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Abstract 13 

Cell-state density characterizes the distribution of cells along phenotypic landscapes and is crucial for 14 
unraveling the mechanisms that drive cellular differentiation, regeneration, and disease. Here, we present 15 
Mellon, a novel computational algorithm for high-resolution estimation of cell-state densities from single-16 
cell data. We demonstrate Mellon's efficacy by dissecting the density landscape of various differentiating 17 
systems, revealing a consistent pattern of high-density regions corresponding to major cell types 18 
intertwined with low-density, rare transitory states. Utilizing hematopoietic stem cell fate specification to 19 
B-cells as a case study, we present evidence implicating enhancer priming and the activation of master 20 
regulators in the emergence of these transitory states. Mellon offers the flexibility to perform temporal 21 
interpolation of time-series data, providing a detailed view of cell-state dynamics during the inherently 22 
continuous developmental processes. Scalable and adaptable, Mellon facilitates density estimation 23 
across various single-cell data modalities, scaling linearly with the number of cells. Our work underscores 24 
the importance of cell-state density in understanding the differentiation processes, and the potential of 25 
Mellon to provide new insights into the regulatory mechanisms guiding cellular fate decisions. 26 

  27 



Introduction 28 

Cell differentiation is a dynamic process that underpins the development and function of all multicellular 29 
organisms. Understanding how cells are distributed along differentiation trajectories is critical for 30 
deciphering the mechanisms that drive cellular differentiation, pinpointing the key regulators and 31 
characterizing the dysregulation of these processes in disease. Cell-state density is a representation of 32 
this distribution of cells and is impacted by biological process spanning proliferation to apoptosis (Fig. 33 
1B, Supplementary Fig. 1A-C). For instance, proliferation can increase the number of cells in a state, 34 
resulting in high cell-state density (Fig. 1B). Cells converge to checkpoints that ensure the fidelity of the 35 
differentiation process, also leading to high cell-state density (Fig. 1B). In contrast, transcriptional 36 
acceleration, as seen in rare transitory cells, lead to lower cell-state density (Fig. 1B). Finally, apoptosis 37 
decreases the number of cells in a state, also resulting in low cell-state density (Fig. 1B). As a result of 38 
these influences, cell-state density of differentiation landscapes is likely not uniform (Fig. 1A) but exhibit 39 
rich heterogeneity of high- and low-density regions (Fig. 1B). 40 

Single-cell studies have underscored the importance of the heterogeneous nature of cell-state density in 41 
single-cell phenotypic landscapes1-3. Rapid and coordinated transcriptional acceleration leading to low-42 
density transitory states connecting higher-density regions have been demonstrated to be a hallmark of 43 
developmental progression in diverse biological contexts from plants to humans4-7. Rare transitory cells 44 
have also emerged as critical entities in the processes of differentiation1, reprogramming8, and the 45 
emergence of metastasis9. Despite the central importance of cell-state density, current approaches for 46 
density estimation in single-cell data often produce noisy results and struggle to provide biologically 47 
meaningful interpretation (Supplementary Fig. 2). 48 

Here, we introduce Mellon, a novel computational algorithm to estimate cell-state density from single-cell 49 
data (Fig. 1C-G). The core principle of Mellon is based on the intrinsic relationship between neighbor 50 
distances and density, whereby distribution of nearest neighbor distances is linked with cell-state density 51 
using a Poisson distribution (Fig. 1C). Mellon then connects densities between highly similar cell-states 52 
using Gaussian processes to accurately and robustly compute cell-state densities that characterize 53 
single-cell phenotypic landscapes (Fig. 1D-E). Unlike existing approaches that interpret single-cell 54 
datasets solely as a collection of discrete cell states, Mellon infers a continuous density function across 55 
the high-dimensional cell-state space (Fig. 1F), capturing the essential characteristics of the cell 56 
population in its entirety. The density function can also be used to determine cell-state densities at single-57 
cell resolution (Fig. 1G). Mellon is designed to efficiently scale to increasingly prevalent atlas-scale 58 
single-cell datasets and can be employed to infer cell-state density from diverse single-cell data 59 
modalities.  60 

We applied Mellon to dissect the density landscape of human hematopoiesis, revealing numerous high-61 
density regions corresponding to major cell types, intertwined with low-density, rare transitory cells. We 62 
discovered a strong correlation between low-density regions and cell-fate specification, suggesting that 63 
that lineage specification in hematopoiesis is driven by accelerated transcriptional changes.  Exploration 64 
of the open chromatin landscape during lineage specification hinted at the role of enhancer priming in 65 
facilitating these transcriptional changes. Furthermore, extending Mellon's framework to time-series 66 
datasets enabled us to compute time-continuous cell-state densities and interpolate cell-state densities 67 
between observed timepoints, providing a high-resolution view of the cell-state dynamics during erythroid 68 
differentiation in mouse gastrulation. Mellon, a scalable and user-friendly open-source software package, 69 
complete with documentation and tutorials, is available at github.com/settylab/Mellon. 70 

71 



Results  72 

The Mellon modeling approach  73 
Mellon aims to compute cell-state densities within the intricate, high-dimensional single-cell phenotypic 74 
landscapes. Two major challenges need to be resolved to estimate cell-state densities: First, the high-75 
dimensionality of single-cell data is an inherent computational obstacle, which Mellon overcomes by 76 
leveraging the relationship between density and neighbor distances (Methods). The second challenge 77 
lies in ensuring the precise and reliable density estimation in low-density states, which often represent 78 
rare, transitory cells that play critical roles in a range of biological systems1,8-10. To address this, Mellon 79 
employs a strategy of estimating a continuous density function over the entire single-cell landscape. This 80 
approach enhances both the accuracy and robustness of density estimation (Methods). Moreover, the 81 
density function encapsulates a smooth and continuous portrayal of the high-dimensional phenotypic 82 
landscape, enabling density estimation not only for individual measured cells—thus achieving single-cell 83 
resolution—but also for unobserved cell-states, offering a comprehensive depiction of the entire cell 84 
population (Fig 1, Supplementary Fig. 1D). 85 

Mellon's utilization of neighbor distances and inference of continuous density function is underpinned by 86 
two well-established principles of single-cell analysis. First, Mellon assumes that distances between cells 87 
in the chosen representation of the phenotypic landscape are biologically meaningful and thus represent 88 
a valid measure of cell-to-cell similarity. We refer to such a space as cell-state space, where each point 89 
signifies a distinct cell state. To construct such a representation, we employ diffusion maps11, a non-linear 90 
dimensionality reduction technique that has been demonstrated to reliably and robustly represent the 91 
single-cell phenotypic landscape12,13. Moreover, distances within diffusion space are considered more 92 
biologically informative than relying on gene expression-based distances (such as PCA)12-14 due to its 93 
consideration of potential cell-state transition trajectories.  94 

The second assumption Mellon relies on is that density changes from cell-to-cell are smooth and 95 
continuous in nature i.e., Mellon assumes that cells with high degrees of similarity possess similar 96 
densities. The inherent molecular heterogeneity of cells, primarily due to the subtle differences in gene 97 
expression, supports these smooth density transitions. Further, single-cell studies have revealed that 98 
cells experience gradual, rather than abrupt, changes in gene expression, providing empirical support for 99 
this assumption1,15-17. 100 

Mellon first computes distance to the nearest neighbor for each cell in the cell-state space. We then 101 
capitalize on the stochastic relationship between density and neighbor distances, where cells in higher 102 
density states tend to exhibit shorter distances to their nearest neighbors, whereas cells in lower density 103 
states tend to have longer distances (Supplementary Fig 3A). Formally, Mellon relates the nearest 104 
neighbor distance to local density through the nearest neighbor distribution by employing  a Poisson point 105 
process (Fig. 1C-D, Methods). Nearest neighbor distribution describes the probability of another cell-106 
state existing within some distance of a given cell-state. Intuitively, regions with higher density of cell-107 
states correspond to tighter nearest-neighbor distributions, while lower densities result in broader 108 
distributions (Fig. 1D).  109 

Mellon then connects densities between highly related cells to estimate a continuous density function. 110 
The true density function can be arbitrarily complex depending on the biological system. Mellon therefore 111 
employs Gaussian Process (GP) in a Bayesian model to approximate this function without assuming a 112 
specific functional form (Fig. 1D). GPs are a mathematical framework to model the patterns and 113 
relationships among data points and, are highly effective for scenarios where the true functional form is 114 
intricate or unknown and where observations are limited18,19. GPs are thus ideally suited for density 115 



estimation from noisy single-cell data. They achieve their robustness by incorporating the smoothness 116 
assumption through a covariance kernel, facilitating sharing of information between adjacent 117 
observations. In Mellon, the covariance kernel of the GP encodes cell-state similarity and determines the 118 
influence of nearby cells on density estimates at a specific state (Methods). This covariance kernel is 119 
effectively computed for all pairs of cells and thus ensures the appropriate weightage of nearby cells in 120 
both high- and low-density states (Supplementary Fig 3B-F). Finally, Mellon adopts a scalable Bayesian 121 
inference approach, tailored for atlas-scale single-cell datasets. The scalability is in large part achieved 122 
by employing a sparse Gaussian Process that approximates the full covariance structure using a set of 123 
landmark points (Methods).  124 

The density function derived by Mellon is a continuous representation of the single-cell phenotypic 125 
landscape (Fig. 1E, Supplementary Fig. 1D). This function enables density estimation at single-cell 126 
resolution (Fig. 1F). Visualizing cell-state densities with methods such as UMAPs (Fig. 1F) simplifies the 127 
exploration of high- and low-density cell states in differentiation landscapes. Within the cell-state density 128 
landscape, we discerned what we term regions – connected subsets within the cell-state space with 129 
similar density characteristics.  Such regions represent collections of closely related cell states that cells 130 
appear to inhabit (high-density regions) or traverse (low-density regions) during their differentiation 131 
journey (Fig. 1F).   132 

To assess Mellon's accuracy, we generated simulated datasets composed of either discrete clusters or 133 
continuous trajectories, using mixtures of Gaussians in ten to twenty dimensions (Supplementary Fig. 134 
4A, D, G).  Comparing the ground truth density from the Gaussian mixtures to Mellon-inferred density 135 
demonstrated strong agreement, showcasing Mellon's capability to accurately estimate cell-state 136 
densities in high-dimensional spaces (Supplementary Fig. 4).  137 

 138 

Density landscape of hematopoiesis with Mellon   139 
Hematopoiesis, the process through which the blood and immune cells differentiate from hematopoietic 140 
stem cells (HSCs), provides an ideal paradigm to understand and model differentiation20. We therefore 141 
utilized a previously generated single-cell multiome dataset of T-cell depleted bone marrow21 142 
representing human hematopoietic differentiation (Fig. 2A) to evaluate the performance of Mellon and 143 
interpret the inferred cell-state densities.  144 

We used diffusion maps to derive a representation of hematopoietic cell-states and applied Mellon to 145 
infer density in this high-dimensional cell-state space (Fig. 2B). The resulting density landscape exhibited 146 
considerable heterogeneity, with numerous high-density regions, corresponding to major cell types, 147 
interconnected by low-density regions indicative of rare transitory cells (Fig. 2B). Monocytes, for instance, 148 
exhibited the highest cell-state density (Fig. 2C), which is consistent with their status as the most 149 
prevalent leukocyte in hematopoiesis and their emergence from bone marrow in a naïve state22. 150 
Intriguingly, we observed noticeable fluctuation in density within several cell-type clusters, suggesting an 151 
inherent heterogeneity, a nuance often masked when cells are grouped together by clustering methods 152 
(Fig. 2C). 153 

For a more comprehensive understanding of the hematopoietic density landscape, we utilized our 154 
trajectory detection algorithm Palantir14 to determine a pseudo-temporal ordering of cells representing 155 
developmental progression and cell-fate propensities that quantify the probability of each cell to 156 
differentiate to a terminal cell-type (Supplementary Fig. 5A-B). We compared cell-state density along 157 
pseudotime for each lineage and observed that the increase in fate propensity towards the lineage is 158 
strongly correlated with the first low-density region in each lineage (Fig. 2D-E, Supplementary Fig. 5C-159 



D). Low-density regions therefore appear to be a hallmark of cell-fate specification in hematopoiesis. 160 
These low-density regions from HSCs to fate-committed cells encompasses <0.4% of the data and under 161 
<0.01% of bone marrow cells, demonstrating the ability of Mellon to identify low-frequency rare transitory 162 
cells (Fig. 2E). 163 

The occurrence of low-density regions in density landscapes can be attributed to accelerated gene 164 
expression changes, divergence, or apoptosis (Supplementary Fig. 1A-C). Apoptosis during 165 
hematopoietic cell-fate commitment has been shown to be minimal23. Further, divergence or spread of 166 
cell states, while theoretically possible, would likely result in a broader distribution rather than the 167 
observed tight trajectories. Therefore, our results strongly suggest that hematopoietic lineage 168 
specification events occur through low-density regions induced by rapid and accelerated gene expression 169 
changes.  170 

We next devised a gene change analysis procedure to identify genes with high expression change in 171 
low-density regions (Methods). Our procedure consists of two steps: (1) We first determine local 172 
variability for each gene, which represents the change in expression of the gene in a cell-state. Local 173 
variability for a gene is determined as follows: For each state, we computed the absolute difference in 174 
gene expression to its neighbors. The differences are normalized by distance between states and the 175 
maximum of these normalized differences is nominated as the local variability of the gene. (2) Genes are 176 
then ranked by the weighted average of local variability across cells spanning a low-density region and 177 
the flanking high-density regions. Inverse of density are used as weights to ensure genes with higher 178 
expression change in low-density regions are ranked higher. Thus, gene change analysis quantifies the 179 
influence of a gene in driving state transitions in low-density regions (Methods).   180 

We applied the gene change analysis procedure to identify genes that drive hematopoietic fate 181 
specifications by selecting cells spanning hematopoietic stem-cells to fate committed cells along each 182 
lineage (Supplementary Fig. 6A). Upregulated genes in each lineage transition were enriched for 183 
lineage identity genes whereas downregulated genes across lineages were associated with stem cell 184 
programs (Supplementary Fig. 6B-C), indicating that changes that underlie cell-fate specification in 185 
hematopoiesis occur in low-density regions. Notably, we observed genes with higher expression levels 186 
specifically in low-density states, suggesting that despite their transitory nature, certain gene regulatory 187 
programs are uniquely adapted to facilitate these transitions (Supplementary Fig. 6). 188 

We next utilized Mellon densities and associated genes to investigate B-cell fate specification. Genes 189 
with high change scores in this low-density region were enriched for modulators of B-cell lineage 190 
specification with their roles traversing transcriptional regulation, intracellular signaling and cell migration. 191 
Transcription factor EBF1 had the highest change score (Supplementary Fig. 7A), aligning with its role 192 
as the master regulator of B-cell differentiation24. In fact, the upregulation of EBF1 is exquisitely localized 193 
to the low-density region between stem and B-lineage committed cells (Fig. 2F), with similar dynamics 194 
observed in other critical B-cell commitment regulators such as PAX5 and IL7R (Supplementary Fig. 195 
7B-C). From a signaling point of view, we observed an upregulation of IL-7 responsive Stat signaling 196 
targets in the same low-density cells concurrent with IL7R upregulation (Fig. 2G, Supplementary Fig. 197 
7C). These observations are consistent with previous studies that have illustrated the vital role of IL-7 198 
driven activation of STAT5 in a rare precursor population for B-cell specification1.  Finally, genes such as 199 
NEGR1, with documented roles in cell adhesion and migration25, also score high (Supplementary Fig. 200 
7B), demonstrating that the spatio-temporal continuum of B-cell differentiation within the bone marrow is 201 
executed as rapid transcriptional changes through low-density cell-states.  202 

These findings underscore the potential of Mellon to uncover rare, biologically significant cell populations. 203 
They also demonstrate that rapid transcriptional changes that drive state transitions in low-density 204 



regions are shaped by an intricate interplay of cell-autonomous and extrinsic factors, highlighting how 205 
Mellon can help unravel this complexity. 206 

Following fate specification, B-cell development is a highly orchestrated process where cells transition 207 
through checkpoints as they gain functional and non-self-reactive B-cell receptors26. We analyzed Mellon 208 
densities along pseudotime and observed that B-cell differentiation is defined by alternating high- and 209 
low-density regions (Fig. 2H). Using marker gene expression and gene change score analysis, we 210 
inferred that every high-density peak represents a well-characterized checkpoint, and every checkpoint 211 
corresponds to a high-density peak (Fig. 2H, Supplementary Fig 7D). This also suggests that 212 
checkpoint releases manifest as low-density states. Since apoptosis has only been extensively observed 213 
in the transition from Pre-Pro B-cells to Pre-B-cells1,26, our results suggest that cells rapidly change their 214 
state upon checkpoint release until they reach the next checkpoint, where they converge to create high-215 
density regions. 216 

As a test of robustness of these results, we assessed Mellon’s reproducibility by computing cell-state 217 
densities for single-cell datasets of bone marrow cells from eight independent donors from the Human 218 
Cell Atlas27. Densities were highly consistent across the donors, demonstrating consistent observation of 219 
high- and low-density regions across the hematopoietic landscape (Supplementary Fig. 8A-B). 220 
Moreover, density patterns along the B-cell differentiation trajectories were also consistent between the 221 
samples, reinforcing the reliability and reproducibility of Mellon density estimates (Supplementary Fig. 222 
8C). 223 

Versatility of Mellon cell-state densities 224 
We investigated whether cell-state density is a fundamental property of the homeostatic system by 225 
investigating whether cell-state density is restored upon regeneration. We utilized a single-cell dataset of 226 
lung regeneration where lungs were profiled using scRNA-seq following injuries induced with bleomycin 227 
(Fig. 2I)28. We applied Mellon to compute cell-state densities before injury and upon recovery. 228 
Remarkably, we observed that the density landscape reverts to the homeostatic state upon regeneration 229 
from injury (Fig. 2J, Fig., Supplementary Fig. 9). This observation suggests that cell-state density, while 230 
fundamental to tissue homeostasis, is also reflective of the tissue regenerate state. As the tissue recovers 231 
from injury, the restoration of the original cell-state density landscape could serve as an indicator of 232 
successful tissue regeneration. 233 

We further explored Mellon's versatility by applying it to a variety of homeostatic biological systems such 234 
as pancreatic development29, endoderm differentiation30 and spatial organization of intestinal tissues 31. 235 
The recurring observation of high- and low-density regions across these diverse systems suggests that 236 
these patterns are a ubiquitous feature of single-cell phenotypic landscapes (Supplementary Fig. 10). 237 
These density variations supply a wealth of biological insight beyond abstract quantities: High-density 238 
regions across systems typically correspond to key developmental checkpoints or bottlenecks, while low-239 
density regions often represent rare transitory cells undergoing rapid transcriptional changes to bridge 240 
the denser areas (Supplementary Fig. 10). 241 

These findings emphasize the effectiveness of Mellon for accurately characterizing differentiation 242 
landscapes and highlight the importance of scrutinizing both high- and low-density regions for a holistic 243 
understanding of the differentiation processes. Mellon’s fine-grained resolution also aids the identification 244 
of rare transitory cells, a critical element of diverse biological phenomena. 245 

Mellon produces robust cell-state densities 246 
We next assessed the robustness of Mellon cell-state densities across different parameters. The number 247 
of cells measured in a dataset is a crucial factor affecting the accuracy and reliability of density estimates. 248 



We performed subsampling experiments and compared the results to those obtained using the full 249 
dataset by leveraging the continuous nature of Mellon. Our subsampling experiments show that Mellon's 250 
density estimates are highly robust to subsampling, even when reducing the number of cells by an order 251 
of magnitude across different datasets (Supplementary Fig. 11,12). Density estimates are also robust 252 
to variations in the number of diffusion components (Supplementary Fig. 13), dimensionality 253 
(Supplementary Fig. 14), the number of landmarks (Supplementary Fig. 15), and the length-scale 254 
heuristic employed for scalability (Supplementary Fig. 16). These findings underscore the reliability of 255 
Mellon's density estimation approach, which can provide accurate and robust results even with limited 256 
data. 257 
 258 
Finally, we compared Mellon to existing approaches for cell-state density estimation. Densities have been 259 
approximated as the inverse of distance to kth nearest neighbor2,14 due to computational complexity. 260 
However, due to the inherent noise and sparsity of scRNA-seq data, these approaches often fail to 261 
generate robust density estimates (Supplementary Fig. 2A-B). The characteristic high- and low-density 262 
regions identified by Mellon could not be demarcated by densities estimated solely from nearest neighbor 263 
distances (Supplementary Fig. 2B-D). Given this noise,  2D embeddings, such as UMAPs, have been 264 
widely utilized for density computation. While such embeddings are effective for visualization, the low-265 
dimensionality restricts their capacity to encapsulate all biologically significant variability. The UMAP 266 
density estimates for the T-cell depleted bone marrow data are dominated by the most dominant cell-267 
type, i.e.,  monocytes (Supplementary Fig. 2C) with no discernable variability in the other lineages 268 
(Supplementary Fig. 2D). Thus cell-state density estimation using Mellon substantially outperforms 269 
existing approaches in accuracy, and biological interpretability.  270 

 271 
Enhancer priming as a catalyst for rapid transcriptional changes in low density cell-272 
states. 273 
We next turned our attention to the mechanisms that regulate the rapid transcriptional changes that 274 
generate rare transitory cells during lineage specification. Previous studies have identified extensive 275 
priming of lineage-specifying genes in hematopoietic stem cells, where gene loci are maintained in an 276 
open chromatin state through pre-established enhancers, even in the absence of gene expression32-34. 277 
Moreover, enhancer priming has been implicated to play a role in rapid transcriptional responses to stimuli 278 
in hematopoietic cells35. 279 
 280 
Building on these findings, we hypothesize that the rapid upregulation of lineage specifying genes as 281 
cells transition from HSCs (a high-density region) to fate committed cells (another high-density region) is 282 
in part driven by enhancer priming. In this scenario, the loci of lineage-specifying genes are maintained 283 
in an accessible state in HSCs through pre-established enhancers. A combination of cell-autonomous 284 
and extrinsic factors trigger the upregulation of a small set of master regulators, which in turn rapidly 285 
upregulate the expression of lineage-specifying genes in a coordinated manner. Thus, the combined 286 
activity of pre-established enhancers in HSCs and lineage-specific enhancers established by master 287 
regulators could produce the rapid transcriptional changes that underpin rare transitory cells in low-288 
density states (Supplementary Fig. 17). 289 
 290 
We used the transition from HSC to B-cells as the case-study (Fig. 3C) to test our hypothesis. We 291 
leveraged the multiomic nature of our T cell depleted bone marrow dataset, with measurements of both 292 
expression (RNA) and chromatin accessibility (ATAC) in the same single cells (Supplementary Fig. 18). 293 
The first step is to delineate the primed and lineage-specific peaks associated with a gene. The noise 294 



and sparsity of scATAC data means that determination of individual peak accessibility at single-cell level 295 
is extremely unreliable36. Therefore, we devised a procedure to disentangle primed and lineage-specific 296 
peaks associated with a gene using different levels of abstractions (Supplementary Fig. 19A, Methods): 297 
First, we used our SEACells algorithm21 to aggregate highly-related cells into metacells and identified the 298 
set of peaks with accessibility that significantly correlate with gene expression (Fig. 3A). We then 299 
identified the subset of these peaks with greater accessibility in B-cells compared to other lineages by 300 
comparing accessibility between cell-types at the metacell resolution. This approach ensures the 301 
exclusion of ubiquitous and low-signal peaks while retaining peaks that are important for B-cell fate 302 
specification. Finally, we classified each peak as primed if it was accessible in HSCs, and as lineage-303 
specific if its accessibility was B-cell restricted (Fig. 3B). We verified that the accessibility of lineage-304 
specific peaks was near exclusive to B-cells and that of primed peaks were higher in HSCs and B cells 305 
(Supplementary Fig. 19B-C). 306 
 307 
We identified the set of genes with high change scores in B-cell specification using our gene change 308 
analysis procedure (Supplementary Fig. 20A). We then used the subset of these genes with 309 
upregulation in B-cell lineage and those with at least 5 peaks correlated with expression to test our 310 
hypothesis.  >80% of these genes were associated with at least one primed peak and one lineage-specific 311 
peak (Supplementary Fig. 20A), implicating enhancer priming as vital to their upregulation. In contrast, 312 
none of the genes associated with the erythroid fate specification demonstrated B-cell primed peaks. To 313 
characterize the dynamics of these peaks during lineage specification, we computed two accessibility 314 
scores for each gene at single-cell resolution: (i) primed score, defined as the aggregated accessibility of 315 
all primed peaks correlated with the gene and (ii)lineage-specific score, defined as the aggregated 316 
accessibility of all lineage-specific peaks correlated with the gene (Methods). We first used these scores 317 
to examine the dynamics of EBF1, the gene with the highest change score in the low-density region of 318 
B-cell fate specification (Fig. 3D) and the master regulator of B-cell differentiation24. We observed that 319 
primed peaks were open in stem cells as expected and increased in accessibility as B-cell fate was 320 
specified (Fig. 3E, orange line). This was followed by the establishment and stabilization of lineage-321 
specific peaks (Fig. 3E, blue line) and finally lineage-specific upregulation of EBF1, highlighting the role 322 
played by enhancer priming in the upregulation of EBF1. We next examined the genes upregulated in B-323 
cell lineage specification with primed and lineage-specific peaks, and observed a similar pattern to EBF1, 324 
along with a coordinated upregulation that follows EBF1 expression (Fig. 3E-F, Supplementary Fig. 325 
20C). Finally, we used in-silico ChIP37 to identify that almost every gene in our gene set is a predicted 326 
target of either EBF1 or PAX5 (Fig. 3H), consistent with our hypothesis and the proposed role of EBF1 327 
as a trigger for a “big-bang” of B-cell development38.  328 
 329 
Our results support a mechanism where enhancer priming and subsequent activation of master 330 
regulators lead to a rapid and coordinated upregulation of genes, resulting in the emergence of rare 331 
transitory cells that confer lineage identity. These results highlight the importance of taking cell-state 332 
density into consideration for understanding gene regulatory networks that drive cell-fate specification. 333 
Our approach to determine primed and lineage-specific accessibility scores for each gene utilizes the 334 
history of peak establishment, a feature unaccounted for by most current techniques, which tend to 335 
aggregate all peaks in proximity of a gene to derive a single gene score32,36 (Supplementary Fig. 20D-336 
E). Finally, the expression and accessibility trends were determined using Gaussian process with the 337 
function estimator implemented in Mellon, highlighting another utility of the Mellon framework 338 
(Supplementary Fig. 21, Methods). 339 
 340 



Identification of master regulators with Mellon 341 
While master regulators have been identified for several hematopoietic lineages, the mechanisms 342 
controlling lineage-specific upregulation of these master regulators remain largely elusive.   343 
To investigate whether the regulation of EBF1 could be clarified through cell-state density, we adapted 344 
our approach to compute gene-change scores to rank the EBF1 correlated peaks by their accessibility 345 
change score in the low-density region of B-cell specification (Methods). Interestingly, the top peak in 346 
this analysis was almost exclusively accessible in the low-density region (Fig. 3I). We employed in silico 347 
ChIP to identify transcription factors with a strong predicted signal to bind this peak and observed that 348 
top 10 enriched motifs were exclusively comprised of IRF and SOX motifs. Interestingly, the increase in 349 
accessibility in the peaks is concurrent with upregulation of the transcription factor SOX4 (Fig. 3J), a 350 
known regulator of EBF1 during B-cell development39. These results clarify the temporal order of 351 
transcriptional events where upregulation of SOX4 leads to lineage-specific expression of EBF1 to 352 
establish B-cell fate and also suggest the specific set of regulatory elements that drive this mechanism.  353 
 354 
The strong association of EBF1 expression with low-density transition (Supplementary Fig. 20A) and 355 
the high number of expression-correlated peaks (Supplementary Fig. 19E), coupled with the 356 
coordinated upregulation of its targets (Fig. 3H), suggests a paradigm for identifying master regulators 357 
via Mellon densities. Additionally, identifying peaks whose accessibility changes are strongly associated 358 
with cell-state density can offer insights into the regulation of the master regulators themselves. 359 
 360 
Exploring Time-Series Single-Cell Datasets with Mellon to Understand Mouse 361 
Gastrulation 362 
Time-series single-cell datasets are invaluable for understanding the intricate dynamic processes driving 363 
development, as they provide snapshots of the changes in cell-type and cell-state compositions during a 364 
fast-changing process. Although various computational methods exist to model trajectories using time-365 
series data8,40-43, they typically represent these changes as discrete steps between measured timepoints 366 
and thus are limiting when studying inherently continuous processes like embryonic development. To 367 
better represent these processes, we investigated if we could utilize Mellon’s continuous density functions 368 
to construct a time-continuous cell-state density function. This function will span not just the observed 369 
timepoints, but can also interpolate densities at unobserved times, enabling a truly continuous view of 370 
the shifting cell-state density landscape during development.  371 
 372 
We used the mouse gastrulation atlas44, a single-cell dataset of 116,312 cells spanning gastrulation and 373 
early organogenesis (E6.5-E8.5) (Fig. 4A) for exploration of time-continuous densities. We first applied 374 
Mellon to each timepoint individually and observed considerable variability in cell-state densities over 375 
time (Fig. 4B, Supplementary Fig. 22). Interestingly, we observed that the emergence of new cell types 376 
or lineages was often marked by a low-density transition (Fig. 4B), highlighting the "fits and starts" nature 377 
of developmental progression5. 378 
 379 
Mellon's capacity to generate a continuous density function enables it to estimate densities for cell states 380 
that were not part of the training data (Fig. 1). To demonstrate this, we used the density function 381 
associated with each specific time point to calculate densities across cells of all timepoints (Fig. 4C). In 382 
essence, we estimated the likelihood of each cell state being observed at a different time point. This 383 
unique feature of Mellon allows for comparison of cell-state densities across various developmental 384 
stages by calculating the correlation between the pair of time-point densities within the same cell state 385 
(Supplementary Fig. 23). Interestingly, embryonic stage E7.75 was least similar to neighboring 386 



timepoints, indicating the completion of gastrulation and onset of organogenesis at E7.75 387 
(Supplementary Fig. 23A-D).  388 
 389 
We next constructed a time-continuous cell-state density of mouse gastrulation by incorporating 390 
measurement time as a covariate. We devised a procedure to ensure that the covariance of measurement 391 
times between cells reflects the empirically observed correlation between timepoint densities (Methods, 392 
Supplementary Fig. 23E-F) to construct a density function that is continuous in both time and cell-state. 393 
Therefore, we can estimate cell-state densities at any desired timepoint situated between the measured 394 
instances (Fig. 4D, Supplementary Video 1). Thus, by leveraging the temporally related data, we 395 
enhanced the cell-state distribution of individual time points - a cell state present in preceding and 396 
following time points is likely to exist in the current time point, even if it hasn’t been directly observed.   397 
 398 
To validate this approach, we performed leave-one-out cross-validation by comparing density computed 399 
exclusively from a timepoint with the interpolated density computed by omitting the same timepoint. The 400 
two densities are highly correlated even for timepoint E7.75 (Supplementary Fig. 24), which is least 401 
similar to its neighbors, providing a clear validation of our approach. 402 
 403 
Importantly, our time-continuous approach also enables the quantification of rates of density change. By 404 
taking the derivative of the time-continuous density along the time axis, we can assess the rates of 405 
enrichment or depletion for every cell state at any time (Fig. 4D, Supplementary Video 1). Our analysis 406 
reveals that the initial phase of gastrulation is predominantly characterized by growth, with a nearly 407 
constant abundance of epiblast and primitive streak cells—a finding in line with prior studies noting high 408 
proliferation45  (Supplementary Fig. 25A). Following this phase, a sharp transition occurs at E7.5, where 409 
a rapid decline of epiblast and primitive streak cells signals the completion of the gastrulation process 410 
(Supplementary Fig. 25B-C). Finally, another transition at E8.375 marks the emergence of ectodermal 411 
and endodermal structures, accompanied by a concomitant decline in their respective progenitors 412 
(Supplementary Fig. 25D). These findings underscore the power and potential of employing time-413 
continuous cell-state density modeling to provide a high-resolution depiction of the developmental 414 
process in its entirety.  415 
 416 
The application of time-continuous cell-state densities can also offer insight into the dynamics of cell 417 
abundance along specific developmental lineages. As a case study, we chose to investigate 418 
erythropoiesis during gastrulation, given its well-understood process. Using the full gastrulation atlas and 419 
Palantir14 we identified cells predisposed to differentiate into erythroid lineage and derived a pseudo-420 
temporal ordering of these cells (Supplementary Fig 26). Leveraging our time-continuous cell-state 421 
density function, we approximated densities along pseudo-time, which revealed a continuous progression 422 
of cells toward the erythroid state (Fig. 4F). Interestingly, there is a strong alignment between pseudotime 423 
and real time indicating a linear dependency in the erythroid lineage. Note that the persistent high density 424 
of early epiblast cells likely represents cells differentiating into cell types other than the erythroid lineage.  425 
 426 
Further, the dynamics of cell-type proportion along real time can be investigated by computing the 427 
marginal of the density representation that contrasts real-time versus pseudo-time (Fig. 4G). This 428 
visualization allowed us to precisely pinpoint the timespan during which hematoendothelial progenitors, 429 
the earliest precursors of erythroid cells, emerge from the nascent mesoderm (Fig. 4G). Notably, the 430 
proportion of hematoendothelial cells remains relatively stable across time, indicating their transient 431 
presence without expansion in the cell population. In stark contrast, blood progenitor cells (Type 2) 432 
undergo a substantial increase in their proportion following their emergence, suggesting a period of 433 



accelerated cell division. Therefore, our time interpolation offers valuable insights into the progression of 434 
cell type abundances and allows for high resolution predictions of the emergence of specific cell types. 435 
 436 
Our results showcase Mellon’s capability to provide a comprehensive, time-continuous perspective on 437 
cell-state densities during development and reprogramming.  438 
 439 
Mellon infers densities from single-cell chromatin data. 440 
Single-cell chromatin profiling techniques such as single-cell ATAC-seq16, CUT&Tag46,47, and sortChIC-441 
seq48 are revolutionizing the study of interplay between gene expression and chromatin landscape in 442 
disease and differentiation. We developed Mellon to be adaptable to different single-cell modalities, 443 
making it a valuable addition to the computational toolkit for these emerging techniques. Given their 444 
robust representation of cell-states, we use diffusion maps for deriving a cell-state space for density 445 
inference through Mellon. Diffusion maps rely only on distances between similar cells and thus can be 446 
constructed for most single-cell data modalities following appropriate pre-processing21.   447 

To evaluate Mellon's adaptability to scATAC-seq data, we computed diffusion maps from the ATAC 448 
modality of the T-cell depleted bone marrow dataset21  and applied Mellon for cell-state density inference. 449 
Similar to gene expression, Mellon reveals substantial chromatin-state density variability 450 
(Supplementary Fig. 27A). High- and low-density states corresponded respectively to major cell-types 451 
or checkpoints and rare transitory cells (Supplementary Fig. 27A). Applied to a mouse model of lung 452 
adenocarcinoma49, we observed extensive chromatin-state density variability amongst cells of the 453 
primary tumors, with the transition to metastasis associated with a sharp decrease in density 454 
(Supplementary Fig. 27B). We made similar observations with a larger-scale scRNA-seq dataset of the 455 
same mouse model (Supplementary Fig. 27C)9, consistent with previous studies which have 456 
demonstrated that metastases are seeded by small group of cells 50.  457 

While diffusion maps provide desirable properties for state representation from single-cell data, Mellon’s 458 
effectiveness is not tied to their specific properties. Mellon is capable of estimating densities in any 459 
representation with a meaningful distance metric. To demonstrate this, we used Mellon to infer cell-state 460 
densities from a MIRA representation51 of a multimodal dataset of skin differentiation (Supplementary 461 
Fig. 27D).  Similar to observations with single modality datasets, we observed extensive variability in 462 
densities with low-density regions corresponding to exit from the stem-cell state and specification of 463 
different lineages (Supplementary Fig. 27D). 464 

We also tested Mellon’s ability to recover chromatin-state densities using single-cell histone modification 465 
data. We applied Mellon to compute densities using a single-cell sortChIC dataset of histone 466 
modifications in mouse hematopoiesis48 using H3K4me1, a histone modification that marks enhancers 467 
and H3K9me3, that marks heterochromatin (Fig. 5A-D).  H3K4me1 densities demonstrated extensive 468 
heterogeneity similar to single-cell RNA and ATAC (Fig. 5E). On the other hand, H3K9me3  densities are 469 
relatively uniform and lower compared to H3K4me1 (Fig. 5F). While the lower density is likely reflective 470 
of the noise in heterochromatin marks which tend to occur in broad megabase size domains, the relative 471 
uniformity is  likely reflective of the underlying biology: Active chromatin marks like H3K4me1 accurately 472 
have been shown to  distinguish cell types and states whereas heterochromatin mark H3K9me3 struggles 473 
to achieve the same resolution48. This follows the function of H3K9me3 to aid in general repression of 474 
other cell-fates rather than to actively establish cell-type identity48. To quantify the difference in 475 
heterogeneity between the two marks, we subsampled cells from each mark and compared the rank of 476 
the covariance matrices (Fig. 5D). The covariance rank is a measure of information content where greater 477 
the rank, higher is the complexity of the system. The distribution of ranks is significantly higher for 478 



H3K4me1 compared to H3K9me3 (p-value < 1e-30, Wilcoxon rank-sum test) demonstrating a greater 479 
complexity across cell-types for the H3K4me1 histone modification.  480 

Our results demonstrate the versatility of Mellon with diverse single-cell data modalities and data 481 
representations. Mellon’s ability to robustly and accurate identify cell-state densities from single-cell 482 
chromatin data suggests a key utility in mechanistic investigations with emerging technologies that 483 
concurrently measure active and repressive modifications52,53. 484 

Highly efficient and scalable: Mellon's power in atlas-scale single-cell analysis 485 
There is a growing trend towards generation of atlas-scale datasets that profile millions of cells, as well 486 
as integration of smaller datasets into large-scale data repositories54,55.  To enable density computation 487 
in these massive datasets, Mellon incorporates several features that enable efficient scalability: First, 488 
Mellon uses a sparse Gaussian process, leveraging landmark points to approximate the covariance 489 
matrix, facilitating the efficient handling of high-dimensional data, and reducing the computational 490 
overhead associated with large datasets. Second, Mellon requires a single computation of the covariance 491 
matrix, removing the need for continuous updates in every iteration and thus improving computational 492 
efficiency. Finally, Mellon is built on the JAX python library, which is well-known for its high-performance 493 
computing capabilities56. The utilization of JAX allows Mellon to optimize available hardware resources, 494 
further enhancing its scalability and computational efficiency. 495 

Mellon's architecture is designed to scale near linearly in time and memory requirements i.e., the runtime 496 
grows proportionally with the number of cells when the number of landmarks is kept constant (Fig. 6). To 497 
demonstrate the scalability, we used the T-cell depleted bone marrow (8.6k cells)21, CD34+ bone marrow 498 
(6.8k cells)21, mouse gastrulation (116k)44 and  the iPS reprogramming dataset (250k cells)8 spanning 499 
datasets of different sizes and characteristics. For example, using a single CPU core and a default of 500 
5000 landmarks, Mellon required only 100 seconds to process 10k cells and 17 minutes to process 100k 501 
cells of the iPS dataset, including the computation of diffusion maps (Fig. 6A). Additionally, Mellon 502 
benefits from parallelization, enabling even faster processing times (Fig.6B). This highlights Mellon's 503 
efficiency in handling datasets of different sizes.  504 

To further evaluate Mellon's scalability, we performed benchmarking on simulated datasets, where we 505 
utilized a single CPU core and excluded the time for diffusion map computation. Mellon demonstrated its 506 
capability to handle large-scale datasets by accurately computing densities on a dataset of ~6 million 507 
simulated cells in less than 12 hours (Supplementary Fig. 28A-D). In addition, we investigated Mellon's 508 
scalability with reduced numbers of landmarks. When the number of landmarks was decreased to 1000, 509 
Mellon maintained its accuracy while requiring less than 7 hours to accurately estimate densities for a 510 
simulated dataset of around 10 million cells (Supplementary Fig. 28E-H). These results highlight 511 
Mellon's remarkable scalability to tackle the burgeoning demands of increasingly large single-cell 512 
datasets.  513 



Discussion 514 

Rapid transcriptional changes that lead to rare transitory cells and thus induce differences in cell-state 515 
density have been well-documented as a fundamental property of developmental systems from plants to 516 
mammals5. Single-cell studies have reinforced the critical nature of rare transitory cells in diverse 517 
biological contexts such as development42,44, differentiation1, reprogramming8, plasticity of tumors10  and 518 
metastasis9. However, existing approaches for estimating cell-state densities have fundamental 519 
limitations: They either rely on noisy neighborhood-based estimates around individual cells or utilize 2D 520 
dimensional embeddings that do not capture the full complexity of cell-states. Mellon addresses this gap 521 
by providing a robust and accurate framework for estimating cell-state densities from high-dimensional 522 
cell-state representations. Mellon can be applied to dissect the density landscapes not only in 523 
differentiation and development but also during reprogramming, regeneration, and disease. We extended 524 
the Mellon framework to estimate time-continuous cell-state density for temporal interpolation of time-525 
series data. The computational efficiency of Mellon allows for rapid density computations, enabling the 526 
analysis of large-scale single-cell datasets containing hundreds of thousands of cells within minutes. 527 
Furthermore, Mellon's flexibility supports density estimation for diverse single-cell data modalities, 528 
making it a versatile tool for investigating cell-state densities across various biological systems. 529 

Mellon's innovative approach involves formalizing the connection between density and nearest neighbor 530 
distances using a Poisson process and establishing a link between cell-state similarity and density 531 
through Gaussian processes. This unique combination overcomes computational challenges in high-532 
dimensional spaces and enhances the robustness and accuracy of density estimation. The scalability of 533 
Mellon is achieved through the utilization of sparse Gaussian processes, heuristic for length-scale 534 
optimization to avoid redundant computations of the covariance matrix, and implementation using 535 
efficient JAX libraries. 536 

Our work underscores the significance of cell-state density in understanding differentiation trajectories 537 
and the potential of Mellon to provide new insights into the regulatory mechanisms guiding cell-fate 538 
decisions. We have demonstrated the effectiveness of Mellon in estimating cell-state density using 539 
hematopoietic differentiation. Mellon's ability to capture the heterogenous density landscapes, where 540 
high-density regions correspond to major cell-types and low-density regions represent rare transitory 541 
cells, is particularly evident. By incorporating our trajectory detection algorithm, Palantir, we have been 542 
able to observe a correlation between low-density regions and lineage specification. Further, our gene 543 
change analysis procedure helps identify gene expression changes that drive low-density transitions and 544 
can help elucidate the underlying molecular mechanisms. This was particularly insightful during our 545 
investigation into B-cell fate specification, where the detection of low-density regions played a central role 546 
in identifying the importance of enhancer priming and characterizing the regulation of the master regulator 547 
EBF1. The pattern of alternating high- and low-density regions, observed during the process of B-cell 548 
development, further highlighted the dynamic nature of differentiation. Importantly, the consistency of our 549 
density estimates across independent donor samples highlights reproducibility and reliability of Mellon. 550 
Therefore, these findings provide a strong foundation for further exploration into the intricacies of cellular 551 
differentiation. 552 

An important consideration for estimation of cell-state density is the inherent dimensionality of the cell-553 
state space. Mellon by default uses the dimensionality of the cell-state space i.e., number of diffusion 554 
components for density estimation, but the intrinsic dimensionality is likely substantially lower. In other 555 
words, not all diffusion components are relevant to describe any given region or point in the cell-state 556 
space. With measures of intrinsic dimensionality57, one can produce explicit units of density and make 557 
statements about how many more cells per volume can be expected at a given state. High-dimensionality 558 



of the state-space also presents a challenge for automatic determination of high- and low-density regions. 559 
Therefore, we compared densities with lower-dimensional projections such as pseudo-time to identify 560 
such regions. Incorporation of density as a feature for clustering algorithms or the use of local context 561 
density could lead to direct computation of such regions in the high-dimensional state-space.  562 

We anticipate that the time-continuous cell-state densities for temporal interpolation will be a powerful 563 
addition to the computational toolkit for modeling cell-state dynamics using time-series single-cell 564 
datasets. Mellon provides capabilities to interpolate cell-state density and since the density function is 565 
differentiable, it also supports the computation of density change at all times between measured time 566 
points. Thus Mellon densities can serve as inputs for development of computational algorithms leveraging 567 
advances in optimal transport43 for a high-resolution characterization of cell-fate choices using time-series 568 
data.  569 

We have demonstrated that cell-state density is a fundamental property of the differentiation landscape 570 
by observing that homeostatic density is re-established upon lung regeneration (Fig. 2I-J). Thus, the 571 
Mellon cell-state density function can itself serve as a phenotype of that differentiation landscape that is 572 
altered upon perturbation. Single-cell datasets in unperturbed and perturbed conditions can be jointly 573 
embedded into a common state space such as diffusion maps and density functions can be computed 574 
separately for each condition in the common space. Comparison of densities from different conditions 575 
can not only provide estimates of differential abundance at unprecedented resolution but can also be 576 
utilized to develop summary statistics that describe and quantify the nature of the perturbation across the 577 
entire differentiation landscape.  578 

Fundamentally, the density function estimated by Mellon provides a comprehensive description of the 579 
differentiation landscape, representing the probability distribution of cells within different states. Unlike 580 
many existing approaches that rely solely on the measured cell-states and number of cells, which can 581 
introduce technical biases and impact the interpretation, Mellon's density function reflects the inherent 582 
complexity of the biological system. As the number of measured cells increases, the density function 583 
converges in complexity, allowing for a more accurate representation of the relative abundances of all 584 
possible cell states. Mellon can be extended to support online learning, enabling the incremental 585 
refinement of the density function with new data. Monte Carlo sampling approaches can leverage 586 
Mellon’s cell-state density function to generate synthetic cell-state data, which can greatly enhance data-587 
intensive machine learning models. By incorporating the richness of the density function, these synthetic 588 
data can augment training sets and improve the performance and robustness of downstream analyses. 589 
Further, the differentiability of Mellon's density function opens up possibilities for utilization of partial 590 
differential equations. This enables the modeling of the differentiation process as a dynamical system 591 
and facilitates the inference of regulatory dynamics underlying cellular transitions. By integrating Mellon's 592 
density function within differential equation frameworks, one can gain deeper insights into the regulatory 593 
mechanisms governing cellular differentiation and uncover key factors driving the dynamic processes. 594 

  595 
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Methods 626 

Mellon Algorithm 627 

Mellon is a computational tool designed to infer cell-state densities from high-dimensional single-cell data. 628 
The objective of Mellon is to characterize the complex density landscapes of single-cell data (Fig. 1A-B) 629 
with density estimates that are robust even in low-density regions, while maintaining computational 630 
efficiency. 631 

Mellon's computational model is grounded on two core assumptions. Firstly, within the chosen 632 
representation of cell states, smaller distances between cell states signify higher biological similarity. In 633 
other words, we assume that biological dissimilarity can be effectively quantified by the Euclidean 634 
distance within this representation. Secondly, we assume that cell-to-cell density changes are smooth 635 
and continuous, meaning that cell states of high similarity are expected to have similar state densities. 636 

The input to Mellon is a high-dimensional representation of the cell-states (e.g., Diffusion maps). The 637 
Euclidean distance between these cell-states serves as a measure of biological dissimilarity. Mellon 638 
outputs a continuous density function that allows evaluation of cell-state densities at single-cell resolution 639 
(Fig. 1E-F). The densities are computed in the high-dimensional cell-state space and visualized using 640 
low-dimensional embedding techniques such as UMAPs. 641 

The Mellon framework contains the following major components: 642 

• Mellon first calculates the distance to the nearest neighbor for each cell in the cell-state space, 643 
following the first assumption.  644 

• The distances are linked to density via the Nearest-Neighbor Distribution (Fig. 1C).  645 
• Densities between highly related cell-states are connected by the Gaussian Process and the 646 

associated kernel function (Fig. 1C-D). 647 
•  A Bayesian Model (Fig. 1D) is deployed, integrating the nearest-neighbor distribution, kernel 648 

function, and Gaussian Process to compute the continuous cell-state density function (Fig. 1E). 649 

We next describe each of these components in detail along with our approach to scale Mellon for large 650 
datasets. 651 

 652 

Nearest-Neighbor Distribution 653 
The core principle of Mellon relies on the relationship between nearest-neighbor distances and density, 654 
as depicted in Supplementary Figure 3. This connection can be formalized using a Poisson point 655 
process to define a nearest-neighbor distribution, which describes the probability of another cell-state 656 
existing within some distance of a reference cell-state. Intuitively, regions with a higher density of cell-657 
states correspond to tighter nearest-neighbor distributions, while low-density regions result in broader 658 
distributions (Fig. 1C).  659 

For distance 𝑟 and density 𝜌, the probability density function of the Nearest-Neighbor distribution 660 
𝑓NN: ℝ! → ℝ" is given by 661 

𝑓NN(𝑟|𝜌) = exp.−𝜌 ⋅ 𝑏(𝑟, 𝑑)4 ⋅ 𝜌
d𝑏(𝑟, 𝑑)
d𝑟

 662 

where 𝑏(𝑟, 𝑑) is the volume of a 𝑑-dimensional ball with radius 𝑟. For a cell-state 𝑥 ∈ ℝ! with a nearest 663 
neighbor distance dn(𝑥), this probability density function gives rise to the following maximum likelihood 664 



estimate for density if no prior is employed, formalizing the inverse relationship between nearest neighbor 665 
distances and density as 666 

𝜌8(dn(𝑥)|𝑑) =
(𝑑 − 1) ⋅ 𝛤 ;𝑑2 + 1>

𝑑 ⋅ dn(𝑥)# ⋅ 𝜋
#
$

. 667 

The derivation is detailed in Supplementary Note 1. The use of Poisson point process is facilitated by 668 
the two key assumptions of Mellon: The use of Euclidean distance in the cell-state space is a critical 669 
requirement for defining the probability density function. The second is the assumption of smoothness in 670 
cell-to-cell density changes. This is crucial as it allows us to assume that the density at a given cell-state 671 
corresponds to the average density within a sphere centered at that state, with the radius of the sphere 672 
defined by the nearest neighbor distance. 673 

 674 
Gaussian Process 675 
Building upon the foundational connection between nearest neighbor distance and density, Mellon utilizes 676 
Gaussian process (GP) priors to establish a relation between the densities of highly-similar cell-states, 677 
facilitating a continuous density function estimation. Similarity between cell-states is encoded using the 678 
covariance function of the Gaussian process. The random variable of the GP, denoted as 𝑓(𝑥), serves 679 
as the approximation of the logarithm of the cell-state density. Two properties of GPs make them ideally 680 
suitable for cell-state density estimation from single-cell data: (i) GPs can be used to describe arbitrarily 681 
complex functional spaces where the true functional form is unknown and (ii) GPs provide robust 682 
estimates even when small number of observations are available. 683 

The GP is defined as follows: 684 

𝑓(𝑥) ∼ GP.𝑚,Matern52(𝑙)4 685 

where 𝑚 and Matern52(𝑙) are the mean function and the Matern covariance function respectively. A more 686 
detailed assessment is provided in Supplementary Note 2. 687 

Mean function 688 
The true log-cell-state density approaches negative infinity away from any observed cell state. However, 689 
functions sampled by the Gaussian process approach the chosen mean. To approximate the true 690 
behavior of density functions we choose a very small value for the mean 𝑚 that implies a vanishingly 691 
small probability for a distant cell state. This mean function is given by the constant: 692 

𝑚 = 𝑃%%E𝜌8(dn(𝑥')|𝑑)'∈{%…+}F − 10 693 

where 𝑃%%[⋅] is the 1st percentile of the given data, 𝜌8 is the heuristic maximum likelihood estimate for 694 
density, and dn(𝑥') is Nearest-Neighbor Distance of cell-state 𝑥' in ℝ#. The choice of this mean is 695 
discussed in Supplementary Note 3. 696 

Covariance Function and length scale 697 
Similarities between cell-states are encoded through the GP covariance function or kernel. Specifically, 698 
the kernel function defines the covariate structure between cell-states which translates to the smoothness 699 
of the density function. Some commonly used kernels are arbitrarily smooth and allow arbitrary 700 
differentiability. Assuming such smoothness can, however, lead to unrealistic results19. We therefore 701 
chose to use the Matern covariance function with 𝜈 = -

$
 as the kernel, which is exactly twice differentiable 702 



and thus constrains the degree of smoothness of the density function. The Matern52 kernel for a pair of 703 
cell states  𝑥, 𝑦 ∈ ℝ! is defined as: 704 

Matern52(𝑙)(𝑥, 𝑦) = L1 +
√5 ∥ 𝑥 − 𝑦 ∥$

𝑙
+
5 ∥ 𝑥 − 𝑦 ∥$$

3𝑙$
QexpL−

√5 ∥ 𝑥 − 𝑦 ∥$
𝑙

Q 705 

The covariate structure of the Gaussian process is governed by the length scale parameter, denoted as 706 
𝑙, which essentially determines the radius of influence around each cell state. Conceptually, the length 707 
scale sets the reach of influence for each cell, defining the range within which other cells contribute to 708 
the local density estimate (Supplementary Fig. 3). In areas of lower density, fewer but more 709 
representative cells influence the density estimate, while in higher density areas, a larger number of cells 710 
contribute. This scenario gives rise to an effective number of neighbors that is density-dependent, which 711 
is a direct result of the distance-mediated impact on the local density estimate (Supplementary Fig. 3).  712 

This method not only increases the reliability and robustness of density estimates, but it also enables the 713 
creation of a continuously changing density function between cell states, offering a nuanced 714 
representation of biological phenomena.  Unlike the k-nearest neighbor methods for density estimation 715 
that assign an equal weight to all k neighbors irrespective of their distances, the continuous covariance 716 
function of the Gaussian process accounts for the distance between cells, smoothly adjusting the weight 717 
of their contribution. The resulting impact on the local density estimate facilitates a more precise 718 
representation of the cell-state landscape. 719 

The ideal length scale strongly depends on the availability of data at different points of the cell-state 720 
space and encompasses a specific amount of cells needed to support a reliable density estimate of a 721 
given state. We therefore derived a heuristic for length scale as function of the mean nearest neighbor 722 
distance between cells: 723 

𝑙 = expR𝜆 +
1
𝑛
Ulog
+

./%

∘ dn.𝑥.4Z 724 

Here, 𝜆 = 3 is a heuristic value inferred from an extensive cross-analysis of multiple datasets. The 725 
derivation of the length-scale heuristic is described in Supplementary Note 4. 726 

 727 

Sparse Gaussian Process 728 
Gaussian process computation usually necessitates 𝑂(𝑛0) operations, where 𝑛 is the number of cells 729 
and thus can be prohibitively expensive for large datasets. To address this computational challenge, 730 
Mellon utilizes a sparse approximation of the GP. This approach substantially reduces the computational 731 
complexity while maintaining the versatility and expressiveness of the full GP model. 732 

The sparse GP in Mellon is constructed using a subset of data points, referred to as “landmark cell-733 
states,” that essentially act as inducing points. These landmark states are chosen to capture the essential 734 
structure of the cell-state space, providing a representative skeleton for the full GP model. This sparse 735 
GP approach translates to an efficient 𝑂(𝑛𝑘$) time complexity for inference, where 𝑘 is the number of 736 
landmark points, a substantial reduction from the cubic time complexity of the full GP. 737 

The specifics of the sparse GP implementation play a crucial role in the overall performance of the Mellon 738 
and are described in Supplementary Note 2. 739 

  740 



Landmark selection 741 
The choice of landmarks, akin to the “inducing points” in a Gaussian process, is essential to ensure 742 
precise recovery of the approximated covariance structure. Previous studies have demonstrated that k-743 
means centroids are well suited for this purpose58. We assessed the accuracy of this approach by 744 
comparing the inferred density derived from the landmarks against the density function inferred from a 745 
non-sparse, or “no-landmarks" version (Supplementary Fig. 15). This comparison showed a 746 
convergence of the landmark-based model towards the non-sparse version, thereby confirming the 747 
efficacy of the landmark selection. We therefore use k-means clustering as the default landmark selection 748 
in our algorithm and initialize it with kmeans++59 to ensure computational efficiency. 749 

 750 

Full Bayesian Model 751 
The full Bayesian model used in the Mellon algorithm is formally defined as follows: 752 

𝑋 = (𝑥')'∈{%…+},  𝑥' ∈ ℝ#1

𝑙 = expR𝜆 +
1
𝑛
Ulog
+

./%

∘ dn.𝑥.4Z

𝑚 = 𝑃%%[𝜌8(dn(𝑥')|𝑑)'∈	%…+] − 10
𝑓(𝑥') ∼ GP.𝑚,Matern52(𝑙)4
𝜌(𝑥') = exp ∘ 𝑓(𝑥')

dn(𝑥') ∼ NN(𝜌(𝑥'), 𝑑)

 753 

Where 754 

• 𝑋 represents the cell states, where each cell state, 𝑥', is a vector in the 𝑑′-dimensional Euclidean 755 
space. The cell states form the primary input data for the model. 756 

• 𝑙 is the length scale of the GP covariance function. 𝑙  is calculated from the distances to the 757 
nearest neighbors in the cell-state space. The logarithm of these distances is averaged and added 758 
to a fixed parameter 𝜆 = 3. The sum is then exponentiated to produce the length scale. 759 

• 𝜌8 is the heuristic maximum likelihood estimate for the density.  760 
• dn(𝑥') is Nearest-Neighbor Distance of cell state 𝑥' 761 
• 𝑚  is the GP mean function. 𝑚 is calculated as the 1% percentile of the heuristic maximum 762 

likelihood estimates of density subtracted by a constant (10 in this case). This mean function 763 
represents the average behavior of the underlying cell-state densities. 764 

• Matern52  is the Matern covariance function with 𝜈 = -
$
 and length scale 𝑙. 765 

• 𝑓(𝑥') is a random function generated by a sparse Gaussian process (GP) , where 𝑥' is the input 766 
cell-state vector. The GP is defined by the mean function 𝑚 and the Matern covariance function. 767 

The cell-state density function 𝜌(𝑥') is the random variable of interest and is calculated by exponentiating 768 
the function 𝑓(𝑥'). This ensures that the density is always positive. The final part of the model is the 769 
Nearest Neighbor Distance distribution NN of the Nearest Neighbor distance dn(𝑥'), which is calculated 770 
as a function of the cell-state density 𝜌(𝑥') and the dimensionality 𝑑.  771 

  772 



Initialization 773 
An appropriate initialization 𝑦′ for the density function 𝑦 = 𝜌(𝑥') can improve the convergence of the 774 
maximum a posterior estimation. We employ a regression approach to initialize density estimation using 775 
the heuristic maximum likelihood estimates of the log-density 𝜌8  (Supplementary Note 1): 776 

𝑦′ = argmin
3

∥ 𝜌8 − 𝐿𝑦 ∥$$ +∥ 𝑦 ∥$$ 777 

Where 𝐿	 represents the transformation matrix within the Gaussian process, facilitating the conversion of 778 
the latent representation, 𝑦, into the log-density function. High values in 𝑦 are penalized through a ridge 779 
regression to simulate the additional smoothness of the true density over 𝜌8. 780 

 781 
Density at single-cell resolution 782 
The log-density function 𝑓(𝑥') is evaluated at each single cell 𝑥' ∈ ℝ#

!, to estimate log cell-state density 783 
at single-cell resolution. The estimated densities in cell-state space are visualized using techniques such 784 
as UMAPs for convenience.  Note that the density function can be evaluated at any point in the cell-state 785 
space including states that are not measured in the dataset. Single-cell densities can be examined along 786 
pseudo-time, individual diffusion components or between interconnected clusters to identify high- and 787 
low-density regions.  788 

 789 

Note on the number of landmarks for sparse Gaussian Process 790 
The number of landmarks serves as a parameter to the sparse Gaussian Process within Mellon. It's 791 
crucial that the number of landmarks is sufficiently large to accurately capture the intricate patterns and 792 
variability within the cell state density function. However, it is important to consider the trade-off involved: 793 
an increased number of landmarks enhances the model's capacity to encapsulate finer details, but it also 794 
increases the computational demands. 795 

Mellon employs a default selection of 5,000 landmarks, an empirical decision grounded in extensive 796 
testing with a multitude of datasets with different properties (Supplementary Table 1). Our evaluation 797 
underscores the robustness of Mellon's density estimates across all investigated datasets, consistently 798 
demonstrating stability even when the number of landmarks is substantially altered (Supplementary Fig. 799 
15). 800 

Nevertheless, the optimal number of landmarks can be contingent on the complexity and volume of the 801 
particular dataset under examination. To assist users in selecting a representative number of landmarks, 802 
Mellon incorporates a test for approximating the rank of the covariance matrix. Should the complexity of 803 
the function appear exhausted using the existing landmark skeleton, a warning will be issued. This serves 804 
as an indication that the selected number of landmarks might be insufficient for the model to accurately 805 
capture the density function of the cell-states. 806 

 807 

  808 



Scalability of Mellon 809 

The implementation of Mellon leverages modern advances in numerical computation libraries, specifically 810 
the JAX library, to enable efficient calculations and seamless differentiation. JAX is particularly suited for 811 
our purposes due to its unique capability of just-in-time (JIT) compilation using XLA (Accelerated Linear 812 
Algebra), a linear algebra compiler developed by Google56. This feature ensures efficient utilization of 813 
hardware resources, especially for large-scale computations and vectorized operations, which are 814 
intrinsic to our method. 815 

Mellon’s scalability to large single-cell datasets is ensured through the use of a Sparse Gaussian Process 816 
(GP). The sparse GP allows us to approximate the full GP model, significantly reducing the computational 817 
demands while retaining the essence of GP’s expressiveness. This scalability (Fig. 6) makes Mellon 818 
practical for atlas-scale single-cell data sets, which often involve millions of cells. 819 

Finally, model tractability in Mellon is achieved through the adoption of a length-scale heuristic for the GP 820 
covariance function. The covariance function is crucial in a Gaussian Process as it dictates how many 821 
nearby points in the input space influence each other in the output space. Typically, the length scale of 822 
this function is subject to inference or optimization, often involving computationally intensive iterative 823 
processes that require repeated updates of the covariance matrix and its Cholesky decomposition. In 824 
Mellon, we sidestep this computational demand by deriving an appropriate length scale with a data driven 825 
approach designed to adapt to the varying local densities in the high-dimensional cell-state space 826 
(Supplementary Note 4). This not only streamlines the computation but also assists in avoiding 827 
overfitting to dense regions, resulting in a smooth and accurate portrayal of cell-state density 828 
relationships. 829 

Together, these components create a balance between computational efficiency and model 830 
expressiveness, making Mellon an effective and practical tool for cell-state density estimation from large, 831 
high-dimensional single-cell data. 832 

 833 

Inference 834 
Mellon, by default, employs the L-BFGS-B optimization algorithm to infer the maximum a posteriori (MAP) 835 
estimates of the posterior likelihood. Notably, our implementation provides direct access to the posterior 836 
distribution of the density function. This is realized through a JAX function with automatic differentiation, 837 
thus facilitating the use of any preferred inference scheme while retaining computational simplicity. 838 

This flexibility is crucial because, in Bayesian inference, the MAP estimate can be subject to the 839 
transformation of the latent representation and might not necessarily represent the "true" underlying cell-840 
state density. In fact, empirical evidence (Supplementary Fig. 30) indicates that the MAP estimate 841 
strongly coincides with the posterior mean. However, without a definitive ground truth, it is challenging to 842 
ascertain which estimate more closely resembles the true cell-state density. 843 

In essence, Mellon's versatile implementation provides a robust framework for density estimation that 844 
can adapt to diverse inference schemes, offering users the freedom to employ the technique best suited 845 
to their specific study. 846 

 847 
  848 



Cell-state Representation 849 

Mellon utilizes diffusion components11, as implemented in Palantir14, as the representation of cell-state 850 
space. Diffusion maps have been widely used in single-cell data analysis owing to their reliable and 851 
robust representation of cell-states12,14. Cellular states in phenotypic landscapes reside in substantially 852 
lower dimensions compared to measured gene expression owing to gene regulatory networks inducing 853 
a strong covariate structure amongst genes. Therefore, biological similarity between cell states is more 854 
closely linked to the distance they can traverse along the phenotypic landscape, rather than solely their 855 
direct proximity in gene expression space. Diffusion maps identify the intrinsic structure in single-cell 856 
data, mitigating noise by treating the data as realizations of a stochastic process. They not only efficiently 857 
reduce noise in single-cell data but also extract a faithful representation of the underlying cell-state 858 
manifold.  859 

Further, the distances computed using diffusion maps, termed diffusion distances, are a measure that 860 
reflects the interconnectedness of data points along the phenotypic manifold. Importantly, diffusion 861 
distance operates along this manifold, which is constructed from the observed cell states, thereby 862 
providing a meaningful indicator of biological similarity between cells. Therefore, the use of diffusion 863 
distance in the estimation of cell-state density leads to a biologically relevant quantification of cells sharing 864 
a similar state. 865 

Diffusion maps can be constructed for different single-cell data modalities with appropriate preprocessing. 866 
We recommend the use of PCA for RNA and SVD for ATAC and histone modification data. “Data 867 
preprocessing” section provides more details on preprocessing of single-cell datasets. Diffusion maps 868 
can also be constructed using other latent representations36 or multimodal representations 51. 869 

 870 
Number of Diffusion Components  871 
The dimensionality of the subspace where the data is represented is determined by the number of 872 
diffusion components utilized in Mellon. Mellon results are robust to the number of diffusion components 873 
indicating that pinpoint precision in their selection isn't strictly necessary (Supplementary Fig. 13). 874 
However, some considerations ae important while choosing the number of diffusion components: 875 
Selecting a high number of diffusion components might lead to the inclusion of unnecessary noise within 876 
the state representation, reducing the granularity of the resulting density model. Conversely, choosing a 877 
small number of diffusion components might under-represent the complexity of the data, thus also leading 878 
to a less detailed density model. The optimal number of diffusion components is therefore largely data-879 
specific and should be chosen to best capture the inherent structure and complexity of the cell data, 880 
without unnecessarily increasing noise or forfeiting essential information. For example, Eigen gap statistic 881 
has been previously employed to choose the number of diffusion components14.  882 

 883 
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Genes Driving Low-Density Cell-State Transitions 885 

Low-density regions representing rare transitory cells are critical for diverse biological processes. We 886 
devised a gene change analysis procedure to identify genes that drive cell-state transitions in low-density 887 
regions and thus can be used to describe the dynamic behavior of the biological system. The input is a 888 
relevant set of cells 𝑆 ⊂ {1,… , 𝑛}, such as those representing a transition of interest. These could include 889 
a branch in the cell-differentiation landscape or clusters interconnected by transitory cells. The output is 890 
a ranking of genes ordered by their change scores representing their association with the low-density 891 
regions in the selected set of cells. Top genes in this ranking can be interpreted as driving the transitions 892 
in low-density regions.  893 

We first compute a measure of local variability of a gene for each cell-state: We compute the expression 894 
change from a cell when transitioning to each of its neighbors and normalize the change by the distance 895 
between the cells in state space to account for the magnitude of the state transition. The maximal 896 
normalized change amongst the neighbors of the cell is nominated as the local variability of the gene for 897 
the corresponding state. Formally, the local variability for gene 𝑗  in cell-state 𝑖 is defined as: 898 

𝑑'
. : = max

4∈5"
p67"

#87$
#9
%

∥;"8;#∥%
 899 

where, 𝑚'
. denotes the MAGIC imputed expression of gene 𝑗 in cell 𝑖, 𝑁' is the set of 𝑘 nearest neighbors 900 

of cell 𝑖.  901 

We next compute, a low-density change score 𝑠. for each gene 𝑗, as the sum of the gene change rates 902 
𝑑'
. across the selected cells, inversely weighted by the cell-state densities, 𝜌(𝑥'): 903 

𝑠. : =U
𝑑'
.

𝜌(𝑥')'∈<

 904 

This scoring approach encapsulates the hypothesis that genes with high change score in low cell-state 905 
density regions may be driving transitions. Genes are ordered by the change score and genes with scores 906 
> 95th percentile are considered to be driving low-density changes (Supplementary Fig. 7). 907 
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Primed and lineage-specific accessibility scores from scATAC-seq data 910 

Gene scores from scATAC-seq are typically computed by summarizing the accessibility of peaks in the 911 
body of the gene and its vicinity36. This, however, does not consider the history and temporal dynamics 912 
of peak accessibility. Enhancer priming, where open chromatin peaks are pre-established in stem cells 913 
without turning on gene expression but maintain the gene locus in an open state for lineage-specific 914 
upregulation, is an important mechanism through which stem cells encode high differentiation potential32-915 
34. To investigate the establishment of peak accessibility, we devised a procedure to disentangle primed 916 
and lineage-specific peaks in the context of cell-fate specification. As a result of the sparsity and noise of 917 
scATAC-seq data, our approach utilizes several abstractions and consists of the following steps: 918 

1. Identification of peaks with accessibility strongly correlated with gene expression at metacell 919 
resolution  920 

2. Determination of peaks with higher accessibility in the lineage under consideration compared to 921 
other lineages using differential accessibility testing between metacells  922 

3. Classification of peaks as primed or lineage-specific based on accessibility patterns in stem cells  923 
4. Determination of primed and lineage-specific accessibility scores for each gene at single-cell 924 

resolution. 925 

We developed this approach to identify primed and lineage-specific peaks in the transition from 926 
hematopoietic stem cells (HSCs) to B-cell fate committed cells (proB) (Fig. 3). We used the monocyte 927 
and erythroid lineages as the alternative lineages to test for B-cell lineage specificity. 928 

 929 
Determination of primed and lineage-specific peaks 930 
Metacells and gene-peak correlations using SEACells 931 
We used our SEACells algorithm21 to identify metacells from the T-cell depleted bone marrow. SEACells 932 
aggregates highly related cells into metacells overcoming the sparsity in single-cell data while retaining 933 
heterogeneity. We used the ATAC modality of the multiome data to identify metacells. We used metacells 934 
to compare the expression of a gene with the accessibility of each peak in a window of 100kb around the 935 
gene to identify the subset of peaks that significantly correlate with expression of the gene (correlation 936 
>= 0.1, p-value <= 0.1, Empirical null) (Supplementary Fig. 19A).  937 

 938 

Peaks relevant to particular lineages 939 
Metacells and gene-peak correlations were computed using all hematopoietic lineages in our dataset. 940 
We performed differential accessibility analysis to identify the subset of peaks with greater accessibility 941 
in the lineage under consideration. We used edgeR60 to perform differential accessibility with metacell 942 
counts as input. The use of metacells rather than single-cell data for differential accessibility has been 943 
demonstrated to provide better sensitivity and specificity37. To identify peaks that are relevant to the B-944 
cell lineage, we compared accessibility in pro B-cell metacells and metacells of the  erythroid (EryPre1) 945 
or monocyte (Monocyte) lineages and retained peaks with the accessibility fold-change log2FC > 0 in 946 
either comparison. While this ensures that the selected peaks have greater accessibility compared to 947 
other lineages, it does not exclude ubiquitously accessible peaks. We therefore excluded peaks with 948 
log2FC < 0.25 in the comparison between stem-cells (HSCs) and erythroid and monocyte lineages.  949 

The resulting set of peaks demonstrate substantially greater accessibility in B-cell lineages compared to 950 
all other cell-types (Supplementary Fig. 19C-D) 951 
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Classification of primed and lineage-specific peaks 953 

After identifying peaks with greater accessibility in the B-cell lineage, we assigned primed or 954 
lineage-specific status to each peak with a simple logic: A peak is annotated as primed if it is accessible 955 
in HSCs and lineage-specific if it is not. Accessibility in HSCs was determined using Poisson statistics as 956 
described in SEACells21 . The mean of the Poisson distribution for a cell-type 𝑐 is estimated using 957 

	𝜆 =
𝑇𝑜𝑡𝑎𝑙	𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠	𝑖𝑛	𝑐

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑔𝑒𝑛𝑜𝑚𝑒	𝑙𝑒𝑛𝑔𝑡ℎ
 958 

Where 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑔𝑒𝑛𝑜𝑚𝑒	𝑙𝑒𝑛𝑔𝑡ℎ is set to 𝑛𝑢𝑚	𝑜𝑓	𝑝𝑒𝑎𝑘𝑠	 ∗ 	5000. For a peak 𝑝 in cell-type 𝑐 with 𝑛 959 
fragments, 𝜆 is used to estimate the 𝑃 value of observing more than 𝑛 fragments, and 𝑝 is considered 960 
open in 𝑐 if 𝑃 < 1𝑒 − 2. 961 

 962 
Primed and lineage-specific scores  963 
We utilized the primed and lineage-specific peaks to derive primed and lineage-specific scores for the 964 
associated genes at single-cell resolution. For each gene 𝑔 and cell 𝑖, the primed accessibility score 965 
𝑠'=
>?'7@# is computed as  966 

𝑠'=
>?'7@# =

∑ 𝑎'>>∈=&'"()* 𝑐=>		
∑ 𝑐=>>∈=&'"()*

 967 

 968 

Where 𝑔>?'7@# is the set of primed peaks that significantly correlate with gene 𝑔, 𝑎'> is the accessibility 969 
of peak 𝑝 in cell 𝑖, and 𝑐=> is the correlation between peak 𝑝 and expression of gene 𝑔 computed using 970 
metacells. Therefore, the primed score is a weighted average of the accessibility of primed peaks that 971 
correlate with the gene. The lineage-specific score 𝑠'=4'+ is computed in an analogous manner where 𝑔4'+ 972 
is the set of lineage-specific peaks that significantly correlate with gene 𝑔:: 973 

𝑠'=4'+ =
∑ 𝑎'>>∈=$"+ 𝑐=>		
∑ 𝑐=>>∈=$"+

 974 

Given the sparsity of the scATAC data, we used imputed peak accessibility for computing scores. The 975 
peak counts dataset was TF-IDF normalized61  to preferentially weight peaks which are highly accessible 976 
in a small proportion of cells. The MAGIC algorithm2 was then used to perform imputation using 977 
normalized accessibility as the input.  978 

 979 

Data visualization 980 

Accessibility trends along pseudo-time were computed using Mellon. Trends are visualized as a 981 
percentage of the maximum value of each trend, to allow for better comparison across genes. 982 

 983 
Application to T-cell depleted bone marrow data 984 
We applied primed and lineage-specific accessibility scores to characterize commitment of hematopoietic 985 
stem cells to B-cells using the T-cell depleted bone marrow multiome data. We used hematopoietic stem 986 
cells (HSC), hematopoietic multipotent cells (HMP), common lymphoid progenitor (CLP) and pro B-cells 987 
along the B-cell lineage to investigate the open chromatin landscape (Fig. 3B). The cells were chosen to 988 



span the commitment of stem cells to the B-cell lineage. The high- and low-density regions were manually 989 
assigned by comparing pseudotime and log-density of the selected subset of cells (Fig. 3B). 990 

Primed and lineage-specific accessibility scores in B-cell specification 991 
We applied the SEACells algorithm21 to identify metacells using the ATAC modality of the T-cell depleted 992 
bone marrow data. Metacells were identified using all cells, resulting in 115 metacells according to 993 
recommended heuristic for selecting the number of metacells. Peak accessibility and gene expression 994 
correlations were determined using all metacells and the subset of genes with at least 5 peaks were 995 
selected for downstream analysis (Supplementary Fig. 19A). We computed gene change scores using 996 
Mellon using the subset of cells that define B-cell lineage commitment. Genes in the 95th percentile of 997 
gene change scores with B-cell specific upregulation in the low-density regions were used to characterize 998 
the role of enhancer priming (Fig. 3). Primed and lineage-specific accessibility scores were computed for 999 
the subset of these genes with at least one lineage-specific and primed peak each. 1000 

In silico ChIP 1001 
We used in silico ChIP-seq37, a recently published approach to identify predicted targets of master 1002 
regulators of B cell lineage commitment, specifically EBF1 and PAX5. Approaches like FIMO62 can 1003 
determine enrichment scores for TF motifs in ATAC-seq peak sequences but the scores alone are not 1004 
sufficiently reliable to predict TF targets. In silico ChIP-seq provides a framework for predicting TF targets 1005 
by using single-cell multiome (scRNA-seq and scATAC-seq) data in addition to motif enrichment by 1006 
correlating the expression of a TF to the accessibility of a peak. A combination of a high gene-peak 1007 
correlation and high motif score is more indicative of potential TF binding compared to a peak with only 1008 
a high motif score37.  We used our Python adaptation of in silico ChIP-seq using the SEACells metacells 1009 
as input (github.com/settylab/atac-metacell-utilities). FIMO62 was used to associate TF motifs with ATAC-1010 
seq peaks, resulting in a peak by TF matrix of scores indicating the strength of match of the TF motif in 1011 
the peak sequence. In silico TF binding scores are computed as product of correlation between TF 1012 
expression and peak accessibility and FIMO motif scores as follows: 1013 

𝑥'. = 𝜌'. ∗ minmax �
A"#

BCD	(A#)
∗ max	(𝑎')� 1014 

Where 𝑖 is the a ATAC-seq peak and 𝑗 is the a TF of interest, 𝜌'. is the Spearman rank correlation 1015 
coefficient of accessibility of  𝑖 and expression of 𝑗 computed across all metacells, 𝑠'. is the FIMO motif 1016 
enrichment score for TF motif 𝑗 binding in sequence of peak 𝑖 , max	(𝑠.) is the maximum FIMO score for 1017 
TF 𝑗 across all peaks, and 	𝑎' 	is the maximum accessibility of peak 𝑖 across all cell type metacells.	1018 

Minmax normalization is performed as follows:  1019 

minmax(𝑥) = ;8BGH	(;)
BCD(;)8BGH	(;)	 1020 

The final in silico ChIP-seq output is a peak by TF matrix, containing a value between -1 and 1 indicating 1021 
how likely a TF is to bind at a given peak and whether it has a repressive (negative) or activating (positive) 1022 
effect, or 0 if a peak does not meet the minimum in silico ChIP-seq score (0.15).  1023 

 1024 

Regulation of EBF1 1025 
Peaks correlated with EBF1 expression were ordered using the procedure outlined in the section “Genes 1026 
Driving Low-Density Cell-State Transitions” using imputed peak accessibility to compute accessibility 1027 
change scores instead of gene change scores. In silico-ChIP was to identify the transcription factors with 1028 
predicted binding sites in the top peak. 1029 



Time-Continuous Density 1030 

Time-series single-cell datasets provide snapshots of the changing cell-state densities at discrete time 1031 
intervals. Our goal is to compute a time-continuous density function to interpolate cell-state densities at 1032 
any time between the measured timepoints.  1033 

We therefore incorporated a time coordinate into the Gaussian process used to generate the log density 1034 
function and use the covariance of the Gaussian process to link temporally similar cell-states. Effectively 1035 
the covariance function of time-continuous density has two components: (i) similarity between cells in the 1036 
cell-state space and (ii) similarity between cells based on their measurement times. Similarity in cell-state 1037 
space is encoded through the Matern52 kernel with the length-scale parameter as described in 1038 
Supplementary Note 5. We now describe the Matern52 length-scale parameter for the temporal 1039 
similarity component.  1040 

The length scale should be designed such that the covariance between cells from different timepoints 1041 
reflects the covariance of densities between those timepoints. Therefore, we optimized the length scale 1042 
to reflect the empirically observed covariance of density functions between different time points. 1043 
Specifically, we employ Mellon to compute first time-point specific density functions 𝜌I using only the cells 1044 
from the corresponding time point 𝑡. We next evaluated these functions on all cells from all timepoints, 1045 
and computed a correlation of cell-state density between timepoints:  1046 

𝑝I,I1 : = CorrE𝜌I(𝑥')'∈{%,…,+}, 𝜌I1(𝑥')'∈{%,…,+}F 1047 

Where 𝑡 and 𝑡′ represent two time points, and Corr[⋅,⋅] denotes the Pearson correlation. This is used to 1048 
derive a correlation matrix between all measured timepoints 𝑇 (Supplementary Fig. 23A-D): 1049 

𝑃 := .𝑝I,I14I,I1∈K 1050 

This matrix 𝑃 is then compared to the covariance matrix of time points using the Matern52 kernel. Given 1051 
the isotropy of the kernel function, it maps a scalar temporal difference 𝑡 − 𝑡′ to a covariance value. The 1052 
kernel-based covariance matrix is defined as: 1053 

𝐾L : =Matern52(𝑙I)(𝑡 − 𝑡′)I,I1∈K 1054 

Where 𝑙I is the length scale parameter for the time coordinate. We thus select the 𝑙I by optimizing: 1055 

𝑙I : = arg minL1∈ℝ-
∥ 𝑃 − 𝐾L1 ∥$. 1056 

The optimized length scale is used for the Matern52 covariance kernel for the time coordinate, denoted 1057 
as Matern52(𝑙I) (Supplementary Fig. 23E-F).  1058 

The resulting covariance kernel for cells 𝑖 and 𝑗, situated at their respective states 𝑥' , 𝑥., and 1059 
measurement times  𝑡' , 𝑡., is then given as: 1060 

𝑘(𝑖, 𝑗) = Matern52(𝑙I).𝑡' − 𝑡.4 ⋅Matern52(𝑙).𝑥' − 𝑥.4 1061 

Where Matern52(𝑙) designates the Matern52 covariance kernel for cell-state coordinates and 1062 
Matern52(𝑙I) designates the Matern52 covariance kernel for time coordinates. 1063 

This construction is easily implemented with Mellon, since it is designed to support any combination of 1064 
covariance functions, each operating in distinct active dimensions – in this case, either time or cell-state 1065 
coordinates. 1066 



Using this covariance function, Mellon can compute a continuous density function over time and state 1067 
space using all samples, and thus can be used to interpolate cell-state densities at unmeasured 1068 
timepoints.  This function is also differentiable in time and state space, and the change in density over 1069 
time can be determined using the first derivative (Supplementary Video 1, Figure 25).  1070 

 1071 

Leave-one-out Cross Validation 1072 
We validated the effectiveness of the time-continuous density function using a leave-one-out cross-1073 
validation strategy (Supplementary Fig. 24). We computed a time-continuous density function after 1074 
excluding cells from a particular timepoint and evaluated the densities at the excluded timepoint using 1075 
this density function. We compared these densities with a time-agnostic density, which was computed 1076 
exclusively using cells from the excluded time point and then evaluated across all states. Note that these 1077 
two density functions were derived from mutually exclusive training datasets.  1078 

Density along Trajectory 1079 
Time-continuous density provides a platform to decipher the dynamics of cell-type proportions and fate 1080 
choices in true temporal order. As proof of principle, we investigated the cell-type proportion dynamics 1081 
along the trajectory of a particular lineage. We first used Palantir14 to derive fate propensities for all cells 1082 
and selected the subset of cells with high propensity towards a particular fate.  1083 

In the mouse gastrulation data, we applied Palantir using all cells across all timepoints and selected cells 1084 
which specify the erythroid cells (Supplementary Fig. 26). Palantir was also used to derive a pseudo-1085 
temporal order of progression of cells in the erythroid trajectory (Supplementary Fig. 26). Note that the 1086 
pseudo-time order does not take measurement time into consideration and represents the potential 1087 
journey of a cell through the cell-state space as it acquires erythroid fate. Further, cells measured at any 1088 
timepoint can span a range of pseudo-time depending on the developmental stage. 1089 

The Palantir fate probability of cell state 𝑥' reaching fate 𝐹 is represented by the function 𝑓(𝑥' , 𝐹). 1090 
Accordingly, we define our threshold function for fate 𝐹 at pseudotime 𝑡 as: 1091 

𝑇N(𝑡) = max	
AOI

	𝑃PP%E𝑓(𝑥Q , 𝐹)Q∈R.F. 1092 

In this equation, 𝑃PP% is the 99% percentile function and 𝐼A is the set of all cells whose Palantir pseudotime 1093 
is less than or equal to 𝑠. We then identify the subset of cells that are part of the branch leading to fate 𝐹 1094 
as: 1095 

𝑁N = {𝑖 ∈ {1,… , 𝑛}|𝑓(𝑥' , 𝐹) > 𝑇N(𝑡') − 𝜖}. 1096 

In the above equation, 𝑡' is the pseudotime of the 𝑖IS cell, and 𝜖 is a small chosen value (in our case, 1097 
0.01), which manages how much a cell can fall below the threshold while still being accepted as part of 1098 
the branch. To simplify computation, we only calculate 𝑇N for 500 specific pseudotime points along the 1099 
trajectory, using the next larger pseudotime relative to 𝑡' in this range to evaluate 𝑇N(𝑡'). This algorithm 1100 
has been incorporated into the existing Palantir python package. 1101 

We next determined the joint cell-state density between pseudo-time and real time leveraging the time-1102 
continuous density function. We first used Gaussian process as implemented in Mellon to map pseudo-1103 
time to each coordinate of the cell-state space. This effectively generates a trajectory traversing the cell-1104 
state space by mapping the 1-dimensional pseudotime to high-dimensional cell-state space. Formally, 1105 
the trajectory for each dimension 𝑚 ∈ (1,… , 𝑑′) is defined via the mean of the posterior distribution of 𝑇N7 1106 
in the Bayesian model: 1107 



 𝑇N7 ∼ 𝐺𝑃 �𝑥.∈5/
7 ,	Matern52(1)�

𝑥'7 ∼ 𝑁.𝑇�N7(𝑠'), 0.014, 𝑥' ∈ 𝑁N
 

(2) 

 1108 

Where 𝑥.∈5/
7  represents the average of this coordinate across all cells in branch 𝐹. The trajectory can 1109 

then be denoted by 1110 

𝑇N : [0,1] → ℝ#1

𝑇N = .𝑇�N747∈(%,…,#1),
 1111 

where 𝑇�N7 is the mean of the posterior of (2). The length scale of 1 and variance of 0.01 were selected 1112 
by examination of a range of values for compatibility with cell states represented via Palantir diffusion 1113 
maps. 1114 

Finally, the time-continuous density function 𝜌:ℝ#1 × [0,1] → ℝ" can be evaluated along the trajectory to 1115 
calculate joint cell-state density 𝜌(𝑇N(𝑠), 𝑡) for any given pseudotime 𝑠 and actual time 𝑡 (Fig. 4F). 1116 

 1117 
Marginal Cell Type Proportions over Time 1118 
We used the joint cell-state density 𝜌(𝑇N(𝑠), 𝑡) to determine the dynamics of cell-type proportions over 1119 
real time. We first assign a cell type to each section of the pseudo-temporal trajectory 𝑇N . This is achieved 1120 
by computing a density function 𝜌T for each annotated cell type 𝐻 using Mellon. The cell type annotation 1121 
ℎ(𝑠),	for a given pseudotime 𝑠 is then given by the largest cell type density for this point on the trajectory 1122 
as follows 1123 

ℎ(𝑠) := argmax
T1
𝜌T1 ∘ 𝑇N(𝑠). 1124 

The cell-type annotation pseudotime 𝑠 can then be represented as an indicator function: 1125 

𝕀T(𝑠) = �1 , ℎ(𝑠) = 𝐻
0 ,otherwise 1126 

We next marginalized the joint cell-state density  𝜌(𝑇N(𝑠), 𝑡) over pseudo-time to determine the total mass 1127 
of a cell type. Specifically, the mass of cell type 𝐻 along the trajectory of fate 𝐹 at a real time point 𝑡 is 1128 
determined as  1129 

𝑚N
T(𝑡) = � 𝜌

%

U
(𝑇N(𝑠), 𝑡) ⋅ 𝕀T(𝑠)d𝑠. 1130 

Finally, the relative proportion of cell type 𝐻 at a real time 𝑡 is given by normalizing the masses across all 1131 
cell-type as follows: 1132 

𝑎NT(𝑡) =
𝑚N
T(𝑡)

∑ 𝑚N
T1

T1 (𝑡)
. 1133 

This provides a quantifiable measure of cell type proportions over time, offering valuable insights into the 1134 
temporal evolution of cell types in a given biological system.  1135 

 1136 
  1137 



Application to mouse gastrulation data 1138 
We applied Mellon to determine the time-continuous cell-state density for the mouse gastrulation data44 1139 
across all measured time points: E6.5, E6.75, E7.0, E7.25, E7.5, E7.75, E8.0, E8.25 and E8.5. Data was 1140 
preprocessed as described in section “Mouse gastrulation data in Data preprocessing”. Diffusion maps 1141 
were constructed using batch corrected PCs across all cells using the Palantir package14. We selected 1142 
25 components, as they encapsulated all significant biological variations. Density results remained stable 1143 
beyond this point with respect to the number of components (Supplementary Fig. 13). Time-continuous 1144 
densities were computed following the procedure described above with default parameters. 1145 

Palantir14 was to derive pseudo-temporal order and cell-fate propensities. Palantir was run with default 1146 
parameters by using an Epiblast cell as the start and manually setting the following cell-types as 1147 
terminals: Cardiomyocytes, Erythroid, Endothelial, Neural crest, Brain, Notochord, Allantois, ExE 1148 
endoderm. Since our goal was to identify cells with high fate propensity to erythroid lineage, a finer 1149 
resolution terminal state identification was not necessary. Erythroid lineage cells were identified using 1150 
Equation (1). Joint cell-state density over pseudo-time and real-time were visualized using 200 points 1151 
along pseudo-time and 500 points between every pair of measured timepoints. 1152 

 1153 
  1154 



Data preprocessing  1155 

 1156 

scRNA-seq data preprocessing and analysis 1157 
The following procedure was used for preprocessing scRNA-seq data across datasets unless specified 1158 
otherwise: Raw counts were normalized by dividing the counts by the total counts per cell. The normalized 1159 
data was multiplied by the median of total counts across cells to avoid numerical issues and then log-1160 
transformed with a pseudocount of 0.1. Feature selection was then performed to select the top 2500 most 1161 
highly variable genes, which was used as input for principal component analysis with 50 components. 1162 
PCs were used as inputs for leiden clustering and UMAP visualizations. Preprocessing and analysis was 1163 
performed using the scanpy63 package.  1164 

Diffusion maps were computed using the Palantir14 package with default parameters and PCs as the 1165 
inputs. The diffusion kernel was also used for MAGIC2 gene expression imputation.  1166 

Batch correction where applicable was performed using Harmony with default parameters64. Batch 1167 
corrected PCs if applicable were used as inputs for UMAPs, diffusion maps, and imputation.  1168 

 1169 

T-cell depleted bone marrow single-cell multiome data 1170 
Raw gene counts, ATAC fragment files and cell metadata were downloaded from65.  1171 

RNA modality 1172 
scRNA-seq data was processed using the procedure described in section “scRNA-seq data 1173 
preprocessing and analysis”, which mimics the analysis in21.  1174 

Cell-type annotation 1175 

All hematopoietic stem and progenitor cells (HSPCs) were grouped as one cell-type in the T-cell depleted 1176 
bone marrow. To achieve higher granularity among the stem and progenitor cells, we integrated this data 1177 
with a dataset of CD34+ bone marrow cells using Harmony64. This dataset is enriched for stem and 1178 
progenitor cells and thus the associated cell-type information can be utilized to better resolve the cell-1179 
types within the HSPC cluster of the T-cell depleted bone marrow data. Batch corrected PCs were used 1180 
for leiden clustering, and the HSPC cluster of the T-cell depleted data were assigned to different stem 1181 
and progenitor cell-types based on their clustering with the CD34+ bone marrow data. Clusters 1182 
associated with the B-cell trajectory were annotated using the markers described in 66.  1183 

Mellon cell-state density 1184 
Mellon was applied with default parameters using 20 diffusion components to compute cell-state density. 1185 
Gene change scores, primed accessibility scores, and lineage-specific accessibility scores were 1186 
computed as described above. IL7R signaling targets were downloaded from Nichenet67 and signature 1187 
scores were computed by averaging the z-scored imputed gene expression.  1188 

 1189 

ATAC modality 1190 
ArchR36 pipeline was used for analysis of the ATAC modality. In ArchR, data was normalized using 1191 
IterativeLSI and SVD to determine a lower-dimensional representation of the sparse data. The first SVD 1192 
component showed greater than 0.97 correlation with log library size and was excluded from downstream 1193 
analysis. SVD was used as input to cluster the data with leiden and visualization using UMAPs. SVD also 1194 



served as input for computing diffusion and MAGIC imputation of peak accessibilities and gene scores. 1195 
Peak calling was performed within ArchR using only the nucleosome free fragments as described in 21.  1196 

A handful of cells which passed the RNA QC thresholds did not clear the thresholds in the ATAC modality. 1197 
RNA preprocessing and analysis was repeated after excluding these cells. Mellon was applied with 1198 
default parameters using 20 diffusion components to compute cell-state density of the ATAC modality. 1199 

Palantir trajectories 1200 
Palantir14 was used to infer pseudo-temporal trajectories of hematopoietic differentiation. Palantir was 1201 
applied to the RNA modality using default parameters with the number of diffusion components (n=8) 1202 
chosen by the Eigen gap statistic. A CD34+ hematopoietic stem cell was used as the start. Terminal cells 1203 
were manually specified for erythroid, monocyte, B-cells, plasmacytoid dendritic cells. Note that the pre-1204 
pro B state of the B-cell trajectory is almost exclusively defined by cell-cycle66 and hence Palantir was 1205 
run with pre-pro B and naïve B as the terminals. The B-cell fate probability was then computed as the 1206 
sum of pre-pro B and naïve B probabilities.  1207 

Cells with increasing probability towards each lineage were selected as the lineage cells highlighted in 1208 
Fig. 1D. B-cell lineage cells were comprised of Hematopoietic stem cells (HSCs), Hemopoietic 1209 
multipotent progenitors (HMPs), Common Lymphoid progenitors (CLPs), prepro B-cells, pre B-cells, pro 1210 
B-cells and Naïve B-cells. pDC lineage cells were comprised of HSCs, HMPs, Myeloid precursors, and 1211 
pDCs. Erythroid lineage cells were comprised of HSCs, Megakaryocyte erythroid precursors (MEPs) and 1212 
erythroid precursors. Monocyte lineage cells were comprised of HSCs, HMPs, Myeloid precursors, 1213 
monocyte precursors and monocytes. 1214 

Cells involved in lineage specification (highlighted cells in Fig. 1D) where chosen as the subset of the 1215 
lineage cells spanning from HSCs to the cell-type where the fate propensity reached 1. B-cells: HSCs, 1216 
HMPs, CLPs, prepro B-cells, pro B-cells. pDCs: HSCs, HMPs, MyeloidPre, pDCs. Erythroid lineage: 1217 
HSCs, MEPs. Monocytes: HSCs, HMPs, Myeloid precursors, monocyte precursors and monocytes. 1218 

 1219 

HCA bone marrow 1220 
The processed annData was downloaded from27. The downloaded data was pre-batch corrected across 1221 
all donors. Cell types that do not differentiate in the bone marrow such as T-cells, NK cells and plasma 1222 
cells were excluded from the analysis. Following the cell filtering, each donor was analyzed separately 1223 
using the steps outlined in the section “scRNA-seq data preprocessing and analysis”.  1224 

Palantir14 was applied separately for each donor using the same procedure that was described for the T-1225 
cell depleted bone marrow dataset. Mellon was applied with default parameters using 20 diffusion 1226 
components to compute cell-state density. 1227 

 1228 
Pancreatic development 1229 
Processed anndata was downloaded from 17 and the data was generated by 29. The pre-computed 1230 
UMAPs, cell-type annotations and diffusion maps were used for analysis. Mellon was applied with default 1231 
parameters to compute cell-state density. 1232 

 1233 
In-vitro endoderm differentiation 1234 
Raw counts and cell metadata was downloaded from30. Wild-type cells were used for all analysis. Data 1235 
analysis was performed using the steps outlined in the section “scRNA-seq data preprocessing and 1236 



analysis”, batch correction was used to correct technical differences between two batches.  Mellon was 1237 
applied with default parameters to compute cell-state density. 1238 

 1239 
Spatial organization of intestinal tissue 1240 
Raw counts and zone information were downloaded from31 and processed using the steps outlined in the 1241 
section “scRNA-seq data preprocessing and analysis”. Mellon was applied with default parameters to 1242 
compute cell-state density. 1243 

 1244 
Lung regeneration 1245 
Processed anndata was downloaded from28. The pre-computed UMAPs, cell-type annotations and 1246 
diffusion maps were used for analysis.  Mellon density functions were computed for each timepoint 1247 
separately and evaluated across all cells. 1248 

 1249 

scRNA-seq of murine models of lung adenocarcinoma  1250 
Processed anndata object containing counts, visualization and cell-metadata were downloaded from 9. 1251 
scVI68 was used in the publication for  data integration and to derive a latent representation. scVI latent 1252 
space was used as input for computing force directed layouts and diffusion maps instead of PCs like 1253 
other datasets.   1254 

 1255 

Mouse gastrulation atlas  1256 
Processed data including batch corrected principal components and cell metadata were downloaded 1257 
from44. Batch corrected PCs were used as input for computing diffusion maps. Cells from the 1258 
“mixed_gastrulation” samples were excluded since the timepoints are not well-defined. Further, ExE 1259 
ectoderm, ExE endoderm and Parietal endoderm cells were excluded since their parental cells are not 1260 
measured in the dataset. Given the complexity of the data, 25 diffusion components for computing time-1261 
continuous cell-state densities using Mellon. 1262 

 1263 

iPS reprogramming dataset 1264 
Raw counts and cell metadata were downloaded from8. The dataset contains reprogramming in two 1265 
culture conditions: Serum and 2i.  Cells cultured in 2i media were used for the analysis. Highly variable 1266 
genes computed in the publication were used for the analysis using the steps outlined in the section 1267 
“scRNA-seq data preprocessing and analysis”. iPS data was used for robustness analysis and 1268 
benchmarking performance.  1269 

 1270 

scATAC-seq of murine models of lung adenocarcinoma 1271 
Raw peak counts and cell metadata were downloaded from49. Immune and stromal cells were excluded 1272 
from the analysis. Following cell filtering, peak counts were normalized using TFIDF following the 1273 
procedure in 21. SVD was to determine a lower-dimensional representation using normalized data as 1274 
input. The first SVD component showed greater than 0.97 correlation with log library size and was 1275 
excluded from downstream analysis. SVD was used as input for visualization using force directed layouts 1276 
and diffusion maps. Mellon was applied with default parameters to compute cell-state density. 1277 

 1278 



sortChIC data profiling histone modifications in murine hematopoiesis 1279 
Raw peak counts and cell metadata were downloaded from48 for all available histone modifications: 1280 
H3K4me1, H3K4me3, H3K27me3, H3K9me3. Each modification was analyzed separately following the 1281 
procedure described in the section “scATAC-seq of murine models of lung adenocarcinoma”: Data was 1282 
normalized using TF-IDF, and then SVD was used to derive a low-dimensional representation. The first 1283 
component of SVD was excluded due to high correlation with log library size and was excluded from 1284 
downstream analysis. Mellon was applied with default parameters to compute cell-state density. 1285 

 1286 

Skin differentiation Share-seq data 1287 
The processed annData was downloaded from 51 using the data generated by 32. The pre-computed 1288 
UMAPs, cell-type annotations and diffusion maps were used for analysis. Note that the diffusion 1289 
components were derived using the MIRA multimodal representation which uses both RNA and ATAC 1290 
modalities. Mellon was applied with default parameters to compute cell-state density. 1291 

 1292 

 1293 

 1294 

 1295 
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Robustness analysis  1297 

 1298 

The robustness of Mellon was evaluated by recalculating density estimations across a broad spectrum 1299 
of parameter settings on multiple datasets. We carried out full density inference for an extensive range 1300 
of length scales, numbers of landmarks, and numbers of diffusion components in the following scRNA-1301 
seq datasets : T-cell depleted bone marrow of human hematopoiesis (BM)21; CD34+ human bone marrow 1302 
cells, a dataset of hematopoietic stem and precursor cells (CD34)21; COVID-19 atlas of peripheral blood 1303 
mono nuclear cells (PBMCs) from healthy donors and critical patients (Covid)69; iPS reprogramming 1304 
dataset (ips)8 and the mouse gastrulation atlas (mgast)44. These datasets cover a broad spectrum of 1305 
systems with different complexities, cell numbers and contain discrete and continuous cell-states and 1306 
cell-types. We compared the densities using Spearman correlation between results obtained from 1307 
different parameter settings. As shown in Supplementary Fig. 13-16, Mellon results exhibited a high 1308 
level of consistency in the results even when the parameters are varied orders of magnitude beyond the 1309 
defaults.  1310 

We further evaluated Mellon's robustness to down sampling the cells in the dataset. Starting with the full 1311 
dataset, we serially removed 10% of cells until at least 100 cells were retained. We next computed 1312 
densities for independently for each subsample by recomputing the principal components and diffusion 1313 
components using only the cells in the subset. We then compared the density between all pairs of 1314 
subsamples using the intersection of cells between the two samples (Supplementary Figure 11). The 1315 
consistency is retained even when cells in the bottom 10th percentile of the average density between the 1316 
pair of runs are used for comparison (Supplementary Fig. 12). 1317 

This robustness evaluation provides empirical evidence of Mellon's ability to perform consistently under 1318 
a wide range of parameters and under the condition of subsampling, which underscores its utility for 1319 
accurate density estimation from high-dimensional single-cell data. 1320 

  1321 



Simulated datasets with ground-truth densities  1322 

 1323 

In order to validate the accuracy and precision of Mellon, we generated three datasets mirroring single-1324 
cell datasets of either continuum of cell-states or discrete clusters. Each dataset is accompanied by a 1325 
predefined 'ground truth' density serving as a performance benchmark for Mellon.  1326 

The datasets with continuum of cell-states were generated using a large Gaussian Mixture Model (GMM) 1327 
designed to emulate a cellular differentiation tree. This tree was conceptualized as a series of velocity 1328 
vectors, each connecting branching points and each being a slightly perturbed version of the vector of its 1329 
parent node. For each node in this tree, a unique Gaussian was defined. The Gaussian's covariance 1330 
matrix and mean were designed to create a distribution aligning with the velocity vector. Considering the 1331 
inherent low dimensionality typically exhibited by a cell-state manifold, we adjusted the principal 1332 
components of these Gaussians using an exponential decay scalar. The two continuous styles mimic the 1333 
structure of CD34+ bone marrow RNA-seq and T-Cell depleted bone marrow RNA-seq datasets.  1334 

The synthetic datasets representing single-cell datasets of discrete clusters was also generated using a 1335 
GMM but with a different configuration. In this setup, we randomly sampled mean and covariance 1336 
matrices to create an arbitrary GMM, resulting in mostly isolated clusters of simulated cells. This approach 1337 
provided an alternative, contrasting framework for testing robustness of Mellon. 1338 

The GMM allowed us to easily sample simulated cell states from both dataset types and to define 1339 
corresponding ground truth probability density functions. We then utilized Mellon to compute the log-1340 
density of these simulated datasets. Ground-truth densities were compared with Mellon densities using 1341 
Spearman correlations. As shown in Supplementary Fig. 4, this comparison effectively quantified 1342 
Mellon's ability to infer cell densities from high-dimensional single-cell data, with Mellon exhibiting high 1343 
consistency with the ground truth for both synthetic datasets. 1344 

See Supplementary Note 5 for further details and parameter choices for dataset simulations. 1345 

 1346 

 1347 
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Comparison to density estimation approaches  1349 

 1350 

A commonly used approach for density estimation with single-cell data is to calculate the reciprocal of 1351 
the distance to the kth nearest neighbor, treating this value as a proxy for density2. While straightforward, 1352 
this method tends to produce a noisy density estimation and frequently fails to capture meaningful global 1353 
trends (Supplementary Fig. 2). 1354 

Another prevalent approach involves application of kernel density estimation (KDE) to the low-1355 
dimensional embeddings generated by tools like UMAPs or Force-Directed Layouts. While these 1356 
visualization tools are powerful, their main design is not for density inference. They can produce unstable 1357 
embeddings, and when KDE is applied, the instability in the embeddings directly translates into the 1358 
density inference, resulting in less reliable outputs. Furthermore, the high compression involved in 1359 
generating these low-dimensional representations means that they cannot capture all the relevant 1360 
biological variability inherent in the data. Consequently, these methods often fail to depict all the nuanced 1361 
details of the underlying cell-state density function (Supplementary Fig. 2). 1362 

 1363 

 1364 
Efficient Pseudotime Trend Computation with Mellon 1365 
 1366 
The versatility of Mellon extends beyond density inference, showcasing its robust capability in the swift 1367 
computation of gene trends, defined as continuous, smooth functions that trace the trajectory of gene 1368 
expression over pseudotime. Our Gaussian process (GP) regression-centric design not only serves as 1369 
the backbone for Mellon's primary application but also efficiently caters to general GP regression, due to 1370 
scalable features such as the fixed length scale for the Matern52 covariance kernel and landmarks for 1371 
Sparse Gaussian process regression. 1372 
 1373 
Gaussian processes shine in their adeptness at handling high-noise scenarios, for instance, non-imputed 1374 
gene expression values. This strength enables Mellon to generate smooth gene trends from a selected 1375 
cellular branch's temporal ordering using unimputed gene expression values, effectively capturing the 1376 
dynamics of gene expression as cellular differentiation unfolds (Supplementary Fig. 21). 1377 
 1378 
Mellon's implementation harnesses the power of the JAX library's vectorization capabilities and low-1379 
dimensional latent representations of functions within the GP framework, enabling efficient gene trend 1380 
computations across a substantial quantity of genes. In tests using a 36-core CPU, Mellon was able to 1381 
generate gene trends for up to 10,000 genes and 1,500 cells at 500 pseudotime points in about one 1382 
second. This efficient computation allows high-throughput exploration of gene expression dynamics 1383 
during cellular differentiation from large-scale single-cell datasets. 1384 
 1385 

 1386 

 1387 

 1388 

 1389 
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Figures 1391 

 1392 
  1393 



Figure 1: Illustrative diagram detailing the principles and processes of Mellon.  1394 
A-B. An abstract depiction of a cellular differentiation landscape with cells uniformly distributed along its 1395 
branches, representing a scenario not commonly found in biological systems. Diverse biological 1396 
phenomena, as depicted in (B), impact cell-state density: apoptosis, acceleration, and divergence of cell-1397 
state changes lead to a decrease in density, while proliferation, deceleration, and convergence of cell-1398 
state changes increase density. Therefore, heterogeneity in cell-state densities is a norm rather than an 1399 
exception in differentiation landscapes. 1400 

C. Subset of cells with heterogeneous density are highlighted to illustrate the influence of biological 1401 
factors in (B). Color gradient signifies the nearest-neighbor distribution around two example cells - one 1402 
in a high-density state with a tighter distribution (red gradient) and another in a lower-density state with a 1403 
broader distribution (blue gradient). 1404 

D. Bayesian model employed by Mellon for density inference, underpinning the connection between the 1405 
density estimation between neighboring cells using a Gaussian process and the log-density function as 1406 
its random variable. Arrows relate the examples in panel C with their corresponding equations in D.  1407 

E-F. Depict the resulting continuous density function from Mellon's inference process over the set of cells 1408 
in B. E: Density function is visualized as a 3D landscape, where the z-axis represents density, and 1409 
individual cell states are illustrated as spheres at the base. F color-codes the cell states from B according 1410 
to their inferred densities, overlaying these with a translucent representation of the continuous density in 1411 
the background. Examples of high- and low-density regions are highlighted. 1412 

  1413 
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Figure 2: Mellon reveals the density landscape of human hematopoietic differentiation 1416 
A. UMAP representation of the scRNA-seq dataset of T-cell depleted bone marrow21  colored by cell-1417 
types. 1418 

B. Same UMAP as (A), colored by Mellon cell-state density 1419 

C. Violin plots to compare cell-state densities among different hematopoietic cell-types. Arrowheads 1420 
indicate example cell-types with high variability in density. 1421 

D. UMAPs as in (A), highlighted by cells of the different lineages, left to right: B-cells, Erythroid lineage 1422 
cells and plasmacytoid dendritic cells (pDCs). Lineage cells were selected based on cell-fate 1423 
propensities. Cells spanning hematopoietic stem-cells to fate committed cells along each lineage.  1424 

E. Plots comparing pseudotime ordering and log density during the fate specification of each lineage. 1425 
Top to bottom: B-cells, pDCs and Erythroid lineages. Cells are colored by Palantir fate propensities, which 1426 
represent the probability of each cell differentiating to the corresponding lineage. Points at the bottom of 1427 
each plot are colored by cell- type. Subset of cells along each lineage spanning hematopoietic stem cells 1428 
to fate committed cells are shown. Dotted lines indicate the low-density region within which fate 1429 
specification takes place and were added manually.  1430 

F. Plots comparing pseudotime and log density for all cells of the B-cell trajectory colored by EBF1 1431 
MAGIC2 imputed expression (top) and EBF1 local variability in gene expression (bottom). 1432 

G. Same as (F), with cells colored by signature scores for IL7R response genes.  1433 

H. Same as (F), with cells colored by cell-types. Density peaks correspond to well-characterized 1434 
checkpoints during B-cell differentiation.  1435 

I. UMAP representation of the scRNA-seq dataset of lung regeneration28. Cells are colored by cell-type 1436 
(left) and by timepoint of measurement (right). D0 is prior to injury and all subsequent timepoints show 1437 
recovery from injury. 1438 

J. UMAPs colored by density at D0 (left) and density at D54 (right). Cells from D0 and D54 are colored 1439 
by density with cells from other timepoints in grey. 1440 
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 1442 
Figure 3:  Dynamics of chromatin accessibility and gene expression during B-cell fate 1443 
specification.  1444 
A. Top: UMAP colored by cell-types and highlighted by SEACells21 metacells. Bottom: Plots showing the 1445 
number of peaks significantly correlated with each gene. The correlations were computed using 1446 
SEACells21 metacells. 1447 

B. Coverage plots highlighting examples of B-cell primed (in orange) and B-cell lineage specific peaks 1448 
(in blue). The genomic region is part of the EBF1 gene locus 1449 

C. UMAP colored by cell types included in B-cell specification. The full dataset is shown in grey. 1450 

D. UMAP colored by EBF1 MAGIC imputed expression, EBF1 local variability, EBF1 primed accessibility 1451 
scores and EBF1 lineage-specific accessibility scores. The subset of cells involved in B-cell specification 1452 
(C) are shown. 1453 

E. Top: Plots comparing pseudotime and Mellon density for the B-lineage cells, colored by cell-type. 1454 
Middle: Plots comparing pseudotime and EBF1 local change for the B-lineage cells, colored by cell-type. 1455 
Bottom: Solid lines show the trend of primed and lineage-specific accessibility scores for EBF1 in B-cell 1456 
lineage. Dotted lines show the corresponding trends in the erythroid lineage. Vertical dotted lines show 1457 
high- and low-density regions selected manually. 1458 

F. Heatmaps with z-score expression of genes with high change scores and upregulation during B-cell 1459 
specification. Genes are sorted based on their expression along pseudotime. Genes with at least 1 1460 
primed and at least 1 lineage-specific peak from Supplementary Fig. 20A were used. 1461 



G. Heatmaps of primed (left) and lineage-specific (right) accessibility scores for genes in (F) in the same 1462 
order. Scores were scaled to maximum of 1 along the trend.  1463 

H. Matrix indicating whether the genes in (F) are predicted targets of EBF1 or PAX5 using Insilico-ChIP37. 1464 

I. Left: UMAP colored by MAGIC imputed accessibility of the single ATAC peak (chr5:158,852,577-1465 
158,853,077) with highest change score in EBF1 correlated peaks. Right: Plot comparing pseudotime to 1466 
peak accessibility for cells during B-cell specification in (C). 1467 

J. Left: UMAP colored by SOX4 MAGIC imputed expression. Right: Plot comparing pseudotime to gene 1468 
expression for cells during B-cell specification in (C). 1469 
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Figure 4: Depiction of time-continuous cell-state density estimation during mouse gastrulation 1472 
using Mellon. 1473 
A. UMAP representation of the mouse gastrulation dataset44. Illustrations on the right show a 1474 
diagrammatic overview of the mouse embryo during gastrulation from E6.5 to E8.5, providing context to 1475 
the developmental progression. Created using BioRender. 1476 

B. UMAPs colored by Mellon cell-state density at each measured timepoint, demonstrating variability in 1477 
cell-state densities within each observed timepoint. 1478 

C. UMAPs colored by state-interpolated densities, derived from densities from (B), but evaluated across 1479 
all cells. This showcases the potential of Mellon for extrapolating cell-state densities beyond directly 1480 
sampled cell states. 1481 

D. Illustration of time-continuous density on UMAP for measured (E7.5, E7.75) and interpolated (E7.25) 1482 
timepoints, further demonstrating the application of Mellon in interpolating cell-state densities beyond 1483 
measured timepoints. Smaller accompanying UMAPs denote the temporal rate of change in cell-state 1484 
density, with red signifying increasing density (enrichment) and blue indicating decreasing density 1485 
(depletion). 1486 

E. UMAP colored by cell-state density inferred using all-cells without using temporal information. Trend 1487 
highlights the erythroid trajectory. 1488 

F. Heatmap displays the time-dependent cell-state densities along the trajectory (pseudotime on the y-1489 
axis and real-time on the x-axis), with vertical grey lines signifying the measured timepoints.  1490 

G. Marginal plot illustrating the proportional composition of cell-types along the erythroid trajectory at 1491 
each timepoint, derived by integrating density in F across the trajectory segment associated with each 1492 
specific cell type. 1493 
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 1495 
 1496 

Figure 5: Application of Mellon density estimation to single-cell chromatin data modalities.  1497 
A-B. UMAPs of H3K4me1 (A) and H3K9me3 (B) mouse bone marrow sort-ChIC dataset48 colored by 1498 
cell-type. 1499 

C-D. Same as (A-B), with UMAPs colored by Mellon log density 1500 

E-F. Violin plots to compare cell-state densities among different hematopoietic cell-types. Top: H3K4me1, 1501 
Bottom: H3K9me3 1502 

G. Violin plot of covariance matrix rank for each sort-ChIC dataset for 100 runs of Mellon by repeatedly 1503 
subsampling 80% of the dataset. (*** p-value < 1e-30, Wilcoxon rank-sum test)  1504 
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 1506 
Figure 6: Performance benchmarking of Mellon for demonstrating its scalability and linear time 1507 
complexity. 1508 
A. Demonstrates the CPU time required for Mellon's density inference on a single core across various 1509 
dataset sizes from four distinct datasets. Each dataset is successively downsized by randomly removing 1510 
10% of cells. The data points in this log-log plot align closely with the diagonal line that has a slope of 1, 1511 
indicating a linear relationship between the number of cells and the CPU time required, which suggests 1512 
a linear time complexity of Mellon's algorithm, particularly for large datasets. Notably, statistics for the 1513 
two large synthetic datasets (6 million and 10 million cells), marked by a blue circle, fall below the 1514 
diagonal. This emphasizes that a nonlinear increase in compute time does not dominate, even for these 1515 
larger datasets. For these two synthetic datasets, the computation of diffusion components was omitted, 1516 
and the larger dataset (10 million cells) uses only 1,000 landmarks, instead of the usual 5,000. The 1517 
vertical line at 5,000 cells marks the point where the Gaussian process changes from a full process to a 1518 
sparse one, demonstrating how Mellon adapts to larger datasets by computing the density based on a 1519 
subset of 'landmark' cell states. 1520 

B. Same as (A) but using 36 CPU cores, showcasing the computational efficiency achieved through 1521 
parallel processing. The data points, situated below the slope-1 diagonal, represent a decrease in CPU 1522 
time due to the parallelization of tasks. 1523 

C. Breakdown of the total single-core CPU time for the iPS dataset into individual computational stages, 1524 
offering insights into the contribution of each stage to the overall density inference process. 1525 
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