Management of CML in blast crisis

Lymphoma Tumor Board November 27, 2015

Chronic Phase CML - 2.

Peter Maslak, ASH Image Bank 2011; 2011-2455

Chronic Phase CML - 3.

Peter Maslak, ASH Image Bank 2011; 2011-2456

Chronic Phase CML - 1.

Peter Maslak, ASH Image Bank 2011; 2011-2823

Chronic Phase CML - 3.

Peter Maslak, ASH Image Bank 2011; 2011-2825

Accelerated Phase CML - 2.

Peter Maslak, ASH Image Bank 2011; 2011-2394

Accelerated Phase CML - 3.

Peter Maslak, ASH Image Bank 2011; 2011-2395

Accelerated Phase of CML - 2.

Peter Maslak, ASH Image Bank 2011; 2011-2813

Accelerated Phase of CML - 3.

Peter Maslak, ASH Image Bank 2011; 2011-2814

Accelerated Phase of CML - 4.

Peter Maslak, ASH Image Bank 2011; 2011-2815

Accelerated Phase of CML - 7.

Peter Maslak, ASH Image Bank 2011; 2011-2818

Accelerated Phase of CML - 8.

Peter Maslak, ASH Image Bank 2011; 2011-2819

Blast Crisis of CML - 1.

Peter Maslak, ASH Image Bank 2011; 2011-2312

Blast Crisis of CML - 10.

Peter Maslak, ASH Image Bank 2011; 2011-2313

Mechanisms of BCR-ABL activity in CML and blast crisis, leading to stimulation of proliferation and to induction of genetic instability, DNA damage, and impaired DNA repair.

Rüdiger Hehlmann Blood 2012;120:737-747

©2012 by American Society of Hematology

TIME TO PROGRESSION TO AP/BC

CML/002/STI571 trial (GIMEMA-CML WP)

93 late-CP CML pts who lost or never reached CCR

KD mutations w/o other signs of resistance

- The detection of mutation antedates any documented rise in the transcript level by a median time of 9 months
- TKD mutations were the only independent predictor for loss of CCyR in patients who receive imatinib as first line therapy (n=204, RR=13.4, p<0.0001)
- TKD mutations were an independent predictor for PFS in CP population (n= 319, RR=2.3, p=0.01)

Khorashad JCO 2008

BCR-ABL Imatinib-Resistance Mutations

Abl mutations are associated with progression and resistance

Soverini Clin Cancer Res 2006

Dasatinib^[1] (*Top*) and Nilotinib^[2] (*Bottom*), CML-CP Post-Imatinib

- CHR in >75% of IMresistant CP CML
- MCyR in ~ 50%
- CCyR in ~ 40%
- Somewhat higher rates of all responses in IMintolerant cases
- Responses depend on type of mutation and *in vitro* sensitivity to the TKI

Hochhaus A, et al. Blood. 2007;109:2303-2309.
Ie Coutre P, et al. Blood. 2008;111:1834-1839.

Response and PFS with 2nd-Generation TKIs in Imatinib-Resistant CP-CML

	Dasatinib ^{1,2}	Nilotinib ³	Bosutinib ⁴	
Number of pts	167*	226	200	
Follow-up	Minimum 24 mo	Minimum 24 mo	Median 24 mo	
MCyR	63% at 24 mo*	56% at 24 mo	33% at 6 mo	
CCyR	50% at 24 mo*	41% at 24 mo	23% at 6 mo	
PFS at 24 mo, %	80*	64*	73	

*Includes imatinib-intolerant patients.

- 1. Sprycel[®] (dasatinib). Official prescribing information. November 2012.
- 2. Shah NP, et al. J Clin Oncol. 2010;28:15s (abstract 6512).
- 3. Kantarjian HM et al. *Blood*. 2011;117:1141-1145.
- 4. Cortes JE et al. *Blood* 2011;118:4567-4576.

TKI Activity Sensitivity Varies Among Agents Sensitivity of 18 Imatinib-Resistant BCR/ABL Mutants

Sensitive	≤ 2
Moderately resistant	2.01-4
Resistant	4.01-10
Highly resistant	> 10

		IC ₅₀ fold increase (WT = 1)				
		Bosutinib	Imatinib	Dasatinib	Nilotinib	
	Parental	38.31	10.78	> 50	38.43	
	WT	1	1	1	1	
	L248V	2.97	3.54	5.11	2.80	
	G250E	4.31	6.86	4.45	4.56	
P.LOOP	Q252H	0.81	1.39	3.05	2.64	
F-LOOP	Y253F	0.96	3.58	1.58	3.23	
	E255K	9.47	6.02	5.61	6.69	
	E255V	5.53	16.99	3.44	10.31	
C Holix	D276G	0.60	2.18	1.44	2.00	
C-Helix	E279K	0.95	3.55	1.64	2.05	
ATP binding	V299L	26.10	1.54	8.65	1.34	
region	T315I	45.42	17.50	75.03	39.41	
(drug contact sites)	F317L	2.42	2.60	4.46	2.22	
SH2-contact	M351T	0.70	1.76	0.88	0.44	
Substrate binding region (drug contact sites)	F359V	0.93	2.86	1.49	5.16	
	L384M	0.47	1.28	2.21	2.33	
A-1 00P	H396P	0.43	2.43	1.07	2.41	
A-LOOP	H396R	0.81	3.91	1.63	3.10	
	G398R	1.16	0.35	0.69	0.49	
C terminal lobe	F486S	2.31	8.10	3.04	1.85	

BCR/ABL and DNA mutation

Prevention of BC by more effective treatment in early CP as shown by the cumulative incidence of blast crisis (German CML Study Group experience 1983-2011).

Rüdiger Hehlmann Blood 2012;120:737-747

Survival with BC in the preimatinib and imatinib eras.

Rüdiger Hehlmann Blood 2012;120:737-747

Management algorithm of CML-BC.

Rüdiger Hehlmann Blood 2012;120:737-747

BC diagnostics

	Test rationale		
Test at diagnosis of BC			
CBC with differential and bone marrow	Proportions of blasts, promyelocytes, and basophils?		
Flow cytometry and/or cytochemistry	Myeloid or lymphoid phenotype?		
Cytogenetics	Clonal evolution?		
Molecular genetics	Mutation profile? Choice of TKI		
Donor search (if applicable)	Allo-SCT		
Follow-up under therapy			
Blood count and differential	Return to CP?		
Bone marrow and cytogenetics	Ascertainment of second CP		
Molecular genetics	Monitoring of BCR-ABL transcript levels under TKI and after allo-SCT		
In lymphoid BC: CSF cytology	Intrathecal instillation for neuroprophylaxis		

BC indicates blast crisis; CP, chronic phase; CSF, cerebrospinal fluid; CBC, complete blood count; and TKI, tyrosine kinase inhibitor.

Treatment of BC by BCR-ABL TKI

Drug	Patients	CR, %	Survival		
		MBC/LBC	12 mo, %	Median, mo	
Imatinib					
300-600 mg ²⁸	58 (20 LBC)	12	NA	NA	
400-600 mg ⁴⁹	229 (MBC only)	16	30	6.9	
300-1000 mg ⁵⁰	75 (10 LBC)	16	22	6.5	
600 mg ⁵¹	30	13	36	10	
600 mg ⁵²	92 (20 LBC)	17	29	7	
Dasatinib					
50-100 mg bid ⁵⁴	33 (10 LBC)	52/90	~ 22*	~ 6	
70-100 mg bid ⁵⁵	157 (48 LBC)	35/56†	49/30	11.8 (5.3)	
70 bid vs 140 mg qd ⁵⁶	210 (61 LBC)	25-28/40-50	34-39/39-46	8 (10)	
Nilotinib					
Up to 1200 mg ⁵⁸	33 (9 LBC)	18	NA	NA	
400-600 mg bid ⁵⁹	136 (31 LBC)	40	42	10	

CR indicates cytogenetic response (includes complete, partial, minimal, and minor response when available); LBC, lymphoid blast crisis; NA, not available; MBC, myeloid blast crisis; bid, twice a day; and qd, daily.

, At 18 months.

 ${\scriptstyle \leftarrow}$ $^+$ Only complete and major cytogenetic response listed. Updated from Hehlmann and Saussele. 5

Investigational approaches (selection)

Mode of action	Agent(s)	Phase	Target(s)	
Third- generation TKI	Ponatinib ⁵³	Ш	Pan-BCR-ABL including T315I	
	DCC-2036 ⁷²	I	Abl-switch pocket	
PP2A activation	Fingolimod (FTY720)75	Preclinical	PP2A	
	SET antagonist OP44976	Preclinical	SET	
	CIP2A inhibitor ⁷⁴	Preclinical	CIP2A	
Survival of LSCs	BCL6 + TK inhibitors ⁷⁸	Preclinical	BCL6 + BCR-ABL	
	HIF1a inhibitor ⁸⁰	Preclinical	HIF1a	
	IL1 RAP antibodies ⁸⁶	Preclinical	IL1 RAP	
	Smoothened inhibitors in combination with TKI ⁸³ (dasatinib, nilotinib)	Preclinical	Smoothened (hedgehog pathway) + BCR-ABL	
	Jak2 inhibitor + dasatinib ⁸⁵	Preclinical	Jak2 + BCR-ABL, LSC	
Activation of apoptosis	BCL2-inhibitor ABT-73788	Preclinical	Antiapoptotic proteins	
	Triptolide ^{87,88}	Preclinical	Antiapoptotic proteins	
	Dual-kinase inhibitor ON04458091	Preclinical	BC, T315I	
	MEK inhibitor PD184352 + farnesyltransferase inhibitor BMS-214662 ⁸⁹	Preclinical	MEK1, MEK2, RAS	
Others	Omacetaxine ⁹²	11.7.111	BCR-ABL, T315I, BC	

LSC indicates leukemia stem cell; and MEK, mitogen-activated protein kinase kinase.

Early prediction of progression

Study	n	Baseline	3 mo	6 mo	12 mo	End point
Historical						
Mahon et al (IFN) ¹²¹	116	NA	CHR	NA	NA	MCR
Baccarani et al (imatinib, review) ⁸	NA	NA	CHR	NA	CCR	OS
Baseline						
Hasford et al (EUTOS) ¹⁰²	2060	High risk	NA	NA	NA	CCR
Fabarius et al ¹⁵	1151	Major route ACA	NA	NA	NA	OS
Verma et al ¹⁰³	1292	P190 ^{BCR-} ABL	NA	NA	NA	PFS
Clonal evolution						
Baccarani et al (review) ⁸	NA	NA	NA	Any time	NA	OS
Response						
Hanfstein et al ¹²²	692	NA	MR 10%, MCR	MR 1%, CCR	NA	OS
Hehlmann et al ⁴²	1014	NA	NA	NA	MMR (MR 0.1%)	OS
Marin et al ¹²³	282	NA	MR 9.84%	MR 1.67%	MR 0.53%	OS
Jabbour et al ¹²⁴	435	NA	MCR	CCR	NA	OS

Patients at increased risk of progression can be detected by baseline markers, clonal evolution, and early molecular or cytogenetic response indicators. Failure to reach the defined response landmarks at 3, 6, and 12 months identifies a group of high risk patients with higher progression risks (25%-33% of patients at 3 months^{122,123}) who might benefit from an early change of therapy. Percentages are according to international scale.¹³⁰

CHR indicates complete hematologic remission; MCR, major cytogenetic remission; NA, not applicable; OS, overall survival; ACA, additional cytogenetic aberrations; PFS, progression-free survival; and MR, molecular response.

↓* CCR at 18 months.