Adult T-cell lymphoblastic leukemia/lymphoma

Lymphoma Tumor Board

September 8, 2017

Diagnosis of T-cell lymphoblastic leukemia/lymphoma

- Lymphoblastic lymphoma (LBL) is rare
- Sub-type of lymphoma that is generally of T-cell origin
- Comprises about 2% of all NHLs in adults
- Characteristics are very similar to acute lymphoblastic leukemia (ALL)
- Patients with predominantly nodal disease at presentation are classified as LBL, whereas those with primarily disease in the marrow or peripheral blood are classified as ALL
- Historically, no standard of care treatment specifically designed for LBL
- Pathology antigens usually evaluated at time of diagnosis:
 - CD45 (LCA), CD3, CD2, CD5, CD7, TdT, CD1a, CD10, CD19, CD20, CD79a, kappa/lambda, CD13, CD33, myeloperoxidase

Pathology of T-cell lymphoblastic leukemia/lymphoma

Α.

Β.

Image A. T-cell lymphoblastic lymphoma/leukemia in bone marrow biopsy. Neoplastic lymphocytes surround residual megakaryocytes and erythroid precursors. H&E section of formalin fixed tissue.

Image B. T-cell lymphoblastic lymphoma/leukemia. Cytology of lymphoblasts reveals medium sized cells with delicate unclumped chromatin, convoluted nuclear membrane and small but distinct nucleoli.

Immunophenotype of lymphoblastic T-cell leukemia/lymphoma

Table 1. T-cell CD antigen expression in pro-, pre-, cortical (thymic), and mature T-cell ALL cyCD3 indicates cytoplasmic CD3; sCD3, surface CD3

	cyCD3	CD7	CD5	CD2	CD1a	sCD3	CD34
Pro-T	+	+	_	_	_	_	±
Pre-T	+	+	+	+		_	<u>+</u>
Cortical (thymic)	+	+	±	±	+	±	—
Mature	+	+	±	+	_	+	_

Table 1 Immunophenotypes in T-ALL					
Disease Subtype	Immunophenotype				
T-Lineage	TdT+, cyCD3+, CD7+				
Early	CD2-, sCD3-, CD1a-				
Thymic	sCD3±, CD1a+				
Mature	sCD3+, CD1a-				

Table 2	Clinical Features in Adult T-ALL/T-LBL (GMALL Results)							
Characteristic		T-ALL (N = 506)	T-LBL (N = 101)					
Median <i>I</i>	Age, Years	30	25					
Male Sex, %		70	73					
Mediastinal Tumor, %		66	91					
Pleural Effusion, %		1	40					
CNS, %		7	0-10					
BM Invol	vement, %	100	0-23					

Abbreviation: BM = bone marrow; CNS = central nervous system; GMALL = German Multicenter Study Group for Adult ALL

The landscape of genetic alterations in T-ALL

Mark R. Litzow, and Adolfo A. Ferrando Blood 2015;126:833-841

Deregulation of the JAK-STAT signaling cascade in T-ALL

Tiziana Girardi et al. <u>Blood</u> 2017;129:1113-1123

Representation of the cooperation of oncogenic events

Tiziana Girardi et al. <u>Blood</u> 2017;129:1113-1123

Treatment of T-cell lymphoblastic leukemia/lymphoma

- Adaptation of pediatric protocols of intensive chemotherapy and CNS prophylaxis has led to marked improvements in outcomes in adults
- Numerous chemotherapy/radiotherapy regimens are similar in dose and schedule to ALL regimens
- Common features of these regimens include:
 - Induction therapy
 - CNS prophylaxis
 - Consolidation therapy
 - Subsequent maintenance therapy for 12 to 18 months
- Long-term disease-free survival rates between 40-70%

Table 3 Cumulative Treatment Results in Adult Patients With Lymphoblastic Lymphoma ⁸									
Study Result	No. of Studies	No. of Patients	Median Age, Years	CR, % (Range)	DFS, % (Range)				
Conventional NHL	5	114	28-45	58 (53-71)	36 <mark>(</mark> 23-53)				
Modified NHL	5	112	14-22	92 (79-100)	49 (23-56)				
High-Grade NHL	4	64	25-34	67 (57-84)	51 <mark>(</mark> 35-75)				
ALL Protocols	9	282	22-37	80 (55-100)	56 (45-67)				

Abbreviations: ALL = acute lymphoblastic leukemia; DFS = disease-free survival; NHL = non-Hodgkin lymphoma

Table 4 R	ecent Results of ALL-Type F	Regimens in Adult	Patients With A	Acute Lymphob	lastic Lymphoma
-----------	-----------------------------	-------------------	-----------------	---------------	-----------------

Study	Year	Number of Patients	Median Age, Years	Induction	CNS Prophylactic	CR, %	DFS, %
Hoelzer et al ⁶	2002	45	25	GMALL 04/89 + 05/93	Intrathecal, CRT	93%	62%
Thomas et al ¹⁸	2004	33	28	fC, V, DX, HDM, HDAC repeated	Intrathecal	91%	70%
Song et al ¹⁹	2007	34	26	ALL-type induction + autoSCT	Intrathecal ± TBI	NR	72%

Abbreviations: autoSCT = autologous stem cell transplantation; CRT = cranial radiation therapy; DX = doxorubicin; fC = fractionated cyclophosphamide; GMALL = German Multicenter Study Group for Adult ALL; HDAC = high-dose cytosine arabinoside; HDM = high-dose methotrexate; NR = not reported; TBI = total-body irradiation; V = vincristine

Intensive induction regimens for ALL

Table 1

Intensive Induction Regimens for Adult Lymphoblastic Lymphoma

				Failure-Free Survival/	
Author	Regimen	Ν	Response Rate	Relapse-Free Survival	Overall Survival
Coleman et al [11]	Two ALL-type protocols with intensified CNS	44	100%	3-yr FFS = 56%	NA
Slater et al [12]	Various ALL protocols	51	80% CR for "nonleukemic"; 77% CR for leukemic	NA	5-yr actuarial OS = 45%
Bernasconi et al [13]	Various ALL protocols	31	77% OR	3-yr RFS = 45%	3-yr OS = 59%
Levine et al [16]	$Modified\;LSA_2L_2$	15	73% CR; 27% PR	5-yr actuarial FFS = 35%	5-yr actuarial OS = 40%
Weinstein et al [17]	APO	21	95% CR	3-yr actuarial FFS = 58%	5-yr actuarial OS = 69%
Hoelzer et al [18]	Two ALL-type protocols, both including CNS and	45	93% CR	7-yr actuarial DFS = 62%	7-yr actuarial OS = 51%
Thomas et al [19]	HyperCVAD	33	91%	3-yr PFS = 66%	3-yr OS = 70%
Jabbour et al [20]	LMT-89 (ALL-type induction regimen derived	27	85% OR	5-yr FFP = 44%	5-yr OS = 63%
Song	"Hybrid" NHL/ALL regimen	34	100% OR	4-yr EFS = 68%	4-yr OS = 72%

ALL = acute lymphoblastic leukemia; APO = doxorubicin (Adriamycin), prednisone, vincristine (Oncovin); CHOP = cyclophosphamide, hydroxydaunomycin, vincristine, prednisone; CNS = central nervous system; CR = complete response; DFS = disease-free survival; EFS = event-free survival; FFP = freedom from progression; FFS = failure-free survival; HyperCVAD = hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, cytarabine, methotrexate; IPI = International Prognostic Index; NA = not available; NHL = non-Hodgkin lymphoma; OR = overall response; PR = partial response; RFS = relapse-free survival; SCT = stem cell transplantation.

Schema for the hyper-CVAD and modified hyper-CVAD regimens

HYPER-CVAD REGIMEN

MODIFIED HYPER-CVAD

Deborah A. Thomas et al. <u>Blood</u> 2004;104:1624-1630

Treatment of T-ALL

Mark R. Litzow, and Adolfo A. Ferrando <u>Blood</u> 2015;126:833-841

Supportive care - ALL

- Allopurinol is recommended for the first 10 days of induction therapy to prevent hyperuricemia.
- Antimicrobial prophylaxis, antiviral and *Pneumocystis jiroveci* pneumonia prophylaxis throughout treatment.
- Fungal prophylaxis should include mould coverage throughout induction therapy.
 - Broader spectrum azole antifungals should be used with caution when using vincristine.
- Asparaginase-related toxicities (used for B-ALL)
 - Asparaginase-related hypersensitivity reactions can occur in 20% of children and adults.

OS from the diagnosis of patients with Bvs T-ALL in the UKALLXII/E2993 trial

Mark R. Litzow, and Adolfo A. Ferrando Blood 2015;126:833-841

Comparison of OS in patients with T-cell ALL who had a matched sibling donor vs. those without a donor within the UKALL XII/E2993 trial

David I. Marks, and Clare Rowntree Blood 2017;129:1134-1142

Comparison of OS in patients with T-cell ALL treated with autologous stem cell transplantation (auto) or chemotherapy (chemo) within the UKALL XII/E2993

David I. Marks, and Clare Rowntree Blood 2017;129:1134-1142

Table 7 Results of SCT in a	Results of SCT in adult B/T-LBL ⁸						
Treatment Result	N	DFS, % (Range)					
Auto CR1	241	61 (31-77)					
Auto > CR1	15	47 (43-50)					
Allo CR1	30	74 (59-91)					
Allo > CR1	32	16 (14-17)					

Results of most of the studies were not separated by B- or T-LBL. Abbreviations: allo = allogeneic; auto = autologous; CR1 = first complete remission; DFS = disease-free survival; SCT = stem cell transplantation

Nelarabine

- Arabinonucleoside antimetabolite with antineoplastic activity
- Metabolized to ara-G; inhibits DNA synthesis, leads to apoptosis
- Approved by US FDA in October of 2005 for ALL and T-cell lymphoblastic lymphoma that has not responded to treatment
- Also approved by the EU in October of 2005
- Complete responses have been achieved with Nelarabine

bin research paper

Safety and efficacy of nelarabine in children and young adults with relapsed or refractory T-lineage acute lymphoblastic leukaemia or T-lineage lymphoblastic lymphoma: results of a phase 4 study

Christian Michel Zwaan,¹ Jerzy Kowalczyk,² Claudine Schmitt,³ Bella Bielorai,⁴ Mark W. Russo,⁵ Mary Woessner,⁵ Sulabha Ranganathan⁶ and Guy Leverger⁷

¹Department of Paediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands, ²Department of Paediatric Haematology, Oncology and Transplantology, Medical University, Lublin, Poland, ³Department of Haematology-Oncology-Paediatrics, Children's Hospital, Nancy, France, ⁴Department of Paediatric Haematology-Oncology & BMT, Sheba Medical Centre, Ramat Gan, Israel, ⁵Novartis Pharmaceuticals Corporation, East Hanover, NJ, ⁶Adaptimmune LLC, Philadelphia, PA, USA and ⁷Department of Paediatric Onco-Haematology, APHP, Armand Trousseau Hospital, Paris, France

Received 5 April 2017; accepted for publication 19 June 2017

Correspondence: Christian Michel Zwaan, Erasmus MC-Sophia Children's Hospital, Wytemaweg 80, 3015 GN Rotterdam, The Netherlands.

E-mail: c.m.zwaan@erasmusmc.nl

Summary

Nelarabine is an antineoplastic agent approved for the treatment of relapsed/refractory T-lineage acute lymphoblastic leukaemia (T-ALL) or T-lineage acute lymphoblastic lymphoma (T-LBL). The purpose of this phase 4, multicentre, single-arm, observational, open-label trial was to provide additional data on the safety and efficacy of nelarabine under licensed conditions of use in children and young adults ≤21 years of age. Patients (N = 28) had a mean \pm standard deviation age of 11.5 ± 4.6 years; 71% were male and 61% had a diagnosis of T-ALL. Adverse events (AEs) and treatment-related AEs were experienced by 46% and 21%, respectively, and included few haematological AEs and no haematological serious AEs. Neurological AEs from one of four predefined categories (peripheral and central nervous systems, mental status change and uncategorized) were reported in four patients. There were no AE-related treatment discontinuations/withdrawals. The overall response rate was 39.3%: complete response (CR), 35.7%; CR without full haematological recovery (CR*), 3.6%. Posttreatment stem cell transplantation was performed for 46% of the cohort. Median overall survival (OS) was 3.35 months for non-responders and not reached for responders (CR + CR*). The response rate, median OS, and safety profile of nelarabine in this disease setting and population were consistent with those reported previously.

Keywords: nelarabine, paediatric, acute lymphoblastic leukaemia, acute lymphoblastic lymphoma, T-lineage.

Efficacy of Nelarabine in a phase 4 trial

Efficacy of Nelarabine in a phase 4 trial

Table 5 Mediastinal Relapses in Adult T-ALL/T-LBL (GMALL Results)									
	Т	-ALL	T-LBL						
Study Proposal	Prophylactic, All Patients	Therapeutic Only if Residual Mediastinal Tumor	Therapeutic, All Patients	Therapeutic, All Patients					
Mediastinal Radiation Dose	24 Gy	24 Gy	24 Gy	36 Gy					
Relapses									
Total	61	251	15	10					
Mediastinal	1 (~1%)	9 (3%)	7 (47%)	3 (30%)					

Abbreviations: GMALL = German Multicenter Study Group for Adult ALL; T-ALL = T-cell acute lymphoblastic leukemia; T-LBL = T-cell lymphoblastic lymphoma

Table 6 Potential Adverse Prognostic Factors in Adult ALL

Prognostic Factor at Diagnosis	All	B-Precursor	T-ALL
High WBC	-	> 30,000/µL	> 100,000/µL ±
Immunophenotype	-	pro-B, CD10 neg pre-B	Early T, Mature T, CD56
Cytogenetics/Molecular Genetics	Complex karyotype, Dic (9), High hyperdiploid	t(9;22)/BCR-ABL, t(4;11)/ALL1-AF4 (pro-B), t(1;19)/PBX-E2A, t(12;21)/TEL-AML1	ERG, BAALC, SIL-TAL1, HOX11L2, NUP214-ABL, HOX11

Abbreviations: ALL = acute lymphoblastic leukemia; WBC = white blood cell count

References

- <u>https://www.verywell.com/lymphoblastic-lymphoma-2252372</u>
- ASH Image Bank: <u>http://imagebank.hematology.org/</u>
- Litzow, M. R., & Ferrando, A. A. (2015). How I treat T-cell acute lymphoblastic leukemia in adults. Blood, 126(7), 833-841. Accessed February 02, 2017. <u>https://doi.org/10.1182/blood-2014-10-551895</u>.
- <u>http://www.slideshare.net/usmlegalaxy/acute-lymphoblastic-lymphoma</u>
- <u>http://www.cancernetwork.com/articles/treatment-lymphoblastic-lymphoma-adults</u>
- Foss, F. M., Zinzani, P. L., Vose, J. M., Gascoyne, R. D., Rosen, S. T., & Tobinai, K. (2011). Peripheral Tcell lymphoma. Blood, 117(25), 6756-6767. Accessed February 02, 2017. <u>https://doi.org/10.1182/blood-2010-05-231548</u>.
- Marks, D. I., & Rowntree, C. (2017). Management of adults with T-cell lymphoblastic leukemia. Blood, 129(9), 1134-1142. Accessed April 27, 2017. <u>https://doi.org/10.1182/blood-2016-07-692608</u>.
- Litzow, M. R., & Ferrando, A. A. (2015). How I treat T-cell acute lymphoblastic leukemia in adults. Blood, 126(7), 833-841. Accessed February 02, 2017. <u>https://doi.org/10.1182/blood-2014-10-551895</u>.
- Girardi, T., Vicente, C., Cools, J., & De Keersmaecker, K. (2017). The genetics and molecular biology of T-ALL. Blood, 129(9), 1113-1123. Accessed April 27, 2017. <u>https://doi.org/10.1182/blood-2016-10-706465</u>.
- Thomas, D. A., O'Brien, S., Cortes, J., Giles, F. J., Faderl, S., Verstovsek, S., Ferrajoli, A., Koller, C., Beran, M., Pierce, S., Ha, C. S., Cabanillas, F., Keating, M. J., & Kantarjian, H. (2004). Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood, 104(6), 1624-1630. Accessed April 27, 2017. <u>https://doi.org/10.1182/blood-2003-12-4428</u>.
- Hoelzer D, Gokbuget N. T-cell lymphoblastic lymphoma and T-cell acute lymphoblastic leukemia: a separate entity? Clinical lymphoma & myeloma. 2009;9 Suppl 3:S214-21.
- <u>https://en.wikipedia.org/wiki/Nelarabine</u>
- Zwaan CM, Kowalczyk J, Schmitt C, Bielorai B, Russo MW, Woessner M, et al. Safety and efficacy of nelarabine in children and young adults with relapsed or refractory T-lineage acute lymphoblastic leukaemia or T-lineage lymphoblastic lymphoma: results of a phase 4 study. British journal of haematology. 2017.