Adult lymphoblastic lymphoma Lymphoma Tumor Board February 3, 2017

Diagnosis

- Lymphoblastic Lymphoma (LBL) is rare
- Sub-type of lymphoma that is generally of T-cell origin
- Comprises about 2% of all NHLs in adults
- Characteristics are almost identical to acute lymphoblastic leukemia (ALL)
- Patients with predominately nodal disease at presentation are classified as LBL whereas those with primarily disease in the marrow or peripheral blood are classified as ALL.
- Historically, no standard of care treatment specifically designed for LBL
- Pathology:
 - IHC panel: CD45 (LCA), CD19, CD20, CD79a, CD3, CD2, CD5, CD7, TdT,
 CD1a, CD10, or Cell surface marker analysis by flow cytometry: kappa/lambda, CD45, CD3, CD5, CD19, CD10, TdT, CD13, CD33, CD1a, cytoplasmic CD3, CD22, myeloperoxidase

Classification

ALL - CLASSIFICATION WHO

- Uses immunophenotypic classification:
 - Acute lymphoblastic leukemia/lymphoma (Former Fab L1/L2)
 - Precursor B acute lymphoblastic leukemia/lymphoma.
 - Cytogenetic subtypes:
 - t(12;21)(p12,q22) TEL/AML-1
 - t(1;19)(q23;p13) PBX/E2A
 - t(9;22)(q34;q11) ABL/BCR
 - T(V,11)(V;q23) V/MLL
 - Precursor T acute lymphoblastic leukemia/lymphoma
 - Burkitt's leukemia/lymphoma (Former FAB L3) (mature B cell ALL)
 - Biphenotypic acute leukemia (2 to 5%)

Pathology

Image A. T-cell lymphoblastic lymphoma/leukemia in bone marrow biopsy. Neoplastic lymphocytes surround residual megakaryocytes and erythroid precursors. H&E section of formalin fixed tissue.

Image B. T-cell lymphoblastic lymphoma/leukemia. Cytology of lymphoblasts reveals medium sized cells with delicate unclumped chromatin, convoluted nuclear membrane and small but distinct nucleoli.

- Adaptation of pediatric protocols of intensive chemotherapy and CNS prophylaxis has led to marked improvements in outcomes in adults
- Numerous chemotherapy/radiotherapy regimens are simila r in dose and schedule to ALL regimens
- Common features of these regimens include:
 - Induction therapy
 - CNS prophylaxis
 - Consolidation therapy
 - Subsequent maintenance therapy for 12 to 18 months
- Long-term disease-free survival rates between 40-70%

The landscape of genetic alterations in T-ALL

Mark R. Litzow, and Adolfo A. Ferrando Blood 2015;126:833-841

ALL: TYPICAL TREATMENT

- Primary objective: to achieve and maintain a complete remission (CR)
- Induction, consolidation, maintenance phases
 - CNS prophylaxis with IT-MTX during induction and consolidation phases

Table 1
Intensive Induction Regimens for Adult Lymphoblastic Lymphoma

Author	Regimen	N	Response Rate	Failure-Free Survival/ Relapse-Free Survival	Overall Survival
Coleman et al [11]	Two ALL-type protocols with intensified CNS	44	100%	3-yr FFS = 56%	NA
Slater et al [12]	Various ALL protocols	51	80% CR for "nonleukemic"; 77% CR for leukemic	NA	5-yr actuarial OS = 45%
Bernasconi et al [13]	Various ALL protocols	31	77% OR	3-yr RFS = 45%	3-yr OS = 59%
Levine et al [16]	${\sf Modified\ LSA}_2{\sf L}_2$	15	73% CR; 27% PR	5-yr actuarial FFS = 35%	5-yr actuarial OS = 40%
Weinstein et al [17]	APO	21	95% CR	3-yr actuarial FFS = 58%	5-yr actuarial OS = 69%
Hoelzer et al [18]	Two ALL-type protocols, both including CNS and	45	93% CR	7-yr actuarial DFS = 62%	7-yr actuarial OS = 51%
Thomas et al [19]	HyperCVAD	33	91%	3-yr PFS = 66%	3-yr OS = 70%
Jabbour et al [20]	LMT-89 (ALL-type induction regimen derived	27	85% OR	5-yr FFP = 44%	5-yr OS = 63%
Song	"Hybrid" NHL/ALL regimen	34	100% OR	4-yr EFS = 68%	4-yr OS = 72%

ALL = acute lymphoblastic leukemia; APO = doxorubicin (Adriamycin), prednisone, vincristine (Oncovin); CHOP = cyclophosphamide, hydroxydaunomycin, vincristine, prednisone; CNS = central nervous system; CR = complete response; DFS = disease-free survival; EFS = event-free survival; FFP = freedom from progression; FFS = failure-free survival; HyperCVAD = hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone, cytarabine, methotrexate; IPI = International Prognostic Index; NA = not available; NHL = non-Hodgkin lymphoma; OR = overall response; PR = partial response; RFS = relapse-free survival; SCT = stem cell transplantation.

Blood 2015 126:833-841; doi: https://doi.org/10.1182/blood-2014-10-551895

Supportive care

- Allopurinol is recommended for the first 10 days of induction therapy to prevent hyperuricemia.
- Antimicrobial prophylaxis, antiviral and Pneumocystis
 jiroveci pneumonia prophylaxis throughout treatment.
- Fungal prophylaxis should include mold coverage throughout induction therapy.
 - Broader spectrum azole antifungals should be used with caution when using vincristine.
- Asparaginase-related toxicities
 - Asparaginase-related hypersensitivity reactions can occur in 20% of children and adults.

OS from the diagnosis of patients with B- vs T-ALL in the UKALLXII/E2993 trial

Mark R. Litzow, and Adolfo A. Ferrando Blood 2015;126:833-841

References

- https://www.verywell.com/lymphoblastic-lymphoma-2252372
- ASH Image Bank: http://imagebank.hematology.org/
- Litzow, M. R., & Ferrando, A. A. (2015). How I treat T-cell acute lymphoblastic leukemia in adults. Blood, 126(7), 833-841. Accessed February 02, 2017. https://doi.org/10.1182/blood-2014-10-551895.
- http://www.slideshare.net/usmlegalaxy/acute-lymphoblastic-lymphoma
- http://www.cancernetwork.com/articles/treatment-lymphoblasticlymphoma-adults
- Foss, F. M., Zinzani, P. L., Vose, J. M., Gascoyne, R. D., Rosen, S. T., & Tobinai, K. (2011). Peripheral T-cell lymphoma. Blood, 117(25), 6756-6767. Accessed February 02, 2017. https://doi.org/10.1182/blood-2010-05-231548.
- Litzow, M. R., & Ferrando, A. A. (2015). How I treat T-cell acute lymphoblastic leukemia in adults. Blood, 126(7), 833-841. Accessed February 02, 2017. https://doi.org/10.1182/blood-2014-10-551895.