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ABSTRACT

The human leukocyte antigen (HLA) genes play a major role in adaptive immune response
and are used to differentiate self antigens from non-self ones. HLA genes are hypervariable
with nearly every locus harboring over a dozen alleles. This variation plays an important
role in susceptibility to multiple autoimmune diseases and needs to be matched on for organ
transplantation. Unfortunately, HLA typing by serological methods is time consuming and
expensive compared to high-throughput single nucleotide polymorphism (SNP) data. We
present a new computational method to infer per-locus HLA types using shared segments
identical by descent (IBD), inferred from SNP genotype data. IBD information is modeled as
graph where shared haplotypes are explored among clusters of individuals with known and
unknown HLA types to identify the latter. We analyze performance of the method in a
previously typed subset of the HapMap population, achieving accuracy of 96% in HLA-A,
94% in HLA-B, 95% in HLA-C, 77% in HLA-DR1, 93% in HLA-DQA1, and 90% in HLA-
DQB1 genes. We compare our method to a tag SNP-based approach, and demonstrate
higher sensitivity and specificity. Our method demonstrates the power of using shared
haplotype segments for large-scale imputation at the HLA locus.
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1. INTRODUCTION

The human leukocyte antigen (HLA) region, located on chromosome 6p21, encodes genes for the

major histocompatibility complex (MHC) in humans. MHC are cell surface proteins that play an

important role in adaptive immune response. These proteins form a complex with the antigenic peptides that

are presented on the cell surface. This complex is recognized by the T-cell receptors to trigger the adaptive

immune response by inducing the death of the cell and/or production of antibodies.

The HLA genes are classified into two main classes. Class I genes present peptides from within the cell

and are recognized by the CD8þ/cytotoxic T cells that kill the cells displaying the antigens. The Class I

MHC genes are HLA-A, HLA-B, and HLA-C. Class II genes present peptides from the intracellular

vacuoles and are recognized by the CD4þ/helper T cells that trigger antibody production. The Class II

genes are HLA-DP, HLA-DM, HLA-DOA, HLA-DOB, HLA-DQ, and HLA-DR. HLA genes are also
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highly polymorphic. For example, HLA-A has 893 alleles, and HLA-DRB has 814 alleles (Robinson et al.,

2003). The large number of alleles enables the immune system to respond to a wide range of pathogens.

The HLA nomenclature (Holdsworth et al., 2009) is illustrated in Figure 1. The convention is to use a

four-digit code to distinguish alleles that differ in their protein products. The first two digits represent the

allele family, determined by serological typing and represent the antigen recognized by the allele family.

The antigen A24 is recognized by allele in Figure 1. The third and fourth digits represent amino acid

differences due to non-synonymous mutations. The remaining digits represent other non-coding differ-

ences. The required resolution depends on the immunological application under consideration.

HLA genes have been implicated in a number of autoimmune diseases such as Crohn’s disease (Breese

et al., 1993; Brimnes et al., 2005) and multiple sclerosis (Lincoln et al., 2005). Physically, different gene

variants have different abilities to present antigens and therefore incur different sensitivities to their

presence. Matching HLA types are therefore required for organ transplantation to succeed. However,

experimental methods of HLA typing are time consuming and expensive (Leslie et al., 2008). Indirect

typing using tag SNPs (de Bakker et al., 2006) is confounded by the unusual patterns of recombination and

selection that require locus-specific methods (Leslie et al., 2008). Moreover, the region also contains long

stretches of high linkage disequilibrium (LD), often spanning several megabases and HLA loci (Miretti et

al., 2005), curbing the performance of standard models of genetic variation.

Leslie et al. (2008) have developed a method for HLA type inference based on allele combinations or

haplotypes. A hidden Markov model is used to calculate the probability of observing a specific HLA allele

by modeling the chromosome as an imperfect mosaic of the ancestral haplotypes carrying the same allele.

The described model assumes that the parental origin (phase) of each allele haplotype is known for SNP

data and uses a training set with known, phased HLA types.

With the availability of large and comprehensively genotyped cohorts, tools have been developed to

harness many samples for detecting identity by descent (IBD) between pairs of individuals (Gusev et al.,

2009; Purcell et al., 2007) that carry copies of the same local haplotype from a recent common ancestor.

Such analysis naturally applies to the haplotypic structure of the HLA, with the special interest in this

region motivating increased attention. This attention is required because of the special haplotype structure

at the HLA (Horton et al., 2004).

We have recently developed a method that accurately detects all long IBD shared regions from genotype

marker data (Gusev et al., 2009). The method uses a dictionary-based sliding window approach to identify

long, nearly-identical regions between pairs of individuals in linear time. Here, we present a graph-based

method that uses segments shared between HLA-typed and un-typed individuals to infer their putative HLA

types. We provide theoretic description of the model and offer a software implementation, a unique

contribution to the geneticist user.

The article is organized as follows: We define the framework and the problem in Section 3. Section 4

describes our algorithms for HLA imputation. The data used for analysis is explained in Section 5. The

results and comparison to tag SNP method are presented in Section 6, followed by a summary discussion in

Section 7.

FIG. 1. HLA nomenclature.
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2. PRELIMINARIES

We define a model for inferring HLA types at individual loci for unphased data. We study one locus at a

time and throughout the methods sections consider only the current locus. The results repeat such analysis

for each locus separately along the HLA region. An individual v is associated with a pair of alleles (a, b) at

each HLA locus, representing the HLA types. We denote this by v(a, b). An individual with a¼ b is

homozygous. The input consists of a set of individuals with known HLA types and another set with

unknown HLA types. The individuals in these two sets are referred to as resolved and unresolved indi-

viduals, respectively. Unphased IBD segments that are shared pair-wise across resolved and unresolved

individuals are inferred using GERMLINE (Gusev et al., 2009) and serve as a starting point for our

analysis.

Formally, IBD is represented as an undirected graph called the IBD-Graph, GIBD. The nodes V of GIBD

map to the individuals with genotypic data (resolved and unresolved) and the edges E represent the IBD

shared segments. Ideally we would have GIBD as input for HLA imputation, but in practice we may only

assume the input to be a noisy version G0
IBD of the true GIBD. G0

IBD has the same nodes, as GIBD along with

many of the same edges (true positives), but it also contains false positives (edges between nodes not

related by IBD) and false negatives (missing edges between nodes related by IBD).

An edge in G0
IBD between two nodes v(a, b) and w(g, d) is suggestive of the nodes sharing one or both the

HLA types, i.e., at least one of (a¼ g), (b¼ g), (a¼ d), or (b¼ d) is true. The edges which satisfy these

criteria are termed consistent. Note that the converse does not hold: if two nodes share a common HLA

type, it does not imply they are IBD because the same HLA allele can have multiple SNP-haplotype

backgrounds. The HLA imputation problem is intuitively defined as follows:

Input: G0
IBD(V , E0) and a set of assigned type pairs (a(r), b(r)) for all nodes r in a resolved subset R�V

Output: Assignment of type pairs (a(u), b(u)) for all unresolved nodes u 2 VnR
Objective: Maximize the correctly assigned nodes.

As the objective is not defined in terms of the available data, we consider a surrogate optimization

criterion. We seek an assignment that maximizes the number of consistent edges.

We propose an iterative approach for HLA imputation. While G0
IBD(V , E0) is used as the input for the first

iteration, the IBD-Graph is adjusted in each iteration to maintain the consistency of edges. Formally, denote

the IBD-Graph in the ith iteration as Gi
IBD. We detect false positives and false negatives which are removed

from and added to the edge set respectively to form Ei, the edge set in the ith iteration. After adjusting the

graph, possible HLA types and HLA type-pairs are inferred for unresolved nodes. Possible HLA types

represent alleles of one of the chromosomes satisfying the constraints defined by Gi
IBD and HLA type-pairs

represent alleles of both the chromosomes of the unresolved node.

Gi
IBD is examined in triplets of nodes, T(r1, r2, u), where r1, r2 are resolved and u is unresolved and at

least two of the edges (r1, r2), (r1, u) and (r2, u) are in Ei. The possible HLA types and type-pairs from all

triplets containing u are combined based on a likelihood function to assign the most likely HLA types to the

unresolved node. We expect a number of unresolved nodes to be resolved within each iteration. This

information is then used in subsequent iterations to infer HLA types for the remaining ambiguous or

unresolved nodes (Fig. 2)

2.1. Sources of information

The sources of information for defining possible HLA types are triplets generated, matches with ho-

mozygote nodes and previously detected false negatives. Triplets and homozygote matches are deduced

from Gi
IBD.

We define three possible configurations for a triplet based on the sub-graph of Gi
IBD induced by (r1, r2, u).

If this sub-graph is a clique, we call it a triangle triplet (Fig. 3a). Alternatively, it is a path along the three

nodes and we denote this as an end triplet (Fig. 3b) or a middle triplet (Fig. 3c) depending on the position of

u along the path. Possible HLA types are deduced from each triplet as described below.

Triangle triplets (Fig. 3a) are fully connected by definition. Since only consistent edges are considered

for any triangle triplet T(r1, r2, u), r1 and r2 share one or both HLA types. We consider these cases in turn.

(1) One shared HLA-type: We denote the HLA types of the resolved nodes by r1(r, a) and r2(r, b) with

a= b. In this case the following assignments to u maintain the consistency of the edges: the shared HLA

type: r or the HLA type-pair formed by (a, b) (Fig. 4A(I)). (2) Both HLA types shared: Here, we denote the
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HLA types by r1(r, t) and r2(r, t). Thus, the shared types, r and t, are possible HLA types for u (Fig.

4A(II)).

End triplets (Fig. 3b) are processed as follows: For a triplet T(r1, r2, u) assume without loss of generality

that (r1, u) 2 Ei and (r2, u) 62 Ei. We denote the HLA types of the resolved nodes by r1(r, a) and r2(r, b).

By definition, if a= b, then assigning the HLA type of r1 not shared with r2, i.e., a, to u maintains the

consistency of the edges (Fig. 4B(I)). Otherwise, if a¼ b, the edge (r1, r2) is detected as a false negative and

is added to Ei. The triplet is treated as a triangle triplet in the subsequent iterations. For example, the triplet

in Figure 4B(II) defines r and a as possible HLA types.

Middle triplets (Fig. 3c) do not have an edge between the resolved nodes. For any middle triplet T(r1, r2,

u), r1 and r2 are not known to share any HLA types since (r1, r2) 62 Ei. Denoting types by r1(a, b) and r2(g,

d), all HLA type pairs (r, t) where q 2 fa, bg and s 2 fc, dg are assigned as possible HLA types of u. Each

type-pair maintains the consistency of the edges. The triplet in Figure 4C(I) defines (a, g), (a, d), (b, g) and

(b, d) as possible HLA type-pairs.

If any of a¼ g, a¼ d, b¼ g or b¼ d is true, then it is an indication of a false negative. Again, we add the

edge (r1, r2) to Ei and the triplet is treated as a triangle triplet. For example, the triplet in Figure 4C(II)

defines a and b as possible HLA types and triplet in Figure 4C(III) defines possible HLA type a and

possible HLA type-pair (b, d).

Lastly, unresolved nodes maybe connected to resolved nodes that are homozygous in HLA alleles.

If (u, r) 2 Ei where the HLA types of r(a, a), the triplet containing (u, r) 2 Ei defines a as a possible type for u.

3. ALGORITHMS

3.1. Triplet generation

The edges of Gi
IBD are represented using the adjacency list representation. More precisely, for efficiency

reasons, any given individual stores two adjacency lists, for resolved and unresolved neighbors, respectively.

FIG. 2. An iterative-triangulation

approach for HLA type inference

from unphased data. The method

initializes the resolved and unre-

solved nodes from the training and

test sets, respectively. The edges

among these individuals are used to

generate triplets. These triplets are

used to draw up a set of possible

HLA type resolutions for each node.

The HLA types with highest likeli-

hood are chosen as resolution for the

nodes where applicable and the

process is repeated for the remain-

ing unresolved nodes.

FIG. 3. Types of triplets. (a) Tri-

angle triplet: pair-wise matches be-

tween all individuals. (b) End

triplet: unresolved individual has

match with only of the resolved in-

dividuals. (c) Middle triplet: re-

solved individuals do not have a

match. a b c
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The algorithm for triplet generation is formally described in Figure 5. Briefly, triplets are generated by

traversing the graph for all paths of length 3 containing only one unresolved individual. Each traversal

starts from a resolved individual r, and progress in two ways based on the status of the adjacent indi-

vidual, a:

1. If a is resolved, traverse through all the unresolved adjacent individuals of a. This will generate

candidate end triplets.

2. If a is unresolved, traverse through all the resolved adjacent individuals of a to generate candidate

middle triplets and traverse through all resolved adjacent individuals of r to generate candidate end

triplets.

If a trio of individuals generates both end and middle candidate triplets, a triangle triplet of the trio is

added. Other candidate end or middle triplets are indeed end or middle triplets respectively. Duplicate

generated triplets are identified and removed. The algorithm then proceeds to resolve individuals.

3.2. Type resolution

Define S¼ {t, e, m, f, h} as the categories of information, representing triangle triplets, end triplets,

middle triplets, false negatives and homozygous matches respectively.

Type resolution assigns the most likely HLA types to an unresolved individual. Define Cs(a) as the

number of instances of category s defining a as a type for the unresolved node, u under examination.

The quintuple (Ct(a), Ct(a), Cm(a), Cf(a), Ch(a)) is the sufficient statistic for calculating the likelihood of

a being assigned as follows: Define Lt(s) to be the likelihood of triplet of category s being correct and Lf(s)

as likelihood of triplet of category s being incorrect. Define Cu
s to be the total number of triplets of category

s for unresolved individual u. The likelihood of a being the resolution for individual u is calculated as

Likelihood(aju, Counts)¼
Y
s2S

Lt(s)Cs(a)
Y
s2S

Lf (s)Cu
s �Cs(a) (1)

For HLA type-pairs (a, b), define Es(a, b) to be the effective count triplets of category s defining (a, b) as

a possible HLA type-pair. The likelihood calculation of HLA type-pair uses the same formula but after

calculating the effective counts given by

Es(a, b)¼Cs(a)þCs(b)�Cs(a, b) (2)

where Cs(a, b) represents the triplets of category s, defining both a and b as possible types.

FIG. 4. Possible type from trip-

lets. (A) Possible type generation for

triangle triplets. (I) One shared type:

shared type or the combination of

non-shared types. (II) Two shared

types. (B) Possible type generation

for end triplets. (I) One shared type:

the non-shared type. (II) False neg-

ative: two shared types. (C) Possible

type generation for middle triplets.

(I) Consistent edges: combinations

of the types of resolved individuals.

(II) False negative with two shared

types. (III) False negative with one

shared type: shared type and the

combination of non shared types.
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The score for HLA type-pair (a, b) and individual u is calculated as

Likelihood((a, b)ju, Counts)¼
Y
s2S

Lt(s)Es(a, b)
Y
s2S

Lf (s)Cu
s �Es(a, b) (3)

Define pþ, qþ, p� and q� to be the likelihoods of true positive, false positive, true negative, and false

negative edges, respectively. The likelihoods for the triplets being correct or incorrect are calculated as in

Table 1.

We estimate the following rates from GERMLINE pþ : 0.9, p� : 0.85, qþ : 0.1, q� : 0.15 (Gusev et al.,

2009).

The algorithm for type resolution is formally described in Figure 6. The algorithm greedily resolves

individuals by the likelihood calculation. Our implementation maintains a hash-map of all possible HLA

types and type-pairs for each individual. The value of the hash-map is the quintuple, with the type or the

type-pair being the key.

The most likely HLA type, Z is first chosen. If the individual is determined to be homozygous geno-

typically, Z is assigned as the resolution for the individual. If Z satisfies all the edges with the resolved

individuals, the individual is considered potentially homozygous in HLA types. In such cases, the individual

is left unresolved and retained for processing in the further iterations.

HLA type-pairs are formed by combining each possible HLA type with Z. The two most likely type-pairs

are determined and the HLA type-pair with highest likelihood is assigned as resolution, if the difference

between their likelihoods is greater than zero.

At the end of each iteration, the adjacency lists of individuals containing newly resolved individuals are

updated to move the newly resolved individuals to the head of the list. Thus, the entire adjacency matrix

needs to be constructed only once at the start of the algorithm. All the steps are repeated until convergence

where no more resolutions are possible.

FIG. 5. Algorithm for triplet gen-

eration.

Table 1. Likelihood Terms for Correct and Incorrect Triplets

Category

Likelihood of

correct triplet

Likelihood of

incorrect triplet

Triangle triplet ( pþ)3 (qþ)3

End triplet, middle triplet ( pþ)2 · p� (qþ)2 · q�

False negative ( pþ)2 · q� (qþ)2 · p�

Triangle triplet pþ qþ
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3.3. Complexity and implementation

Triplet generation explores all paths of length three containing only one unresolved node. Thus, the time

complexity for triplet generation can be estimated as O(jRj2jV \Rj), where R is the set of resolved nodes and

V is the set of all nodes in the graph.

The runtime of type resolution is linearly dependent on the number of triplets generated since each triplet

is examined only once to identify the possible HLA types and type-pairs. Thus, O(jRj2jV \Rj) is the bound

on complexity.

The program was implemented in Java 1.5, and testing was done on a Linux node of 2 · 2.4 GHz Xeon

CPUs with 2 GB of memory. The average runtimes per individual for cross validation of HLA-A, HLA-B,

HLA-C, HLA-DRB1, HLADQA1, HLADQB1 genes were 15, 4, 3, 0.7, 0.7, 1.3 seconds, respectively,

analyzing 5475, 3328, 3387, 2899, 2545, 2426 IBD shared segments. The software has been made available

for download at http:/www1.cs.columbia.edu/*itsik/hla_ibd/index.html.

FIG. 6. Algorithm for type reso-

lution.

FIG. 7. Illustration of end triplets

detecting false negatives. (I) The

generated end triplet. (II) The same

end triplet becomes a false negative

if b is chosen as Z.
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4. DATA

The data used for analysis has been described in de Bakker et al. (2006). Briefly, the data includes 90

individuals (30 parent-offspring trios) of the Yoruba people from Ibadan, Nigeria (YRI); 182 Utah residents

(29 extended families of European ancestry, from the Centre dEtude du Polymorphisme 6 is available. HLA

typing was carried out for class I (HLA-A, HLA-B, HLA-C) and class II (HLA- DRB1, HLA-DQA1, HLA-

DQB1) genes using the PCR-SSOP protocols. The CEU and YRI populations were used for analysis of the

model and all the data was assumed to be unphased for Centre d’Etude du Polymorphisme Humain (CEPH)

collection (CEU); 45 unrelated Han Chinese from Beijing, China (CHB); and 44 unrelated Japanese from

Tokyo, Japan( JPT), 6338 variants located in a 7.5Mb region on chromosome 6 is available. HLA typing

was carried out for class I (HLA-A, HLA-B, HLA-C) and class II (HLA-DRB1, HLA-DQA1, HLA-DQB1)

genes using the PCR-SSOP protocols. The CEU and YRI populations were used for analysis of the model,

and all the data were assumed to be unphased for analysis.

5. RESULTS

We established the accuracy of our method on the CEU HapMap data. Intuitively, the effectiveness of

the model is dependent on the presence of IBD among the individuals under consideration. ‘‘Leave one

out’’ cross-validation offers a good approach to test the model since it utilizes all the available IBD shared

segment information for the individual being tested. An individual being tested is instantiated as unre-

solved, and all the other individuals form the resolved individuals or training set for the model. The

individual can either be inferred as resolved, if types on both chromosomes are inferred; as ambiguous, if

two types cannot be inferred or more than two types are equally likely; as potentially homozygous, if only a

single type is present and inferred; or as unresolved, if no inference can be made. The model is not

dependent on learning any parameters from the training data and therefore leave one out cross-validation

does not bias the results.

Each locus is analyzed separately and the accuracy and coverage are defined with respect to the number

of chromosomes analyzed. Formally, let u(r, t) be the individual being tested. If u is inferred as resolved

with HLA types (a, b), both the chromosomes are accounted as called and both are correct if (a, b)¼ (r, t).

Only one of the chromosomes is considered correct if a 2 (q, s) and b 62 (q, s) or vice versa. If u is inferred

as ambiguous with HLA type a, one chromosomes is called and is correct if a¼ r or a¼ t. If u is inferred

as potentially homozygous with type a, both chromosomes are called; both are correct is a¼ r¼ t, one is

correct if r= t and, a¼ r or a¼ t.

The coverage and accuracy are measures as follows

Coverage¼ TotalCalled

TotalAnalyzed
(4)

Accuracy¼ TotalCorrect

TotalCalled
(5)

Table 2 lists the results of leave one out cross-validation tests on the CEU HapMap population. The

analysis examined shared segments which span 100kb upstream and downstream of the gene under con-

sideration. Results are shown for both four-digit and two-digit resolutions. HLA types occurring only once

in the population and types which are not resolved to the required extent are excluded from analysis. The

model predicts results with high accuracy in the HLA-A, HLA-B, HLA-C, HLA-DQA1, and HLA-DQB1

alleles at four-digit resolution. The accuracy for class I genes remains the approximately the same at both

the resolutions, but using two-digit resolution leads to higher accuracy in the class II genes. This can be

attributed to a reduction in the false positive matches at lower resolution.

The main sources of error are false positives and non-availability/non-detection of IBD between indi-

viduals. The distribution of the false positives at four-digit resolution for the different genes is illustrated in

Figure 8. For each individual, the false positive percentage in a region is the percentage of matches of the

resolved adjacent nodes which are false positive. The HLA-DRB1 region has a higher number of indi-

viduals with large false positive percentages which is reflected in the low accuracy prediction. Fitting the

parameters of IBD detection, especially the specific span used will improve results, but we chose to present

benchmarks with vanilla parameters across all genes.
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We compare our results to the results from phasing the data. Phased version of the CEU data based on

trios is available from de Bakker et al. (2006). We used GERMLINE (Gusev et al., 2009) to obtain pairwise

IBD segments between the haplotypes. Leave one out cross-validation is again used for testing. If M is the

set of matches determined by GERMLINE, the likelihood of allele a being the resolution for chromosome c

is calculated as below

Likelihood(ajc, M)¼ H(a)P
b2A H(b)

(6)

where H(a)¼
P

(y, c)2M d(by, a) where by is the HLA type of chromosome y and d function given by

d(a, b)¼ 1 if a¼ b
0 if a 6¼ b

�
(7)

The HLA type with highest likelihood as assigned as resolution. If two or more HLA types are tied for the

highest likelihood, the chromosomes is left unresolved and considered ambigious.

We also used fastPHASE (Scheet and Stephens, 2006) to perform phasing without using the trio in-

formation and again use GERMLINE to determine set of matches using haplotypic extensions of matches

rather than genotypic extensions. The triplet-based algorithm is used to determine the resolutions in a leave

one out cross-validation setting.

The performance is assessed by means of the sensitivity and specificity differences. If A is the set of

alleles under examination and Pþa , P�a , N þa and N �a are the positive, false positive, true negative, and false

negatives for allele a, respectively, then sensitivity and specificity are calculated as below:

FIG. 8. False positive rate distri-

bution. The x-axis represents the

false positive percentage, and the

y-axis represents the fraction of in-

dividuals. Each point on the graph

represents the fraction of individuals

with false positive percentage less

than the corresponding reference

value.

Table 2. Results of Leave One Out Cross-Validation for CEU Population

by Considering IBD Shared Segments Which Span 100kb Upstream and Downstream of the Gene

Four-digit Two-digit

Gene Analyzed Accuracy Analyzed Accuracy

HLAA 314 96.5 322 96.4

HLAB 281 94.3 311 93.4

HLAC 328 94.2 316 94.9

HLADRB1 308 77.6 294 91.3

HLADQA1 350 92.6 330 94.3

HLADQB1 350 90.3 323 92.3
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Sensitivity¼
P

a2A PþaP
a2A (Pþa þN �a )

(8)

Specificity¼
P

a2A N þaP
a2A (N þa þP�a )

(9)

The comparison plot is shown in Figure 9. All the methods show very high specificity (>0.95 in all the

genes). The performance of our method compares well with trio-based phased data results in the class I

genes, whereas having phased data has significant benefits for the class II genes. This could be possibly

because of a reduction in the false positive rates in IBD matches when using trio-based phasing. This

demonstrates that our method can be applied to unphased data with accuracy comparable to phased data

when the false positive rates in the IBD segment determination are low. Phasing computationally without

using the trio information performs worse in both class I and class II genes, demonstrating the effectiveness

of using genotypic extension when trio-based phased data is not available.

6. CONCLUSION

We have developed a method for inferring HLA types using genotypic data by examining IBD shared

segments with individuals of known HLA types. HLA types are predicted with high accuracy by using the

CEU HapMap data. HLA genes play a critical role in adaptive immune response and autoimmune diseases.

Our model can be used as a starting point in the analysis of similar diseases. The further applicability of

SNP-based methods of HLA type inference has been described elsewhere (Leslie et al., 2008).

Although advances have been made in phasing, inferring haplotype structure in small cohorts or unre-

lated individuals remains a challenge (Marchini et al., 2006). Our method analyzes genotypic data without

consulting the haplotype phases. This broadens the applicability of the method to data where the phase is

unknown.
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