Detection of Burkitt Lymphoma immunoglobulin rearrangements in blood may have prognostic value

Katharine Lombardo

B cell receptor in normal cells and in B cell malignancies

B cell receptor in Burkitt Lymphoma

B cell receptor in normal cells and in B cell malignancies

B cell receptor in Burkitt Lymphoma

The BCR sends survival, differentiation and proliferation signals

The BCR sends survival, differentiation and proliferation signals

FRED HUTCH

Adapted from Young & Staudt. Nature Reviews. 2013

Role of BCR Signaling	Malignancy
BCR signaling required for cell viability	ABC DLBCL, BL
Activating mutations within BCR signaling pathways	ABC DLBCL, BL
BCR stereotypy	CLL, SMZL, MALT lymphoma
BCRs activated by specific antigens	CLL, MALT lymphoma, FL, BL

Role of BCR Signaling	Malignancy
BCR signaling required for cell viability	ABC DLBCL, BL
Activating mutations within BCR signaling pathways	ABC DLBCL, <mark>BL</mark>
BCR stereotypy	CLL, SMZL, MALT lymphoma
BCRs activated by specific antigens	CLL, MALT lymphoma, FL, <mark>BL</mark>

B cell receptor in normal cells and in B cell malignancies

B cell receptor in Burkitt Lymphoma

B cell receptor in normal cells and in B cell malignancies

B cell receptor in Burkitt Lymphoma

BL patient cohort

 19 BL tumor samples from Uganda Cancer Institute with 14 diagnostic patient-matched blood samples (13 post-treatment)

BL patient cohort

• 19 BL tumor samples from Uganda Cancer Institute with 14

diagnostic patient-matched blood samples (13 post-treatment)

Ugandan BL Patient Cohort		
Characteristic	BL Patients (n=19)	
Gender Female Male	37% 63%	
Age at enrollment Median Range	7 yrs 4-12 yrs	
HIV Status Negative Positive	95% 5%	
Ziegler Disease Stage A B C D	37% 16% 16% 31%	

BL patient cohort

• 19 BL tumor samples from Uganda Cancer Institute with 14

diagnostic patient-matched blood samples (13 post-treatment)

Ugandan BL Patient Cohort		
Characteristic BL Patients (n=19)		
Gender Female Male	37% 63%	
Age at enrollment Median Range	7 yrs 4-12 yrs	
HIV Status Negative Positive	95% 5%	
Ziegler Disease Stage A B C D	37% 16% 16% 31%	

• 9 BL tumor samples from NCI Ghana BL Study with 6 patientmatched serum samples and 9 patient-matched CSF samples

Long-term BL patient survival is 37%

Standard treatment regimen: 6 cycles of cyclophosphamide, vincristine and methotrexate chemotherapy

Long-term BL patient survival is 37%

Standard treatment regimen: 6 cycles of cyclophosphamide, vincristine and methotrexate chemotherapy

Overall BL Patient Survival

Deep sequencing of BL immunoglobulin genes

Adaptive Biotechnologies

Clonal *IGH* rearrangements identified in 24/28 BL tumors

Clonal *IGH* rearrangements identified in 24/28 BL tumors

1. Identify unique *IGH* rearrangement

2. Probe for clonal circulating tumor-DNA (ct-DNA) sequence

1. Identify unique *IGH* rearrangement

2. Probe for clonal circulating tumor-DNA (ct-DNA) sequence

Source	Negative for ct-DNA	Positive for ct-DNA
Blood	4/14 patients	10/14 patients

1. Identify unique *IGH* rearrangement

2. Probe for clonal circulating tumor-DNA (ct-DNA) sequence

Source	Negative for ct-DNA	Positive for ct-DNA
Blood	4/14 patients	10/14 patients
Serum	2/5 patients*	3/5 patients*

*Serum data from 1 patient still pending

1. Identify unique *IGH* rearrangement

2. Probe for clonal circulating tumor-DNA (ct-DNA) sequence

Source	Negative for ct-DNA	Positive for ct-DNA
Blood	4/14 patients	10/14 patients
Serum	2/5 patients*	3/5 patients*
CSF	7/9 patients	2/9 patients**

*Serum data from 1 patient still pending **1 positive CSF sample did not match patient

Tumor P_{ost-treatment} Blood

1. Identify unique *IGH* rearrangement

2. Probe for clonal circulating tumor-DNA (ct-DNA) sequence

Tumor P_{ost-treatment} Blood

1. Identify unique *IGH* rearrangement

2. Probe for clonal circulating tumor-DNA (ct-DNA) sequence

Source	Negative for ct-DNA	Positive for ct-DNA
Blood	11/13 patients	2/13 patients

BL BCR as a prognostic indicator at diagnosis

BL BCR as a prognostic indicator at diagnosis

BCR as a therapeutic target

BCR as a therapeutic target

Conclusions & future directions

- The BCR in BL:
 - Patient-specific prognostic biomarker
 - Oncogene
 - Therapeutic target

 Measurement of residual disease to identify patients for salvage therapy

Acknowledgements

- BL patients and their families
- Warren Lab

 Edus H. Warren
 Andrea Towlerton
 David Coffey
 Yuexin Xu
 Alicia Morales
 Scott Tykodi
 Sharon Ornales
- Fred Hutch
 Chris Carlson

- NCI Ghana BL Repository
 Robert Biggars
 Sam Mbulaiteye
- Fred Hutch Global Oncology Sarah Gerdts Corey Casper

THANK YOU

fredhutch.org

Top 50 unique IGH sequences from all BL tumors

Β.

A.

IGH Expression		IG κ/λ Expression	
Isotype	BL Sample Number (N=16)	Expression	BL Sample Number (N=16)
lgM⁺ lgD⁺	13	IG κ ⁺	12
lgG⁺	2	IGλ+	3
No Expression	1	No Expression	1

