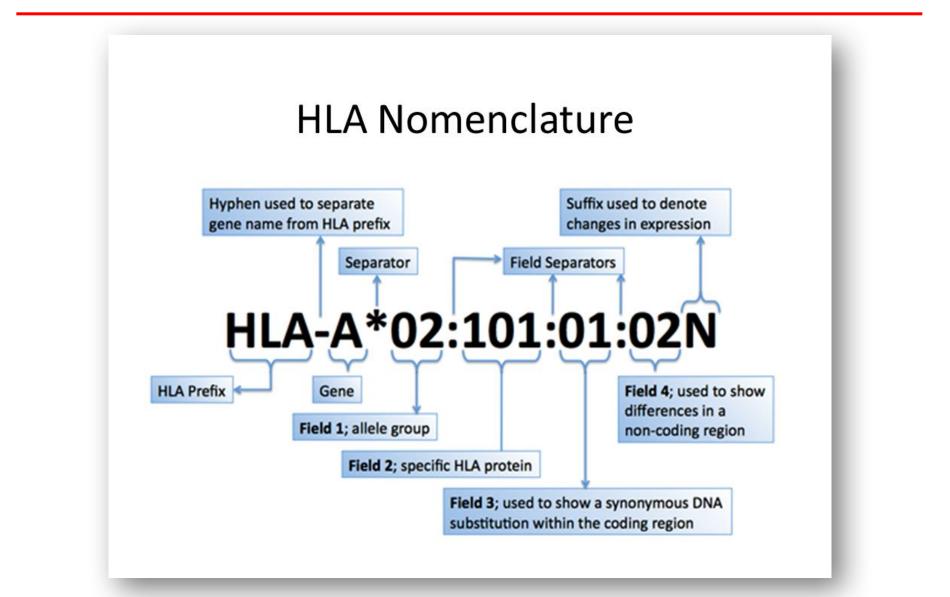
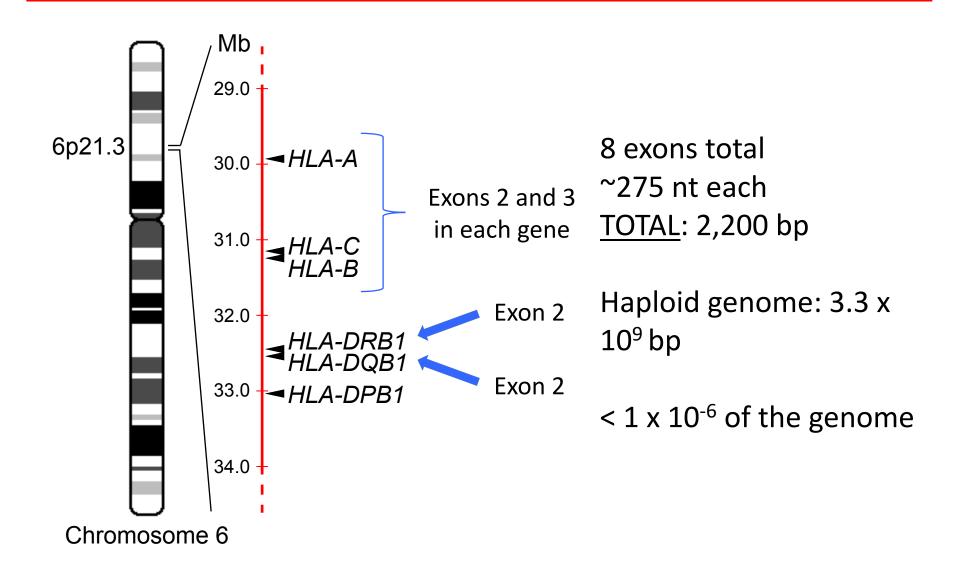
HLA-Typing & Aplastic Anemia

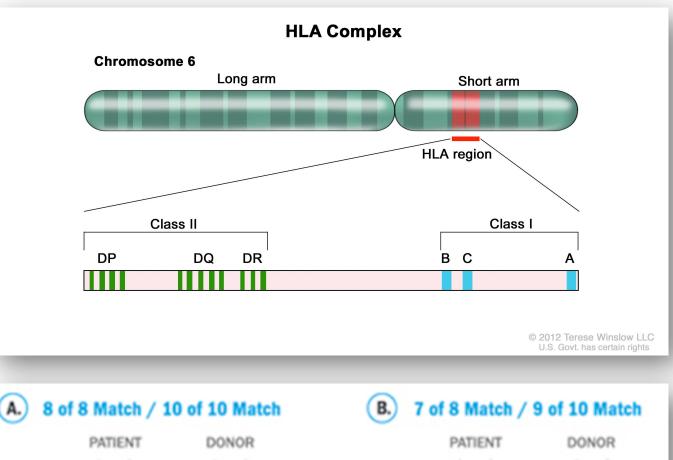
Lymphoma Tumor Board

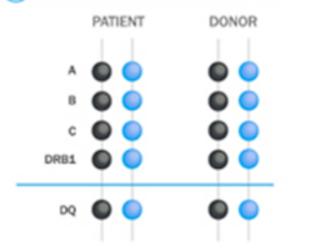
August 18, 2017

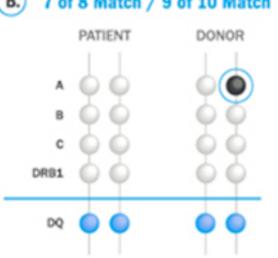

HLA TYPING METHODS

1950's	discovery of HLA system
1960's	serological typing
1980's	first HLA genes cloned, sequenced
1990's	DNA/PCR based HLA typing
1999	sequence entire MHC (HGP)
2000	database of all HLA alleles
2000's	SBT, Luminex SSO
~2012	Next-generation sequencing


Histocompatibility & Immunogenetics


NHS Blood and Transplant

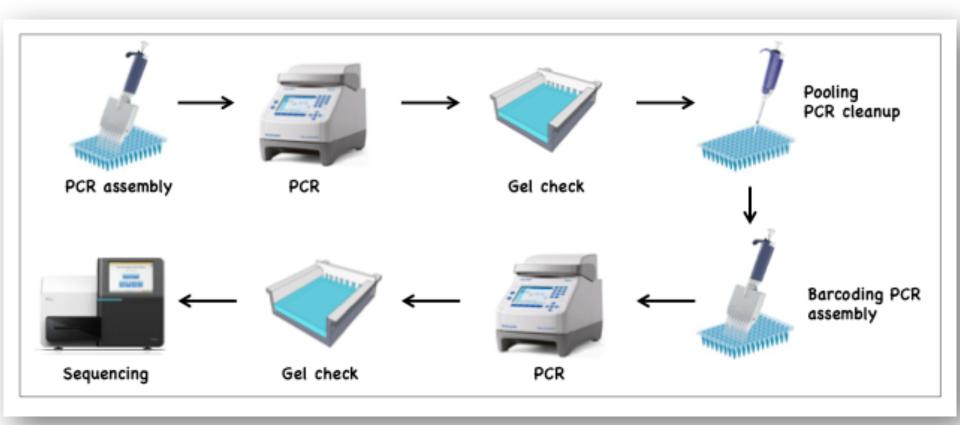

First step is to perform HLA Typing



What is involved in HLA typing, anyway?

\sim	info@sciscoger	netics.com	<u>ا</u> و	• 206.890.2304
		Search		Q,

Home	+ About Us	+ Products & Services	+ Technology	+ Resources	Contact Us		
------	------------	-----------------------	--------------	-------------	------------	--	--


Efficient. Accurate. Reliable.

High resolution HLA and KIR typing.

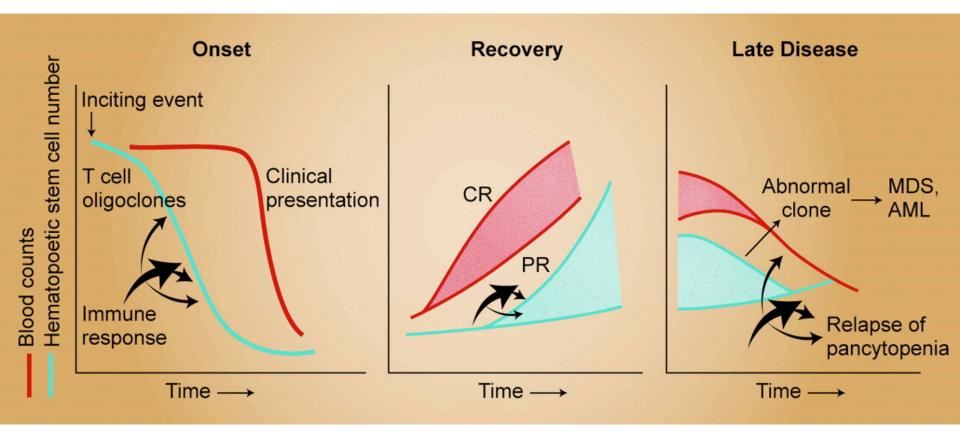
We have developed a highly automated process employing stateof-the-art next generation sequencing technology. Our high throughput technology allows us to process thousands of samples with fast turnaround times and at a competitive price.

Workflow for HLA typing by next-generation sequencing

Sample ID	Locus	Allele 1	Allele 2	Comments	Allele 1 Ambiguities
Warren-KENGONZI-HARRET-S1	А	A*33:03:01	A*36:01		
Warren-KENGONZI-HARRET-S1	В	B*47:03	B*53:01:01		
Warren-KENGONZI-HARRET-S1	С	C*04:01:01	C*06:02:01		
Warren-KENGONZI-HARRET-S1	DPA1	DPA1*01:03:01	DPA1*01:03:01		
Warren-KENGONZI-HARRET-S1	DPB1	DPB1*02:01:02	DPB1*04:01:01		DPB1*02:01:19
Warren-KENGONZI-HARRET-S1	DQA1	DQA1*01:02:01-new	DQA1*01:02:01	DQA1*01:02:01-new with ex4 variations (p663 T>C;p688 A>G)	
Warren-KENGONZI-HARRET-S1	DQB1	DQB1*05:01:01	DQB1*06:02:01		
Warren-KENGONZI-HARRET-S1	DRB1	DRB1*11:01:02	DRB1*11:01:02		
Warren-KENGONZI-HARRET-S1	DRB345	DRB3*02:02:01	DRB3*02:02:01		
Warren-KENGONZI-HARRET-S2	А	A*33:03:01	A*36:01		
Warren-KENGONZI-HARRET-S2	В	B*47:03	B*53:01:01		
Warren-KENGONZI-HARRET-S2	С	C*04:01:01	C*06:02:01		
Warren-KENGONZI-HARRET-S2	DPA1	DPA1*01:03:01	DPA1*01:03:01		
Warren-KENGONZI-HARRET-S2	DPB1	DPB1*02:01:02	DPB1*04:01:01		DPB1*02:01:19
Warren-KENGONZI-HARRET-S2	DQA1	DQA1*01:02:01-new	DQA1*01:02:01	DQA1*01:02:01-new with ex4 variations (p663 T>C;p688 A>G)	
Warren-KENGONZI-HARRET-S2	DQB1	DQB1*05:01:01	DQB1*06:02:01		
Warren-KENGONZI-HARRET-S2	DRB1	DRB1*11:01:02	DRB1*11:01:02		
Warren-KENGONZI-HARRET-S2	DRB345	DRB3*02:02:01	DRB3*02:02:01		

Sample ID	Locus	Allele 1	Allele 2	Comments	Allele 1 Ambiguities
Warren-NYAKATO-MARIAM-S1	А	A*33:03:01	A*36:01		
Warren-NYAKATO-MARIAM-S1	В	B*47:03	B*53:01:01		
Warren-NYAKATO-MARIAM-S1	С	C*04:01:01	C*06:02:01		
Warren-NYAKATO-MARIAM-S1	DPA1	DPA1*01:03:01	DPA1*01:03:01		
Warren-NYAKATO-MARIAM-S1	DPB1	DPB1*02:01:02	DPB1*04:01:01		
Warren-NYAKATO-MARIAM-S1	DQA1	DQA1*01:02:01-new	DQA1*01:02:01	DQA1*01:02:01-new with ex4 variations (p663 T>C;p688 A>G)	
Warren-NYAKATO-MARIAM-S1	DQB1	DQB1*05:01:01	DQB1*06:02:01		
Warren-NYAKATO-MARIAM-S1	DRB1	DRB1*11:01:02	DRB1*11:01:02		
Warren-NYAKATO-MARIAM-S1	DRB345	DRB3*02:02:01	DRB3*02:02:01		
Warren-NYAKATO-MARIAM-S2	А	A*33:03:01	A*36:01		
Warren-NYAKATO-MARIAM-S2	В	B*47:03	B*53:01:01		
Warren-NYAKATO-MARIAM-S2	С	C*04:01:01	C*06:02:01		
Warren-NYAKATO-MARIAM-S2	DPA1	DPA1*01:03:01	DPA1*01:03:01		
Warren-NYAKATO-MARIAM-S2	DPB1	DPB1*02:01:02	DPB1*04:01:01		DPB1*02:01:19
Warren-NYAKATO-MARIAM-S2	DQA1	DQA1*01:02:01-new	DQA1*01:02:01	DQA1*01:02:01-new with ex4 variations (p663 T>C;p688 A>G)	
Warren-NYAKATO-MARIAM-S2	DQB1	DQB1*05:01:01	DQB1*06:02:01		
Warren-NYAKATO-MARIAM-S2	DRB1	DRB1*11:01:02	DRB1*11:01:02		
Warren-NYAKATO-MARIAM-S2	DRB345	DRB3*02:02:01	DRB3*02:02:01		

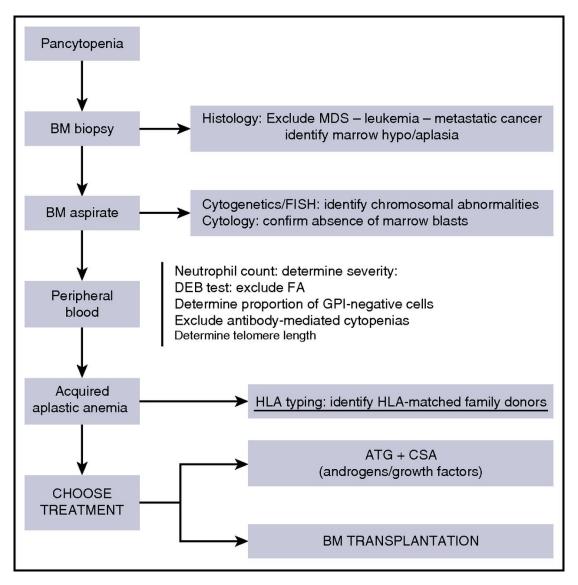
Sample ID	Locus	Allele 1	Allele 2	Comments	Allele 1 Ambiguities
Warren-NYANGONA-ELIZABETH-S1	А	A*33:03:01	A*36:01		
Warren-NYANGONA-ELIZABETH-S1	В	B*47:03	B*53:01:01		
Warren-NYANGONA-ELIZABETH-S1	С	C*04:01:01	C*06:02:01		
Warren-NYANGONA-ELIZABETH-S1	DPA1	DPA1*01:03:01	DPA1*01:03:01		
Warren-NYANGONA-ELIZABETH-S1	DPB1	DPB1*02:01:02	DPB1*04:01:01		DPB1*02:01:19
Warren-NYANGONA-ELIZABETH-S1	DQA1	DQA1*01:02:01-new	DQA1*01:02:01	DQA1*01:02:01-new with ex4 variations (p663 T>C;p688 A>G)	
Warren-NYANGONA-ELIZABETH-S1	DQB1	DQB1*05:01:01	DQB1*06:02:01		
Warren-NYANGONA-ELIZABETH-S1	DRB1	DRB1*11:01:02	DRB1*11:01:02		
Warren-NYANGONA-ELIZABETH-S1	DRB345	DRB3*02:02:01	DRB3*02:02:01		
Warren-NYANGONA-ELIZABETH-S2	А	A*33:03:01	A*36:01		
Warren-NYANGONA-ELIZABETH-S2	В	B*47:03	B*53:01:01		
Warren-NYANGONA-ELIZABETH-S2	С	C*04:01:01	C*06:02:01		
Warren-NYANGONA-ELIZABETH-S2	DPA1	DPA1*01:03:01	DPA1*01:03:01		
Warren-NYANGONA-ELIZABETH-S2	DPB1	DPB1*02:01:02	DPB1*04:01:01		DPB1*02:01:19
Warren-NYANGONA-ELIZABETH-S2	DQA1	DQA1*01:02:01-new	DQA1*01:02:01	DQA1*01:02:01-new with ex4 variations (p663 T>C;p688 A>G)	
Warren-NYANGONA-ELIZABETH-S2	DQB1	DQB1*05:01:01	DQB1*06:02:01		
Warren-NYANGONA-ELIZABETH-S2	DRB1	DRB1*11:01:02	DRB1*11:01:02		
Warren-NYANGONA-ELIZABETH-S2	DRB345	DRB3*02:02:01	DRB3*02:02:01		


Hematopoiesis: some numbers

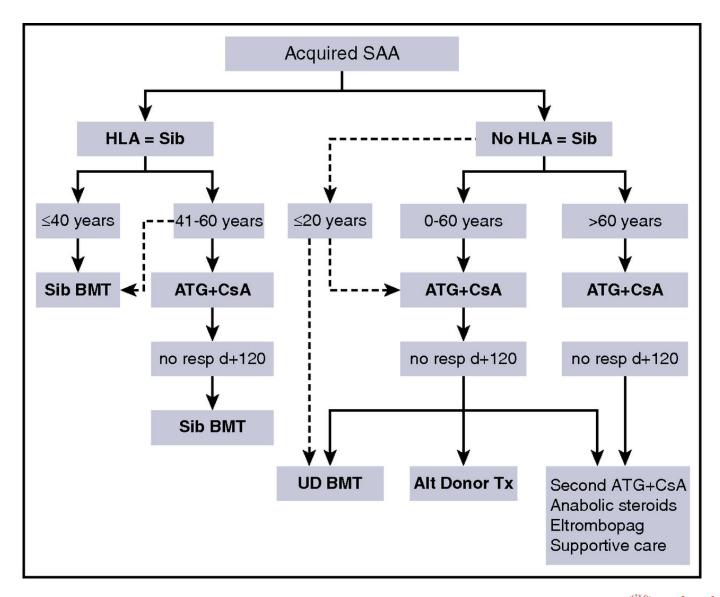
- Each day a typical adult produces:
 - 2 x 10¹¹ red blood cells
 - -1×10^{11} white blood cells
 - 1 x 10¹¹ platelets

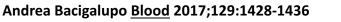
Rates of production can increase <u>10-fold</u>

- Over a lifetime: ~4-8 x 10¹⁵ blood cells
- Maintenance of basal hematopoiesis requires each human HSC to divide ~52 times
- Between the HSC and terminally differentiated circulating blood cells, there are between 17 and 19.5 effective cell divisions, with a net amplification of between ~170,000 and ~720,000


Pathophysiology of acquired aplastic anemia

Pathogenesis and diagnosis of severe aplastic anemia

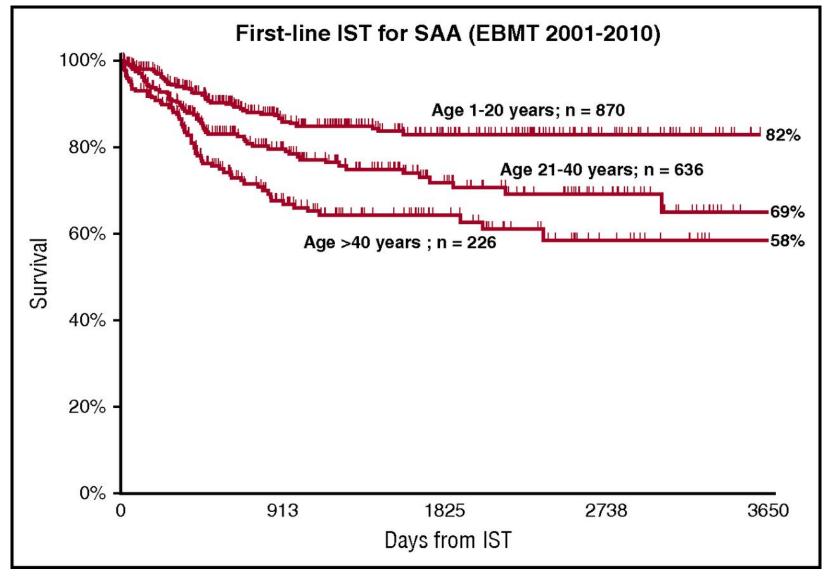

- Acquired SAA results from immune-mediated destruction of hematopoietic cells
- Late clonal disorders arise in 10-20% of patients after immunosuppressive therapy (IST)
- Do some patients with "SAA" actually have a premalignant disease, and is IST just postponing the inevitable?
- Diagnosis is based on the exclusion of other disorders that can cause pancytopenia and on the Camitta criteria (next slide)


Diagnostic procedures in patients with pancytopenia

Treatment strategy in patients with acquired aplastic anemia

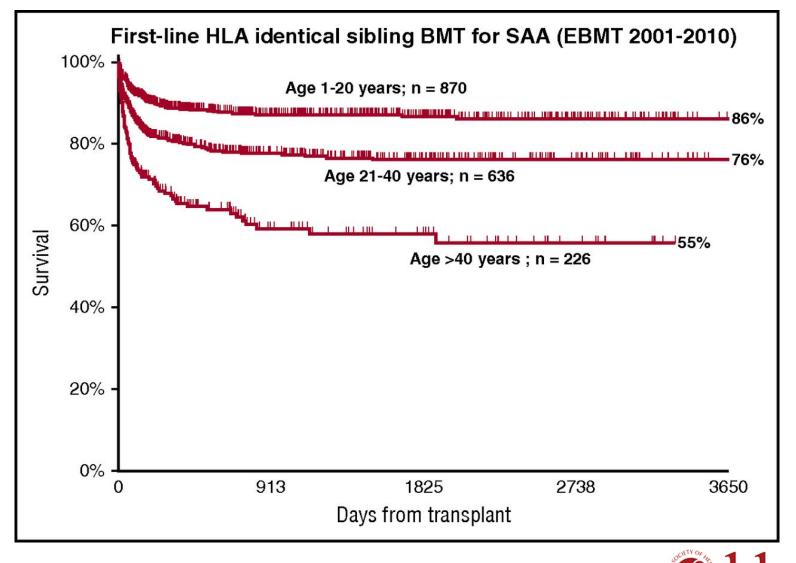
Treatment of SAA (1)

- Moderate cases (lack of blood count criteria for SAA) observation is appropriate when transfusion is not required
- Antibiotics when fever or documented infection occurs in the presence of severe neutropenia (ANC < 500/µL)
- Immunosuppressive therapies are widely used due to lack of transplantation
- ATG-based regimen in combination with cyclosporine
- 60% of patients are responders at 3 or 6 months after initiation of horse ATG

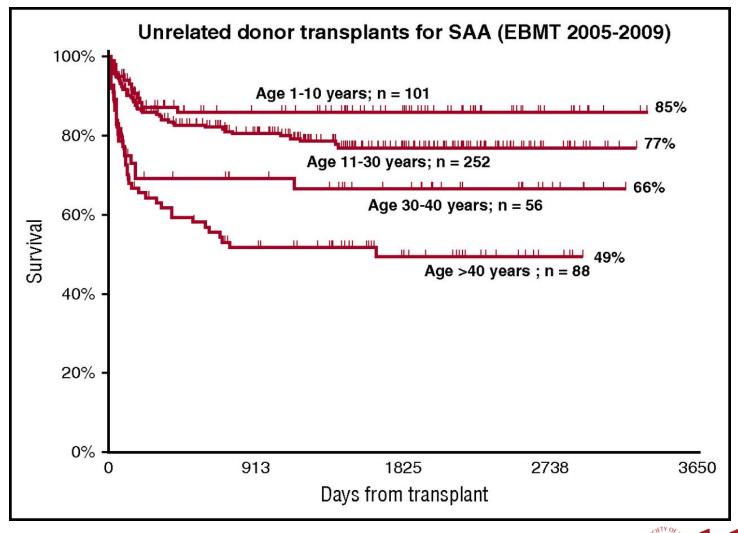

Treatment of SAA (2)

- Perform ATG skin test if available for hypersensitivity to horse serum and desensitize those by intradermal injection
- Platelets should be maintained at more than 20,000/µL during ATG administration
- Patients need to be free of infection before initiating ATG
- ATG administered at a dose of 40 mg/kg over 4 hours, daily for 4 days
- Prednisone 1 mg/kg is started on day 1 and continued for 2 weeks as prophylaxis for serum sickness
- Acetaminophen and diphenhydramine are conventional premedications for treatment with ATG

Treatment of SSA (3)


- Responders have better survival prospects than do nonresponders
- Long-term prognosis is predicted by the robustness of the early blood count response
 - Defined as either platelets or reticulocytes > 50 X 10^9/L [50,000/µL] 3 months after treatment.
- Corticosteroids are of unproven benefit, and inferior in efficacy, to conventional immunosuppression regimens
- Should <u>not</u> transfuse platelets prophylactically in SAA patients who have a platelet count more than 10,000/µL and who are not bleeding

The age effect in patients receiving first-line IST



A strong age effect in patients with aplastic anemia, after transplantation from an HLA-identical sibling

Age effect in URD transplants: best outcome seen for very young patients, for whom first-line URD BMT may be considered

Relapse and Long Term Follow-up

- Defined as requirement for additional immunosuppression & not necessarily recurrent pancytopenia
- Does not by itself indicate a poor prognosis
- Major reason for relapse incomplete eradication by ATG of pathogenic clones
- Second course of ATG therapy can be administered to patients with relapsed or refractory disease
- Cyclophosphamide has been used to treat relapsed/refractory SAA, and is associated with a response rate of about 50%
 - Toxicity of high-dose cyclophosphamide: prolonged neutropenia and susceptibility to infection
 - Higher death rates have been reported with use of cyclophosphamide

References

- http://sciscogenetics.com/
- <u>http://slideplayer.com/slide/5679853/</u>
- Young, N. S., Calado, R. T., & Scheinberg, P. (2006). Current concepts in the pathophysiology and treatment of aplastic anemia. <u>Blood</u>, 108(8), 2509-2519. Accessed August 10, 2016. <u>http://dx.doi.org/10.1182/blood-2006-03-010777</u>.
- Scheinberg, P., & Young, N. S. (2012). How I treat acquired aplastic anemia. <u>Blood</u>, 120(6), 1185-1196. Accessed August 10, 2016. <u>http://dx.doi.org/10.1182/blood-2011-12-274019</u>.
- Bacigalupo, A. (2017). How I treat acquired aplastic anemia. <u>Blood</u>, 129(11), 1428-1436. Accessed August 03, 2017. <u>https://doi.org/10.1182/blood-2016-08-693481</u>.