the
beginning of our search for good models.
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