Therapy-Related AML

Lymphoma Tumor Board

July 7, 2017

WWW.MEDCOMIC.COM

C 2016 JORGE MUNIZ

Therapy-related AML (T-AML)

TABLE 1: 2008 WHO classification of acute myelogenous leukemia (AML)

AML with recurrent genetic abnormalities

AML with t(8;21)(q22;q22); *RUNX1-RUNX1T1* AML with inv(16)(p13,1q22) or t(16;16)(p13.1;q22); *CBFB-MYH11* AML with t(15;17)(q22;q12); *PML-RARA* AML with t(9;11)(p22;q23); *MLLT3-MLL* AML with t(6;9)(p23;q34); *DEK-NUP214* AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); *RPN1-EVI1* AML (megakaryoblastic) with t(1;22)(p13;q13); *RBM15-MKL1* Provisional entity: AML with mutated *NPM1* Provisional entity: AML with mutated *CERPA*

Provisional entity: AML with mutated CEBPA

AML with myelodysplasia-related changes

Therapy-related myeloid neoplasms

AML, not otherwise specified

AML with minimal differentiation

AML without maturation

AML with maturation

Acute myelomonocytic leukemia

Acute monoblastic/monocytic leukemia

Acute erythroid leukemias

Pure erythroid leukemia

Erythroleukemia, erythroid/myeloid

Acute megakaryoblastic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

Myeloid sarcoma

WHO = World Health Organization

Swerdlow SH, Campo E, Harris NL, et al (eds): WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 109–138, 2009.

Vardiman JW, Thiele J, Arber DA, et al: The 2008 revision of the World Health Organization classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood 114:937–951, 2009

Therapy-related AML (t-AML)

- Clinical syndrome that occurs after cytotoxic and/or radiation therapy
- ~10% of all AMLs arise after exposure to chemotherapy and/or radiation for a primary malignancy or autoimmune disease, and are called t-AML
- Considered to have inferior outcome compared with *de novo* AML
- Latency period between diagnosis of primary malignancy and t-AML can range from a few months to several years
 - Depends on the type of treatment that was received for the primary malignancy
- t-AML associated with abnormal cytogenetics more commonly than de novo AML
- 2 subtypes of t-AML are described, but are not subcategorized by WHO classification:
 - Most common subtype occurs after exposure to alkylating agents and/or radiation
 - Latency period of 5-10 years
 - Unbalanced cytogenetic abnormalities
 - Loss of all or some parts of chromosome 5 and or 7
 - Less common subtype occurs after treatment with agents targeting topoisomerase II
 - Latency period of 1-5 years
 - Balanced chromosomal rearrangements involving MLL, RUNX1, and PML-RARA

Reference Case : Therapy-related myeloid neoplasm (acute myeloid leukemia)

Authors: Elizabeth L. Courville, MD

Category: Myeloid Neoplasms and acute leukemia (WHO 2016) > Acute Myeloid Leukemia > Therapy-related myeloid neoplasms

Description:

67 year old female with a history of breast cancer diagnosed 2 years prior to this biopsy and treated with cytotoxic chemotherapy. Therapy related myeloid neoplasms include therapy-related acute myeloid leukemia (t-AML), myelodysplastic syndrome (t-MDS), and myelodysplastic/myeloproliferative neoplasms (t-MDS/MPN). These neoplasms occur as late complications of cytotoxic chemotherapy and/or radiation therapy administered for a prior neoplastic or non-neoplastic disorder. Cytogenetic analysis of the bone marrow specimen in this case was abnormal, showing a t(6;11)(q27;q23) by karyotype and a *MLL* gene rearrangment in 90.5% of cells examined by FISH. A balanced chromosomal translocation is seen in about 25% of cases of therapy-related myeloid neoplasm. Such cases are generally associated with a short latency period, most often present as overt AML without a preceding myelodysplastic phase, and are associated with prior topoisomerase II inhibitor therapy.

Peripheral blood smear

The peripheral blood shows anemia, thrombocytopenia, and a leukocytosis with numerous circulating blasts.

Copyright © 2017 American Society of Hematology. Copyright restrictions may apply.

Aspirate smear and touch preparation

Blasts are increased on differential count of the aspirate smear (44%).

Copyright © 2017 American Society of Hematology. Copyright restrictions may apply.

Aspirate smear and touch preparation

Blasts are increased on differential count of the aspirate smear (44%).

Copyright © 2017 American Society of Hematology. Copyright restrictions may apply.

Trephine Core

The trephine core is hypercellular with frequent blasts. Scattered megakaryocytes are notable for widely separated nuclear lobes.

Copyright © 2017 American Society of Hematology. Copyright restrictions may apply.

Risk factors for therapy-related AML/MDS

Risk factors for therapy-related AML/MDS

t-AML attributable to cytotoxic drugs falls into two general classes

Table 1.

Anti-cancer agents and detoxification/DNA repair.

Class		GST	СҮР	DNA repai
Alkylating agents	Mechlorethamine Cyclophosphamide Melphalan Busulphan BCNU, CCNU	GSTT1 GSTM1 GSTP1	CYP2B6 CYP2C19 CYP3A4	MGMT BER (RAD51 XRCC3)
Topoisomerase I inhibitors	Topotecan Irinotecan		CYP3A	NHEJ
Topoisomerase II inhibitors	Mitoxantrone Daunorubicin Doxorubicin Etoposide Teniposide	(GSTP1)	CYP1B1 CYP3A4	NHEJ (RAD51 XRCC3)
lonizing radiation				(RAD51 XRCC3)

Leone G, et al, <u>Haematologica</u> 2007;92(10):1389-98.

Copyright © 2005 Nature Publishing Group Nature Reviews | Cancer

Risk factors for t-AML/MDS after Rx for Hodgkin lymphoma

Table 2.

Risk of MDS/AML in patients receiving chemo/radiotherapy for Hodgkin's lymphoma, according to treatment.

Table 2 Risk of MDS/AML in patients receiving chemo/radiotherapy for Hodgkin's lymphoma, according to treatment

References	No. of pts	Therapy	Cases of t-MDS/AML	Cumulative Risk (%)
Brusamolino <i>et al.</i> ³⁵	348	RT	2	0.3
Josting et <i>al.</i> ³⁷	677		4	0.6
Brusamolino <i>et al.</i> ³⁵	124	MOPP	3	2.2
Josting <i>et al.</i> ³⁷	1775	COPP+ABVD	15	0.8
Brusamolino <i>et al.</i> ³⁵	277	MOPP+RT	18	10.2 (15 yrs)
Delwail <i>et al.</i> ³⁶	374	(involved field)	5	2.4 (15 yrs)
Delwail <i>et al.</i> ³⁸	36	(extended field)	4	13.9 (15 yrs)
Brusamolino <i>et al.</i> ³⁵	24	ABVD	0	0
Josting <i>et al.</i> 37	304		1	0.3
Brusamolino <i>et al.</i> ³⁵ Delwail <i>et al.</i> ³⁶ Delwail <i>et al.</i> ³⁶	129 279	ABVD+RT (involved field) (extended field)	2+1 (ALL) 0	0.8 1.2 0
Josting et al.37	500	BEACOPP baseline	2	0.4
	460	BEACOPP escalated	8	1.7

RT: radiotherapy; MOPP: mechlorethamine, vincristine, procarbazine, prednisone; ABVD: adriamycin, bleomycin, vinblastine, dacarbazine; COPP: cyclophosphamide, vincristine, procarbazine, prednisone; BEACOPP: bleomycin, etoposide, cyclophosphamide, vincristine, procarbazine, prednisone.

Leone G, et al, <u>Haematologica</u> 2007;92(10):1389-98.

Copyright © 2005 Nature Publishing Group Nature Reviews | Cancer

Risk factors for t-AML/MDS after Rx for breast cancer

Table 3.

Incidence and relative risk of t-MDS-AML in breast cancer. Distribution of leukemia cases by treatment.

Table 3. Incidence and relative risk of t-MDS-AML in breast cancer. Distribution of leukemia cases by treatment.

References	No. of pts.	Therapy	Cases of t-MDS/AML (No.)	Cumulative risk (%)
Praga et al. 64	7110	Epirubicin regimens	28	0.55 (8 y)
	1427	CMF	1	0.07
	903	Hormone therapy	1	0.11
Smith <i>et al.</i> ∞	4483	B15-Doxorubicin +CTX (2400 mg/m ²)	11	0.27 (8 y)
	763	B16-Doxorubicin +CTX (4800 mg/m ²)	4	0.40 (8 y)
	772	B18-Doxorubicin +CTX (4800 mg/m ²)	6	0.52 (8 y)
	849	B22-Doxorubicin +CTX (4800 mg/m ²)	4	0.47 (8 y)
	847	B23-Doxorubicin +CTX (4800 mg/m ²)	10	1.19 (8 y)
	849	B25-Doxorubicin +CTX (9600 mg/m ²)-G-CSF	8	0.95 (8 ý)
Hershman et al.66	1569	Doxorubicin regimens	18	1.14
	3330	CTX regimen	40	1.20
	2837	Radiotherapy	40 38	1.33
	890	G-CSF/GM-CSF treatment*	16	1.79
Kapplan ⁶⁷	154	Surgery only	1/2**	0.65/1.30**
	1403	Surgery + Radiotherapy	0/4**	0/0.29**
	352	Surgery + Chemotherapy	0/0**	0/0**
	957	Surgery + Chemotherapy + Radiotherapy	2/2**	0.21/0.21**
Howard et al.68	89560	Surgery only	133**	0.14**
	99275	Radiotherapy, no chemotherapy	221**	0.22**
	11941	Chemotherapy, no radiotherapy	14**	0.11**
	15130	Chemotherapy and radiotherapy	14**	0.09**

The distribution of leukemia cases by treatment. CMF: cyclophosphamide (CTX), methotrexate, and fluorouracil; *p value: 0.06, compared to patients who did not receive G-CSF/GM-CSF; **all cases of leukemia (CML, AML and ALL) were included.

Leone G, et al, <u>Haematologica</u> 2007;92(10):1389-98.

Distribution of cytogenetic abnormalities in t-AML

Sabine Kayser et al. Blood 2011;117:2137-2145

Frequency and distribution of cytogenetic abnormalities in AML patients exhibiting at least one abnormality

Sabine Kayser et al. Blood 2011;117:2137-2145

Different genetic pathways in t-MDS and t-AML

Jens Pedersen-Bjergaard et al. <u>Blood</u> 2002;99:1909-1912

Treatment of t-AML

- Limited data are available optimal treatment of t-AML is uncertain
- Supportive care is favored along with clinical trials
- In select cases, aggressive therapy such as allogenic hematopoietic cell transplantation (HCT) may be an option and can be curative
- Important considerations:
 - Patient age
 - Co-morbidities
 - Performance status
 - Persistence of primary malignant disease
 - Tumor karyotype
 - If patient is a candidate for induction chemotherapy, tumor cytogenetics can help determine the prognosis and chances of completing induction therapy.

One commonly used system for estimating prognosis based on karyotype is:

- Favorable t(8;21), inv(16), t(15;17)
- Intermediate Normal, t(9;11), other abnormalities not described as favorable or unfavorable
- Unfavorable 3q21q26 abnormalities, del 5q, del 7q, t(6;9), other 11q23 abnormalities, 12p abnormalities, 17p abnormalities, monosomies 5 or 7, trisomies 8 or 13, or complex aberrant karyotypes described as at least three unrelated abnormalities excluding cases with t(8;21), inv(16), and t(15;17)

Decision tree for the management of therapy-related myeloid neoplasms

Richard A. Larson Haematologica 2009;94:454-459

ournal of the European Hem

Published by the Ferrata Storti Foundation

Kaplan-Meier survival analysis of overall and relapse-free survival in 2853 patients with de novo AML or t-AML

Kaplan-Meier survival analysis of 65 consecutive patients with t-AML after allogeneic transplantation

Alam N, et al. Bone Marrow Transplantation 2015;50(9):1180-6.

Relapse and death in CR in t-AML and *de novo* AML

Sabine Kayser et al. Blood 2011;117:2137-2145

Influence of AML type and postremission Rx on CID and CIR

Auer Rods

Gordon SW, Krystal GW. <u>N Engl J Med</u> 2017; 376:2065-2065.

References

- Kayser, S., Döhner, K., Krauter, J., Köhne, C., Horst, H. A., Held, G., von Lilienfeld-Toal, M., Wilhelm, S., Kündgen, A., Götze, K., Rummel, M., Nachbaur, D., Schlegelberger, B., Göhring, G., Späth, D., Morlok, C., Zucknick, M., Ganser, A., Döhner, H., Schlenk, R. F., & , . (2011). The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood, 117(7), 2137-2145. Accessed June 26, 2017. https://doi.org/10.1182/blood-2010-08-301713.
- Kida, M., Usuki, K., Uchida, N., Fukuda, T., Iwato, K., Matsuoka, K., Eto, T., Ichinohe, T., Atsuta, Y., Takanashi, M., Takami, A., Miyazaki, Y., Yano, S., & Ishiyama, K. (2015). Outcome and Risk Factors for Therapy-Related Myeloid Neoplasms Treated with Allogeneic Stem Cell Transplantation. Blood, 126(23), 4371. Accessed June 27, 2017. Retrieved from http://www.bloodjournal.org/content/126/23/4371.
- Larson, R. A. (2009). Therapy-related myeloid neoplasms. *Haematologica*, 94(4), 454–459. <u>http://doi.org/10.3324/haematol.2008.005157</u>
- Alam N, Atenafu EG, Kuruvilla J, Uhm J, Lipton JH, Messner HA, et al. Outcomes of patients with therapyrelated AML/myelodysplastic syndrome (t-AML/MDS) following hematopoietic cell transplantation. Bone Marrow Transplant. 2015;50(9):1180-6.
- Pedersen-Bjergaard, J., Andersen, M. K., Christiansen, D. H., & Nerlov, C. (2002). Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood, 99(6), 1909-1912. Accessed June 29, 2017. <u>https://doi.org/10.1182/blood.V99.6.1909</u>.
- Leone G, Pagano L, Ben-Yehuda D, Voso MT. Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica. 2007;92(10):1389-98.
- <u>https://www.uptodate.com/contents/therapy-related-myeloid-neoplasms-acute-myeloid-leukemia-and-myelodysplastic-syndrome</u>
- Robert Peter Gale M, PhD, FACP, F. Owen Hoffman, PhD, John M. Bennett, MD Therapy-Related AML and MDS: Who Really Has It? The Hematologist. 2015;12(4).
- http://imaging.ubmmedica.com/all/editorial/cancernetwork/cmhb/29_Table1_large.png
- <u>https://en.wikipedia.org/wiki/Acute_myeloid_leukemia</u>
- https://imagebank.hematology.org/
- <u>https://news.mayomedicallaboratories.com/files/2014/09/ASH-Symposium2014.jpg.jpeg</u>
- <u>www.medcomic.com</u>