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Background
Throughout development, cells progress through a highly ordered series of cell fate 
transitions that gradually refine their cellular identities and direct their functional 
specializations [1]. This “epigenetic” programming is controlled by gene expres-
sion networks that tune the production of RNA transcripts from the genome. In 
the transcriptionally repressed state, developmental genes display a characteristic 
broad distribution of the Polycomb Repressive Complexes-1 and -2 (PRC-1 and PRC-
2), where PRC-2 tri-methylates histone H3 Lysine-27 (H3K27me3), which extends 
from upstream of the transcriptional start site (TSS) out across the gene body and 
beyond [2]. During gene activation, cell-type specific gene regulatory networks stim-
ulate recruitment and firing of the RNA polymerase II (Pol2) machinery and drive 
increased protein turnover and accessibility over transcriptional start sites (TSSs) 
and other cis-regulatory DNA elements that modulate gene expression (enhancers). 

Abstract 

Cleavage Under Targets and Tagmentation (CUT&Tag) is an antibody-directed trans-
posase tethering strategy for in situ chromatin profiling in small samples and sin-
gle cells. We describe a modified CUT&Tag protocol using a mixture of an antibody to 
the initiation form of RNA polymerase II (Pol2 Serine-5 phosphate) and an antibody to 
repressive Polycomb domains (H3K27me3) followed by computational signal deconvo-
lution to produce high-resolution maps of both the active and repressive regulomes in 
single cells. The ability to seamlessly map active promoters, enhancers, and repressive 
regulatory elements using a single workflow provides a complete regulome profiling 
strategy suitable for high-throughput single-cell platforms.
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During gene activation, PRC-1 and PRC-2 are locally displaced, and the H3K27me3 
mark is lost. Defects in this interplay between active and repressive chromatin reg-
ulation underlie a wide variety of human pathologies. However, because primary 
samples include complex mixtures of cells along various developmental trajectories, 
technologies that achieve single-cell resolution are generally necessary to interrogate 
the molecular mechanisms that control gene expression in the normal and diseased 
states.

Single-cell genomic technologies that profile mRNAs (RNA-seq) or chroma-
tin accessibility (ATAC-seq) can resolve the unique gene expression signatures and 
active regulatory features of distinct cell types from heterogenous samples [3]. For 
single-cell profiling of the repressive chromatin landscape, we have applied single-cell 
H3K27me3 CUT&Tag, in which an antibody that targets H3K27me3 tethers a Pro-
tein A-Tn5 (pA-Tn5) fusion protein transposome complex to chromatin [4]. To over-
come the limitation of sparse or incomplete cellular profiles inherent to single-cell 
genomics, droplet-based and nanowell platforms and combinatorial barcoding strate-
gies dramatically increase the number of cells profiled in a single experiment [5–7]. 
These sparse single-cell profiles can then be grouped according to shared features to 
assemble more complete aggregate profiles of each cell type. Platforms that simplify 
the workflows and data analysis have greatly facilitated profiling the gene expression 
signatures and active and repressive chromatin landscapes of single cells [8].

To maximize genomic information from each single  cell, several methods have 
been developed that simultaneously profile two or more modalities, such as acces-
sible chromatin and mRNA [9] or histone modifications and mRNA [7]. Multimodal 
single-cell profiling can resolve cell types that may be highly similar in the readout of 
one assay but show characteristic differences in the other and also allow direct com-
parisons between gene expression and components of the regulatory landscape in 
individual cells. Methods that simultaneously profile both the active and repressive 
epigenome could provide a more comprehensive understanding of cell fate regula-
tion than can be obtained by profiling the active or repressive chromatin landscapes 
in isolation. However, multimodal methods require complex workflows and present 
data integration challenges, motivating the development of methods that simultane-
ously profile the active and repressive chromatin landscape using a single workflow 
and readout modality.

Previously, we introduced a modified version of CUT&Tag where pA-Tn5 or Protein 
A/G-Tn5 (pAG-Tn5) is tethered near active TSSs and enhancers and tagmentation is 
performed under low salt conditions (referred to as CUTAC for Cleavage Under Tar-
geted Accessible Chromatin) [10, 11]. Low-salt tagmentation results in highly specific 
integration of tethered Tn5s within narrow accessible site windows to release chromatin 
fragments from active regulatory elements across the genome. Here we extend CUTAC 
to simultaneously profile regions of active and repressive chromatin within single cells 
by simply mixing antibodies that target both the initiating form of RNA polymerase II 
and H3K27me3 followed by in silico deconvolution of the two epitopes. Our deconvolu-
tion strategy leverages both the different tagmentation densities and the different frag-
ment sizes to separate active and repressive chromatin regions directly from the data 
without reference to external information. In this way, CUT&Tag2for1 profiles both 
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chromatin states using a single sequencing readout. As the workflow is practically iden-
tical to that of standard CUT&Tag, we expect the method will be readily adopted for 
platforms already engineered for single-cell CUT&Tag.

Results
Pol2S5p‑CUTAC maps accessibility of promoters and functional enhancers

In CUTAC chromatin accessibility mapping, pA-Tn5 is tethered to active TSSs and 
enhancers using antibodies targeting either histone 3 lysine-4 dimethylation (H3K4me2) 
or trimethylation (H3K4me3) [10]. We therefore reasoned that directly tethering pA-Tn5 
to the initiating form of Pol2 (Pol2S5p), which is paused just downstream of the pro-
moter, might also tagment accessible DNA under CUTAC conditions. Indeed, we found 
that Pol2S5p CUTAC profiles display similar enrichment to H3K4me2 CUTAC at a vari-
ety of accessibility-associated features, including annotated promoters (Fig. 1a, left) and 
STARR-seq functional enhancers (Fig. 1b, left) in K562 chronic myelogenous leukemia 
cells. Pol2S5p CUTAC yielded profiles with sharp peak definition and low backgrounds 
relative to high-quality ATAC-seq profiles (Additional file  1: Fig. S1a). Genome-wide, 
we observed higher sensitivity and excellent signal-to-noise for Pol2S5p CUTAC, with 
more peaks called and higher fraction of reads in peaks (FRiP) scores [12] when plotted 
as a function of fragment number (Fig.  1c). Notably, restricting CUTAC fragments to 
those shorter than 120 bp further improved the resolution of accessible features (Fig. 1a, 
b right), consistent with efficient Tn5 footprinting in exposed DNA [13]. This interpreta-
tion is supported by aligning reads from PRO-seq, a transcriptional run-on method that 
precisely maps the position of the Pol2 active site (Fig. 1d) [14], which shows it to be cen-
tered on average ~130 bp from the accessibility footprints genome-wide (Fig. 1e).

To quantify the degree of overlap between CUTAC and ATAC-seq, we called peaks 
from one replicate of ENCODE ATAC-seq data and aligned samples of 3.2 million 
fragments from Pol2S5p-CUTAC and K4me2-CUTAC data and from the other 
ATAC-ENCODE replicate. Based on these heat maps, we find that when fragments 
are sampled down to 3.2 million reads, 98–99% of Pol2S5p-CUTAC and H3K4me2-
CUTAC ≤ 120 bp fragments are centered over ENCODE ATAC-seq peaks, whereas 
an ENCODE ATAC-seq replicate shows 93% overlap (Additional file  1: Fig. S2a-e). 
We attribute the better overlap of CUTAC to the ENCODE ATAC-seq standard than 
a replicate of the same standard to the better resolution of CUTAC over ATAC-seq, 
with much sharper peaks and better signal-to-noise (Additional file  1: Fig. S2d), so 
that much more of the CUTAC signal is present in ≤ 120 bp fragments and is better 
centered over the midpoint of each accessible site. This close correspondence is con-
firmed by correlation analysis (Additional file 1: Fig. S2e), providing direct evidence 
for the involvement of Pol2 in driving H3K4 methylation and chromatin accessibil-
ity [10, 15]. The fact that most promoters and STARR-seq enhancers are immediately 
adjacent to the paused initiating form of Pol2 is consistent with the suggestion that 
enhancers and promoters share the same chromatin configuration [16].

CUT&Tag2for1 distinguishes active versus repressed chromatin based on fragment size

In comparison with H3K27me3 CUT&Tag profiles of the developmentally repressed 
chromatin landscape, we noticed that the CUTAC profiles include a much larger 
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Fig. 1  Pol2S5p CUTAC maps promoters and functional enhancers adjacent to RNAP2 genome-wide. 
a Heatmaps showing occupancies of Pol2S5p CUTAC, H3K4me2 CUTAC, and ATAC-seq signals over 
promoters in K562 cells, which become sharper for subnucleosomal (1–120 bp) fragments. b Pol2S5p 
CUTAC, H3K4me2 CUTAC, and ATAC-seq signals precisely mark functional enhancers when aligned to 
STARR-seq peaks. c To evaluate the data quality of Pol2S5p CUTAC, random samples of mapped fragments 
were drawn, mitochondrial reads were removed and MACS2 was used to call (narrow) peaks. The number 
of peaks called for each sample (left) is a measure of sensitivity, and the fraction of reads in peaks (FRiP, 
right) is a measure of specificity calculated for each sampling in a doubling series from 50,000 to 6.4 million 
fragments. For comparison, an ENCODE ATAC-seq sample was used for K562 cells and a published ATAC-seq 
sample from our lab (GSE128499) was used for H1 cells. Hex samples were tagmented in the presence of 
10% 1,6-hexanediol. d Run-on transcription initiates from most sites corresponding to RNAP2S5p CUTAC 
peaks, where PRO-seq maps the RNA base at the active site of paused Pol2 [14]. Both plus and minus strand 
PRO-seq datasets downloaded from GEO (GSM3452725) were pooled and aligned over peaks called by 
MACS2 using 3.2 million RNAP2S5p CUTAC fragments. e Model for RNAP2S5p-tethered tagmentation of 
adjacent accessible DNA, where the Set1 H3K4 methyltransferase di- and tri-methylates nucleosomes near 
stalled Pol2
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proportion of fragments that are < 120 bp in both K562 and H1 embryonic stem cells 
(Additional file  1: Fig. S1b). No consistent changes in fragment sizes were seen when 
3–12 rounds of linear amplifications preceded PCR to minimize the competitive advan-
tage of small fragments during the short PCR cycles used for CUT&Tag. However, 
including the polar organic compound 1,6-hexanediol during tagmentation resulted 
in a smaller fragment size distribution (Additional file 1: Fig. S1c), with H1 cells show-
ing a more marked effect than K562 cells, consistent with our previous finding that this 
increases penetrability of pAG-Tn5 [10] and with “hyperdynamic” chromatin character-
istic of embryonic stem cells [17]. We reasoned that differences in fragment size might 
provide a general strategy to separate active and repressed chromatin profiles using 
a single sequencing readout from the same cells. Accordingly, we mixed Pol2S5p and 
H3K27me3 antibodies and followed the CUT&Tag protocol for K562 and H1 samples 
with tagmentation under low-salt CUTAC conditions (Fig.  2a). We found that when 
compared to individual CUTAC and H3K27me3 CUT&Tag profiles, features from both 
targets were well-represented in CUT&Tag2for1 profiles (Fig.  2b). We applied a two-
component Gaussian Mixture Model to the distribution of fragment size averages using 
an Expectation Maximization algorithm [18] to separate peaks into inferred Pol2S5p-
CUTAC (small fragment average) and H3K27me3 (large fragment average) profiles from 
the mixture. We found that H3K27me3 CUT&Tag and CUTAC map nearly exclusively 
to their fragment size-inferred peak sets (Fig. 2c, d), supporting the use of fragment size 
as an accurate feature classifier of CUT&Tag2for1 data. These data suggest that active 
and repressive chromatin features can be deconvolved in a joint assay with minimal 
additional effort.

CUT&Tag2for1 for single cells

Given the successful adaptation of CUT&Tag for single-cell profiling [4–6], we next 
asked whether CUT&Tag2for1 could be adapted for single-cell chromatin charac-
terization. We performed CUT&Tag2for1 in K562 and H1 cells, isolated single cells 
on a Takara ICELL8 microfluidic device, and then amplified tagmented DNA with 
cell-specific barcodes (Fig. 3a). Because the fragment size distributions of the two tar-
gets can exhibit considerable overlap (Additional file 1: Fig. S1b, c), we reasoned that 
deconvolution can be further enhanced by considering dependencies between posi-
tionally close adapter integration sites in the genome, i.e., observation of many cut 
sites from a particular target makes it more likely that an integration close to this set 
was induced from the same target feature. In addition, we also tested whether the 
differences in feature and peak width for the two epitopes (Pol2S5p peaks are nar-
row and sharp; H3K27me3 peaks are broad and diffuse) can also help the deconvolu-
tion. By applying Bayesian statistics to model the CUT&Tag2for1 signal as a mixture 
of Pol2S5p and H3K27me3, we found that indeed a model that incorporates length 
distributions, positional dependencies, and feature widths of the two targets out-
performs any of the individual parameters, and we named this novel deconvolution 
approach 2for1separator (Fig. 3b, Methods, Additional file 1: Fig. S3). The fragment 
length distribution is encoded as a mixture of log-normal distributions over the char-
acteristic modes of chromatin data, and the neighborhood information, i.e., positional 
dependencies and feature widths are modeled using a Gaussian process (Fig. 3b). We 
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then used the deconvolved signals as inputs to a peak-calling procedure to identify 
Pol2S5p and H3K27me3 peaks from CUT&Tag2for1 data.

To deconvolve the Pol2S5p and H3K27me3 features from our single-cell data, we 
first created a pseudo-bulk profile by aggregating the unique reads from individual 
H1 and K562 cells. Our 2for1separator algorithm accurately determined Pol2S5p 
and H3K27me3 peaks, showing strong enrichment of the correct single antibody 
signals in the respective peaks (Fig. 3c–f ). We then visualized single-cell data using 

Fig. 3  Deconvolution of CUT&Tag2for1 using fragment length, cut-site density and feature width. a 
Schematic of the single-cell CUT&Tag2for1 experimental rationale, in which two cell types are profiled in 
bulk in parallel and then arrayed on an ICELL8 microfluidic chip for cell-specific barcoding via amplification 
and mixing before sequencing. b Schematic of the deconvolution approach using a Bayesian model 
by considering differences in fragment length distributions, feature widths of the two targets and 
cut-site probability density function (PDF). c Genome browser screenshot showing a CUT&Tag2for1 profile 
(green) in comparison with H3K27me3 CUT&Tag (red) and Pol2S5p-CUTAC (blue) for a representative region 
in H1 human embryonic stem cells (hESC), along with inferred peaks from single-cell CUT&Tag2for1 data. 
d Same as c for K562 cells. e, f Single antibody and CUT&Tag2for1 data at the inferred Pol2S5p (left) and 
H3K27me3 peaks (right) for H1 and K562 cells, where misclassified peak numbers and percentages are H1 
Pol2S5p (1261 = 8.2%), H1 H3K27me3 (161 = 11.0%), K562 Pol2S5p (396 = 1.0%), and K562 H3K27me3 (496 
= 3.7%). In c–f, CUT&Tag2for1 data represent the pseudo-bulk aggregate for all cells derived by pooling 
single-cell data, and Pol2S5p and H3K27me3 data are from single antibody data. Results were obtained by 
pooling cells from two single-cell replicates
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UMAP projections of feature counts and observed that cells from the two lines can 
be perfectly distinguished based on Pol2S5p peaks, H3K27me3 peaks or the com-
bination of the two (Fig. 4a–c). We compared the number of fragments mapping to 
Pol2S5p and H3K27me3 peaks and observed a strong correlation in both cell types 
(Fig.  4d, correlation: 0.95) and an even balance of fragments between the two tar-
gets in individual cells. In line with this observation, the 400 most variable Pol2S5p 
peaks and H3K27me3 peaks were sufficient to distinguish the majority of the two 
cell types (Fig. 4e), demonstrating that CUT&Tag2for1 can be used to identify both 
active and repressive chromatin features in the same single cells, and we can use them 
coordinately to distinguish cell identity. To examine the robustness of the single-
cell CUT&Tag2for1 method as well as the 2for1separator algorithm, we performed 
additional replicates of H1 and K562 cells run on the ICELL8. K562 cells from both 
replicates cluster tightly together in UMAP space and away from a second cluster 
composed of H1-hESCs from both replicates according to the deconvolved signal of 
either Pol2S5p or H3K27me3 (Additional file 1: Fig. S4a, b). In addition, we find that 
cell types from one replicate can be accurately distinguished from one another based 
on the regions defined as Pol2S5p or H3K27me3 when 2for1separator is applied to 
an alternative replicate  (Additional file 1: Fig. S4c, d). We conclude that the combi-
nation of CUT&Tag2for1 with the 2for1separator algorithm is a robust strategy to 
identify both active and repressive chromatin features in the same single  cells and 
coordinately distinguish cell identity.

Discussion
Methods for profiling chromatin accessibility have been proliferating since the 1970s 
[13, 19–24], however, it has been difficult to resolve conflicts between different assays, 
for example between nuclease (DNAseI-seq) [25] and tagmentation (ATAC-seq) [26] 
assays. The close correspondences between ATAC-seq and CUTAC based on H3K4me2 
[10] and based on paused RNA polymerase II as demonstrated here provide for the first 
time ground-truth validation for an accessibility assay. Our mapping of Pol2S5p CUTAC 
genome-wide further implies that chromatin accessibility is driven by the transcriptional 
apparatus itself [16]. Our study also has shown that Pol2S5p CUTAC detects active 
promoters and enhancers with better sensitivity, specificity, and resolution than recent 
ATAC-seq data from the ENCODE project and encourages the wide use of CUTAC 
for general chromatin accessibility mapping. Here, we have extended the application of 
CUTAC to single cells, and by combining CUTAC with simultaneous H3K27me3 map-
ping, we obtain the full active and silenced regulome at single-cell resolution.

Single-cell genomics methods for profiling the transcriptome, proteome, methylome, 
and accessible chromatin landscape have advanced rapidly in recent years [27]. Cur-
rently, approaches for profiling single epigenome targets are the state of the art, but 
methods for simultaneously profiling active and repressive chromatin landscapes in 
single  cells have been lacking. CUT&Tag2for1 combines simple antibody mixing in a 
single workflow with a single sequencing readout to profile and computationally sepa-
rate accessible and repressed chromatin regions. Single-cell CUT&Tag2for1 avoids the 
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complex workflows, multi-level barcoding and apples-and-oranges integration chal-
lenges posed by multimodal profiling methods.

CUT&Tag2for1 was inspired by the observation that Pol2S5p CUTAC, developed 
based on previously reported H3K4me2 CUTAC [10], yields a different average frag-
ment length profile than H3K27me3 CUT&Tag and therefore that the two could be dis-
tinguished in a single assay. Although the low-salt conditions result in low artifactual 
accessible site signals in H3K27me3 CUT&Tag experiments [28], in CUT&Tag2for1, 
these accessible sites accumulate high signals. The DNA fragment length data dimen-
sion allows for a priori assignment of target origin, which is in keeping with the myriad 
advantages of using fragment length to elucidate fine grain chromatin structure [29–32]. 
By also using positional dependency and feature width information in a probabilistic 
model, we obtain robust separation of the active and repressive landscapes.

Conclusions
Single-cell CUT&Tag2for1 can assign Pol2S5p (active) or H3K27me3 (repressive) tar-
get origin with high fidelity in the absence of ground truth datasets. A limitation of our 
deconvolution strategy is that it requires a large fragment/large feature and small frag-
ment/small feature pair for best performance, thus two histone modifications cannot be 
effectively discriminated. In contrast, H3K36me3, which marks nucleosomes of active 
gene bodies, might in principle be separated from transcription factors owing to their 
smaller footprints within nucleosome-depleted regions. However, the relatively high 
abundance of both H3K27me3 and Pol2S5p and the fact that in combination they pro-
file virtually the entire chromatin developmental regulatory landscape makes our cur-
rent implementation of CUT&Tag2for1 an attractive genomics-based strategy for a wide 
range of development and disease studies.

Methods
Human cell culture

Human female K562 chronic myelogenous leukemia cells (ATCC)  and H1 (WA01) 
male human embryonic stem cells (hESCs) were authenticated for sterility and tested 
for  human pathogenic viruses mycoplasma contamination and viability after thawing. 
Cells were cultured as previously described [33]. Briefly, K562 cells were cultured in liq-
uid suspension, and H1 cells were cultured in Matrigel (Corning)-coated plates at 37 °C 
and 5% CO2 using mTeSR-1 Basal Medium (STEMCELL Technologies) exchanged every 
24 h.

Bulk CUT&tag, CUTAC, and CUT&Tag2for1

CUTAC using Pol2S5p for accessible site mapping was performed as described in a 
step-by-step protocol [11]. Briefly, cells were harvested by centrifugation, and  washed 
with phosphate-buffered saline. Nuclei were  prepared and lightly cross-linked (0.1% 
formaldehyde 2 min), then washed and resuspended in wash buffer (10 mM HEPES 
pH  7.5, 150 mM NaCl, 2 mM spermidine and Roche complete EDTA-free protease 
inhibitor), aliquoted with 10% DMSO and slow-frozen to − 80 °C in Mr. Frosty con-
tainers (Sigma-Aldrich cat. no. C1562). CUT&Tag, CUTAC, and CUT&Tag2for1 were 
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performed in parallel in single 0.6 mL PCR tubes by mixing with Concanavalin A mag-
netic beads and performing incubation and wash steps on a magnet. Primary (anti-rab-
bit) antibody [1:50 for Pol2S5p (Cell Signaling Technology cat. no. 13523) or 1:100 for 
H3K27me3 (Cell Signaling Technology cat. no. 9733)] in Wash buffer + 0.1% BSA was 
added and beads were incubated at room temperature for 1–2 h or overnight at 4 °C. 
For CUT&Tag2for1, primary antibodies were mixed in the same concentrations (1:100 
for H3K27me3 and 1:50 for Pol2S5p). Beads were magnetized and the supernatant 
was removed,  and then the beads were resuspended in guinea pig anti-rabbit second-
ary antibody (Antibodies Online cat. no. ABIN101961) and incubated 0.5–1 h. Beads 
were magnetized, the supernatant was removed, and then the beads were resuspended 
in pAG-Tn5 pre-loaded with mosaic-end adapters (Epicypher cat. no. 15-1117 1:20) in 
300-wash buffer (Wash buffer except containing 300 mM NaCl) and incubated 1–2 h 
at room temperature. Following magnetization, supernatant removal, and washing in 
300-wash buffer, the beads were incubated at 37 °C in either 10 mM MgCl2, 300 mM 
NaCl (for CUT&Tag) for 1 h, or 5 mM MgCl2, 10 mM TAPS pH 8.5 (for CUTAC and 
CUT&Tag2for1) for 10–30 min. In some experiments, CUTAC and CUT&Tag2for1 tag-
mentation was performed in 5 mM MgCl2, 10 mM TAPS pH 8.5 with addition of 10% 
(w/v) 1,6-hexanediol (Sigma-Aldrich cat. no. 240117-50G) or 10% (v/v) N,N-dimeth-
ylformamide [10]. Bead suspensions were chilled on ice, magnetized, the supernatant 
was removed, and then beads were washed with 10 mM TAPS pH 8.5, 0.2 mM EDTA, 
and resuspended in 5 μL 0.1% SDS, 10 mM TAPS pH 8.5. Beads were incubated at 58 °C 
in a thermocycler with heated lid for 1 h, followed by addition of 15 μL 0.67% Triton 
X-100 to neutralize the SDS. Barcoded PCR primers were added followed by 25 μL of 
either NEBNext 2x Master Mix (ME541L, non-hotstart) or KAPA Polymerase 2x master 
mix [Roche KAPA HiFi plus dNTPs: 360 μL 5X KAPA HiFi buffer, 54 μL KAPA dNTP 
mix (10 mM each), 36 μL KAPA non-hotstart DNA Pol (1 U/μL), 450 μL dH2O]. Gap-
filling and 12-cycle PCR were performed: 58 °C 5 min, 72 °C 5 min, 98 °C 30 s, 12 cycles 
of (98 °C 10 s denaturation and 60 °C 10 s annealing/extension), 72 °C 1 min, and 8 °C 
hold. In some experiments, linear pre-amplification was performed using this program 
with 3–12 cycles but with only i5 primers, followed by addition of i7 primers at 8 °C and 
10–12 cycles of (98 °C 10 s denaturation and 60 °C 10 s annealing/extension), then 72 °C 
1 min, and 8 °C hold, and in other experiments, the initial 98 °C denaturation step was 
extended from 30 s to 5 min, but no consistent differences in the resulting libraries were 
observed. SPRI paramagnetic beads were added directly to the bead-cell slurry for clean-
up as described by the manufacturer (Magbio Genomics, cat. no. AC-60500). Elution 
was in 20 μL 1 mM Tris pH 8.0, 0.1 mM EDTA. Library quality and concentration were 
evaluated by Agilent Tapestation capillary gel analysis, barcoded libraries were mixed, 
and PE25 sequencing was performed on an Illumina HiSeq2500 by the Fred Hutch 
Genomics Shared Resource.

Single‑cell CUT&Tag2for1

CUT&Tag2for1 was performed using lightly fixed K562 and H1 nuclei. Frozen nuclei 
were thawed and aliquots containing 20,000 nuclei were centrifuged at 700×g for 4 min 
at 4 °C. Nuclei were washed once with Wash buffer, centrifuged again, and then resus-
pended in Wash buffer + 0.1% BSA with primary anti-Pol2S5p antibody (Cell Signaling 
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Technology cat. no. 13523, 1:50) and anti-H3K27me3 (Cell Signaling Technology cat. no. 
9733, 1:100) in 0.6 mL PCR tubes. Primary antibody binding was performed overnight 
at 4 °C. Samples were centrifuged at 700×g for 4 min at 4 °C between incubation steps 
and incubated for 1 h at room temperature in guinea pig anti-rabbit secondary antibody 
(Antibodies Online cat. no. ABIN101961, 1:100) in Wash buffer and for 1 h at room tem-
perature for pAG-Tn5 (Epicypher cat. no. 15-1117, 1:20) tethering  in 300-wash buffer. 
Samples were then centrifuged, washed with 300-wash buffer, pelleted by centrifugation, 
and then resuspended in 5 mM MgCl2, 10% hexanediol, 10 mM TAPS pH 8.5 for 20 min 
at 37 °C for tagmentation. Reactions were stopped by adding EDTA to a final concentra-
tion of 1 mM, and kept at 4 °C until dispensation on the ICELL8 platform.

Cells were processed on the ICELL8 instrument according to a previously optimized 
protocol for release of tagmented DNA in SDS, followed by a Triton X-100 neutraliza-
tion step and PCR amplification [34]. Briefly, the volume of 10 mM TAPS Buffer pH 8.5 
was adjusted to 65 μL per 20,000 nuclei to yield a concentration of ~ 300 nuclei/μL, 
and nuclei were stained with 1X DAPI and 1X secondary diluent reagent (Takara cat. 
no. 640196). The 8 source wells of the ICELL8 were loaded with 65 μL of the suspension 
of tagmented nuclei and dispensed into a SMARTer ICELL8 350v chip (Takara Bio, cat. 
no. 640019) at 35 nL per well. The chip was then sealed for imaging and spun down at 
1200×g for 1 min. Imaging on a DAPI channel confirmed the presence of single cells in 
specific wells. Non-single-cell wells were excluded from downstream reagent dispenses. 
A volume of 35 nL of 0.19% SDS in 10 mM TAPS Buffer pH 8.5 was dispensed into active 
wells and the chip was dried, sealed, and spun down at 1200×g for 1 min. The chip was 
placed in a thermocycler and held at 58 °C for 1 h to release tagmented chromatin. The 
chip was spun at 1200×g for 1 min before opening, and 35 nL of 2.5% Triton X-100 in 
distilled deionized H20 was dispensed into all active wells. To index the whole chip, 72 
× 72 i5/i7 primers containing unique indices (5,184 microwells total) were dispensed 
at 35 nL in wells that contained single cells, followed by two dispenses of 50 nL (100 nL 
total) KAPA PCR mix (2.775 X HiFi Buffer, 0.85 mM dNTPs, 0.05 U KAPA HiFi poly-
merase / μL, Roche cat. no. 07958846001). The chip was sealed for heated incubation 
and spun down at 1200×g for 1 min after each dispense. PCR on the chip was performed 
with the following protocol: 5 min at 58 °C, 10 min at 72 °C, and 2 min at 98 °C, followed 
by 15 cycles of 15 s at 98 °C, 15 s at 60 °C, and 10s at 72 °C, with a final extension at 72 °C 
for 2 min. The contents of the chip were then centrifuged into a collection tube (Takara 
cat. no. 640048) at 1200×g for 3 min. Two rounds of SPRI bead cleanup at a 1.3:1 v/v 
ratio of beads to sample were performed to remove residual PCR primers and detergent. 
Samples were resuspended in 20 μL of 10 mM Tris-HCl pH 8.0. Library quality and con-
centration were evaluated by Agilent Tapestation capillary gel analysis, and single-cell 
CUT&Tag2for1 samples were then pooled with bulk libraries prepared using compatible 
barcodes. PE25 sequencing was performed on an Illumina HiSeq2500 by the Fred Hutch 
Genomics Shared Resource.

Deconvolution using fragment size (bulk)

Peaks were called using SEACR v1.3 [35]. Fragments overlapping peaks were ascertained 
using bedtools intersect [36]. For each peak, we calculated the average fragment size of 
all fragments overlapping the peak in question, and then fit the distribution of average 
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fragment sizes across all peaks to a mixture of two Gaussian distributions using Mix-
tools NormalMixEM [18]. Peaks were partitioned into “large” (H3K27me3) and “small” 
(Pol2S5P) fragment size classes based on the average fragment size threshold at which 
the two calculated Gaussian distributions intersect. Bulk H3K27me3 CUT&Tag and 
Pol2S5P CUTAC were mapped onto large and small peak classes in heatmap form using 
Deeptools [37].

Deconvolution using feature width and fragment size (single‑cell)

CUT&Tag fragments result from two independent integration events resulting in 
two tagmentation cut sites after gap-filling, barcoded PCR and DNA sequencing. 
Rather than trying to attribute each fragment to either Pol2S5p or H3K27me3, our 
deconvolution approach estimates how likely was a cut (adapter integration) derived 
from Pol2S5p or H3K27me3 antibodies. We use three key insights for deconvolu-
tion: (i) fragment length distributions are significantly different between the two tar-
gets (Additional file 1: Fig. S1), (ii) cuts from a target have a positional dependency, 
i.e., observation of multiple cuts from a specific target at a genomic location most 
likely indicates a cut close to this set was induced by the same target, and (iii) fea-
ture widths between the two targets are typically different: Pol2S5p peaks are narrow 
and sharp, whereas H3K27me3 domains are broad and diffuse (Fig.  2b). Motivated 
by these insights, we developed 2for1separator, an algorithm to deconvolve the 
CUT&Tag2for1 data into two signal tracks—representing the density of chromatin 
cut sites targeted by H3K27me3 and Pol2S5p antibodies respectively. We then use the 
deconvolved signals to identify narrow Pol2S5p peaks and broad H3K27me3 domains 
in the data.

Overview of 2for1separator

Formally, we represent a cut as a tuple (x, l) where x stands for the location in the genome 
and l the length of the fragment it belongs to. The density of CUT&Tag2for1 cuts at cut-
site x with fragment length, l can be represented as

where function f is the probability density function (PDF). λH3K27me3 and λPol2S5P repre-
sent the respective weights.

We assume that the length l and position x are independently distributed for each tar-
get, therefore fH3K27me3(x, l) can be written as

Similarly, for Pol2S5p

where h(x) is the location-specific marginal cut-site probability density function and 
h(l) is the location-independent marginal fragment length probability density function.

(1)f2for1(x, l) = �H3K27me3fH3K27me3(x, l)+ �Pol2S5PfPol2S5P(x, l)

(2)fH3K27me3(x, l) = hH3K27me3(x) • hH3K27me3(l)

(3)fPol2S5P(x, l) = hPol2S5P(x) • hPol2S5P(l)
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Fragment length distribution prior

The fragment length marginal PDFs, hPol2S5P(l) and hH3K27me3(l), are parameterized sep-
arately to account for the differences in length distributions between the two targets. 
Length distributions show characteristic modes irrespective of the target (Additional 
file 1: Fig. 1b, c and Additional file 1: Fig. 2a, b). We thus represent the fragment length 
PDF as a mixture of four log-normal distributions with modes centered at 70, 200, 400, 
and 600 (Fig. 3b). We do not make a distinction for fragments that are > 800 base pairs in 
length since they occur rarely. We assume the weights of the modes to follow a Dirichlet 
distribution—effective for modeling multinomial distributions—that we roughly based 
on the single antibody data.

Through a rough estimate of these mode weights and with arguable uncertainty of the 
true distribution, we came to use the Dirichlet-parameter vector (450, 100, 10, 1) for 
Pol2S5p and (150, 300, 50, 10) for H3K27me3. We noted that the deconvolution inferred 
weights remain very consistent across multiple fragment subsamples while deviating 
strongly from the mean of the Dirichlet prior (Additional file 1: Fig. S2c, d), indicating 
that the result is data-driven and not very sensitive to the exact choice of prior param-
eters. We only needed to encode the fact that Pol2S5p fragments are shorter on average 
than H3K27me3 fragments.

Cut‑site densities and priors

We chose to model the cut-site PDFs as Gaussian Processes (GP), a powerful technique 
that can accurately infer the shape of the signal by considering the positional dependen-
cies in signal values (Fig. 3b). The GP is used to predict the log-cut-density at a particular 
cut-site as a function of all the cuts in the neighborhood. A GP is defined by mean and 
covariance functions where the covariance function encodes the neighborhood informa-
tion, i.e., positional dependencies between cuts and feature widths, making GPs ideally 
suited to infer cut-site density functions for the two targets.

We took an empirical approach to define the covariance function of the Gaussian 
process. We examined the Gaussian kernel density estimates (σ = 200) of cuts from 
the H3K27me3 CUT&Tag and Pol2S5p CUTAC experiments and determined that the 
autocorrelation of the log-density, representing both local dependencies, is well approxi-
mated through the Matérn covariance function (nu = 3/2) [38]. Based on the observed 
autocorrelations, we chose this covariance function with length scales 500 and 2000 as 
kernels of the GP for the Pol2S5p and H3K27me3 targets respectively to account for fea-
ture width differences. We also note that difference in feature widths is not a necessary 
component, and our model can deconvolve the signals as long as the fragment length 
distributions between the two targets are different.

Constraints on the Gaussian process

The functions generated through the GP express the desired smoothness and mean 
value but are not guaranteed to represent probability density functions. To ensure that 
the generated functions indeed represent PDFs, we must guarantee two additional con-
straints: (i) strict positivity and (ii) a fixed integral, without which the resulting likeli-
hood could grow infinitely jeopardizing any posterior estimate of the location-specific 
PDFs.
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Positivity is ensured by applying the exponential: we model the cut-site PDF hPol2S5P(x) 
as

where gPol2S5P is a random variable of a GP. Similarly,

The sum of the two PDFs in Equations (4) and (5) should integrate to one for a fixed 
integral. Rather than constraining the integral to one, we aim for a density function that 
integrates to the total number of observed cuts for ease of implementation. This repre-
sentation results in a constant factor in the combined likelihood function and does not 
impact the inference. As an added benefit of this formulation, the inferred density func-
tion has the unit “cuts per base pair” and hence is insensitive to the size of the decon-
volved genomic region. This also results in the log-density having an approximate mean 
value of 0 across the whole genome, and thus we use a zero-mean GP. We approximate 
this integral with the rectangle rule, by assuming one rectangle per cut site and a width 
such that neighboring rectangles touch at the midpoint between the cut sites. To enforce 
the correct integral, we impose a log-normal distribution of the resulting approximation 
around the desired value and a very small standard deviation of 0.001, since enforcing a 
constraint to a fixed value makes the inference intractable.

Inference

To infer the most likely target specific chromatin cut PDF, we use the gradient descent 
method, limited-memory BFGS on the posterior parameter distribution to find the local 
maximum a posteriori point (MAP). The MAP represents the most likely cut PDFs and 
fragment length distributions in the chosen parametrization of our model.

Pol2S5p peak calling

We use the deconvolved Pol2S5p signals to perform peak calling. We nominate each 
region containing cuts with deconvolved Pol2S5p signal greater than a computed thresh-
old as Pol2S5p peaks. We retain Pol2S5P peaks wider than 100 bp for downstream anal-
ysis. We identify the position within the peak with maximal deconvolved signal as the 
summit.

We first estimate the fraction of cuts that are derived from Pol2S5p to compute the 
threshold. The fraction, denoted as r̂Pol , is estimated as the ratio between the integral of 
Pol2S5p deconvolved density and the integral of the combined density. In practice, we 
found this estimate to be susceptible to instability, and we therefore used a beta distribu-
tion with parameters α = 0.5, β = 0.5 as a prior to derive a robust estimate. With a further 
conservative assumption that 50% of the Pol2S5p cuts fall into Pol2S5p reproducible 
peaks, the expected value of the fraction of cuts that fall in Pol2S5p peaks is

(4)�Pol2S5PhPol2S5P(x) = exp
(

gPol2S5P(x)
)

(5)�H3K27me3hH3K27me3(x) = exp
(

gH3K27me3(x)
)

rPol =
1+ 2r̂Pol

8
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We therefore use the rPolth percentile of the deconvolved signal value as the thresh-
old, i.e., regions with cuts with deconvolved signal higher than the rPolth percentile are 
identified as Pol2S5p peaks.

H3K27me3 domains

A procedure analogous to Pol2S5p peak calling was used to identify H3K27me3 domains 
using the deconvolved H3K27me3 signal. We observed that large H3K27me3 domains 
appear as discontinuous signal blocks (Fig.  3c—right panel). We therefore applied an 
additional smoothing on the deconvolved H3K27me3 signal using a Gaussian filter and 
computed the average between the smoothed and original signal. We then repeated the 
peak calling procedure on the smoothed signal and identified H3K27me3 domains as the 
union of domains identified using deconvolved and the additionally smoothed signals. 
Only peaks wider than 400 bp are retained for downstream analysis.

Overlap peaks

A fraction of genomic sites were identified as peaks in both Pol2S5p and H3K27me3. If 
the overlaps of a H3K27me3 peak with Pol2S5p is less than 50% of the H3K27me3 peak 
span, we resolve the region as an H3K27me3 peak (and vice-versa for Pol2S5p peaks). 
The remainder of the peaks are called as overlapping peaks (Additional file 1: Fig. S5). 
Overlapping peaks comprise only ~ 1% of the total (139 of 10,661 H1 peaks and 104 of 
11,111 K562 peaks) and were not used in the analysis.

Implementation details

Since the GP employs the covariance between all cut-sites, the memory demand grows 
approximately quadratic with the number of unique cut-sites. However, cuts that are 
further apart than 10,000 bp express no relevant covariance and must not be considered 
in the same GP. We use this observation to split up genomic regions into intervals with 
at most 10,000 unique cut sites. We pad each interval with an additional 10,000 bp on 
either side to ensure stable estimation of the signal at the interval boundaries and dis-
card the padding after deconvolution. A GP is fit separately for each interval and the 
results concatenated to obtain a deconvolution of all genomic regions.

We also limit the deconvolution to regions where the Gaussian kernel density esti-
mate of all cuts (bandwidth = 200) indicates at least 2 cuts per 100 bp. Neighboring 
regions are merged if they are separated by fewer than 10,000 bp. These selected regions 
were segmented into intervals as described above. We then grouped all intervals of 
the selected regions into ~ 200 tasks and applied the posteriori point maximization of 
PyMC3 [39] for deconvolution.

Application to single‑cell data

We aggregated the reads of all cells of the two cell types from both the replicates into 
a pseudo-bulk set of fragments for each cell type. After applying our 2for1separator 
algorithm to identify Pol2S5p and H3K27me3 peaks, we used featureCount [40] to 
count the number of fragments that overlap each peak for each cell and target. We 
analyzed the two replicates separately to avoid misleading batch effects.
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We binarized the matrix and normalized the data using TF-IDF following the 
ArchR solution [41], separately for H3K27me3 and Pol2S5p. We then applied sin-
gular value decomposition to the normalized and log-transformed data and used 
30 components for downstream analysis. Since the first or second principal com-
ponent remains very strongly correlated with the library size despite the normali-
zation, we exclude the respective component in the UMAP and other downstream 
analyses.

Batch correction between the two replicates was performed using Harmony [42]. 
For independent replicate analysis (Additional file 1: Fig. S3c, d), deconvolution was 
performed separately for each replicate and peak counts from one were used to com-
pute visualizations and clustering for the other replicate.
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