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Differentiation is among the most fundamental processes in 
biology. In the traditional view, cells transition from a less- 
to a more-differentiated state via a series of discrete, well-

defined stages. Single-cell studies1–6 have, however, demonstrated 
that during differentiation cell states reside along largely continuous 
spaces. Despite this evolution in thinking, cell fate decisions con-
tinue to be largely conceptualized as a series of discrete bifurcations 
along development, leading to terminal cell states7,8.

Epigenetic studies, however, support a probabilistic view of cell 
fate choice. Epigenomic measurements such as DNase I hypersensi-
tivity site sequencing (DNase-seq) and assay for transposase-acces-
sible chromatin using sequencing (ATAC-seq) suggest potential 
mechanisms for a continuous process by indicating that progressive 
enhancer restriction, coupled with pre-establishment of lineage-
specifying enhancers in precursor cells, can serve as a vehicle for 
driving differentiation5,9,10. Indeed, in human bone marrow, we 
observe a lack of well-defined bifurcation points when single-cell 
RNA sequencing (scRNA-seq) profiles are projected along the 
strongest axes of variation (Fig. 1a). Even at the level of individual 
genes, we find a broad representation of gene ratios rather than 
bimodal expression states (Fig. 1a). These observations raise funda-
mental questions about whether cell fates, similar to cell state transi-
tions, are continuous and when and how cell fate choices are made.

To investigate these questions, we developed Palantir, an algo-
rithm that leverages scRNA-seq data to model the landscape of dif-
ferentiation and characterize continuity in both cell state and fate 
choice. As differentiation is asynchronous, sequencing a population 
of differentiating cells yields a snapshot representing a range of cell 
states. Based on scRNA-seq data from a single sample and the selec-
tion of a representative early cell, Palantir generates a pseudo-time 
ordering of cells and, for each cell state, assigns a probability for 
differentiating into each terminal state. We applied Palantir to char-
acterize human hematopoietic differentiation using scRNA-seq pro-
files of ~25,000 cells enriched for CD34, a marker for hematopoietic 
stem and progenitor cells11. Palantir identified established termi-
nal states and ordered cells along a pseudo-time that recapitulated 
known marker trends in development. Notably, Palantir identified 

points along the trajectory where the differentiation potential (DP) 
drastically shifts. These shifts mark key events in hematopoiesis. 
Palantir thus provides a quantitative approach to characterizing a 
continuous model of cell fate choice.

Results
Development as a Markov process. Differentiation proceeds 
through cell divisions, where daughter cells are generally very 
similar to their mother cells. Thus, the population is established 
by incremental divergences, driven by regulatory mechanisms that 
create paths through the space of possible cell states (phenotypes). 
Regulation constrains cell states to a low-dimensional manifold of 
possible phenotypes12. Nearest-neighbor graphs, where each node 
represents a particular cell state and edges connect most similar 
cells, have been widely used to model this manifold1–3,13.

A single bone marrow sample contains the full spectrum of cell 
states in hematopoiesis and importantly the frequencies of each 
cell state. We leverage cell state frequencies to inform our model of 
possible differentiation paths in the neighbor graph and their likeli-
hoods. Critically, paths along the graph represent probable trajec-
tories of cells in the population rather than the path of a particular 
cell, and each cell state (graph node) is associated with a probabil-
ity distribution for reaching the terminal states. We assert that cells 
traverse the manifold in small steps which can be modeled using a 
Markov chain to represent cell fate choices in a probabilistic manner, 
based on two key assumptions. Firstly, as in all pseudo-time infer-
ence algorithms1,3,7,8, we assume unidirectional progression from a 
less- to a more-differentiated state. We posit that it is a reasonable 
first order approximation for healthy differentiation, but note that 
it fails in aberrant systems such as cancer, which require additional 
information (for example, mutations) to determine directionality. 
Second, we assume that for any node, the probability of traversing 
to any neighbor is independent of its history, that is, the path taken 
to reach that state. Note that for a particular cell, the cell’s develop-
mental history is likely to be encoded in its epigenetic profile and 
will probably impact cell fate choices. However, nodes are abstract 
cell states representing multiple histories and potential trajectories 
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rather than the path of an individual cell. Accounting for all past 
paths into this cell state, we can compute population-level prob-
abilities for future states, based on the structure and connectivity of 
nodes in the graph manifold.

The Palantir algorithm. Given scRNA-seq data from a sample of 
differentiating cells and the expression profile of a user-defined 
‘early’ cell, Palantir orders cells along a pseudo-time, characterizes 
terminal differentiated states, and assigns each cell a probability dis-
tribution representing the cell’s branch probability for reaching each 
terminal state (Supplementary Note 1).

First, we represent the phenotypic manifold using a nearest-
neighbor graph (Supplementary Fig. 1a and Supplementary Note 1). 
We use diffusion maps14 to focus on developmental trends and avoid 
spurious edges resulting from the sparsity and noise in scRNA-seq. 
Projecting the data onto the top diffusion components effectively 
focuses edges in directions with high cell density and reweighs 
similarity along these directions (Supplementary Fig. 1a). Diffusion 
maps have been previously used to study single-cell data2,3 and are 
particularly adept at capturing differentiation trajectories3,15. Unlike 
other tools, Palantir uses multiple diffusion components when com-
puting the pseudo-time ordering of cells, since we observe that a 
single diffusion component can only approximate trajectories lead-
ing to a subset of fates (Supplementary Fig. 2). Shortest paths from a 
user-defined early cell initiate pseudo-time, which is then iteratively 
refined by identifying the shortest distances from waypoints—sets of 
cells sampled to span the differentiation landscape (Supplementary 
Fig. 1b-c)1,2. The computed pseudo-time does not represent a single 
trajectory, but rather assigns each cell a relative distance from an 
initial cell, regardless of its lineage or terminal fates.

We use the neighbor graph and pseudo-time to construct  
a Markov chain that models differentiation as a stochastic process, 
where a cell reaches one or more terminal states through a series 
of steps in the manifold (Fig. 1b). Pseudo-time provides direc-
tionality that is used to orient edges in the neighbor graph in a 
manner consistent with the ordering (Supplementary Fig. 1d-e).  
For each directed edge, we assign a transition probability of reach-
ing a neighboring cell in one step. The probability of reaching 
a more distant cell is computed over multiple steps and will be 
high if many paths connect them—that is, there is a high density 
of observed intermediary cell states (Supplementary Fig. 1f and 
Supplementary Note 1). Thus, while each single step is stochas-
tic, over longer distances, the manifold graph structure implicitly 
encodes developmental trajectories.

The Markov chain is also used to infer terminal states from the 
data. Palantir identifies terminal states as boundary cells (extrema 
of diffusion components) that are outliers in the stationary distri-
bution—that is, the states into which the random walks converge 
(Fig. 1c). Once the terminal states are identified, we convert them 
to absorbing states with no outgoing edges. In an absorbing Markov 
chain, a random walk from any state will continue until it reaches 
a terminal absorbing state. For each cell, Palantir then integrates all 
possible random walks from the cell to each possible terminal state 
to yield a vector of branch probabilities (Supplementary Fig. 1f,g). 
We define a cell’s differentiation potential (DP) to be the entropy 
over the branch probabilities, providing a quantitative metric for 
cell plasticity (Fig. 1d and Supplementary Fig. 1h).

Palantir assigns each cell both a pseudo-time (relative distance 
from the start) and branch probabilities to all terminal states. Thus, 
Palantir’s pseudo-time provides a unified ordering that enables pre-
cise alignment, characterization, and comparison of gene expres-
sion dynamics along all lineages, without having to select cells in 
subsets of lineages (Supplementary Note 1). From this ordering, 
we compute gene expression trends using generalized additive 
models, weighing each cell’s contribution based on branch proba-
bilities (Fig. 1e, Supplementary Fig. 3, and Supplementary Note 2).  

Generalized additive models are particularly suitable for deriving 
a robust estimate of nonlinear trends and estimating the standard 
error of prediction16.

Landscape of early human hematopoiesis. Hematopoiesis is a 
well-studied biological process with established markers to facilitate 
the identification of lineages11, and many pseudo-time algorithms 
have been developed using it as a model system2,7,17. While scRNA-
seq has been extensively used to study hematopoiesis in mouse6,18, 
we chose to investigate early human hematopoiesis, since single-cell 
studies are particularly empowering in a system where perturbations 
are not possible. Hematopoiesis has classically been characterized 
as a series of bifurcations leading to mature, terminal cell states11, 
but single-cell profiling of sorted populations suggests a continuous 
process of fate assignment4,5. Fundamental questions remain about 
how cell fate choice is determined at the earliest stages of human 
hematopoiesis and the degree of plasticity in early progenitors. 
To investigate these cell fate choices, we generated approximately 
25,000 single-cell transcriptomes of bead-purified CD34+ cells from 
3 human bone marrow donors using 10X Chromium (Methods).

We first clustered the scRNA-seq profiles using PhenoGraph13 
(Supplementary Fig. 4a). We identified the full complement of 
hematopoietic cells, including hematopoietic stem and progeni-
tor cells, as well as cells committed to lymphoid, erythroid, mono-
cytic, and classical and plasmacytoid dendritic cell (cDCs and 
pDCs, respectively) lineages and megakaryocytes (Fig. 2a,b and 
Supplementary Fig. 4b,c)19,20. Hematopoietic stem and progenitor 
cells composed ~63% of the total sorted cells. Lineage-committed 
cells were also detected because of imperfect CD34 purification 
(~90% pure) and the temporal lag in surface protein levels com-
pared with messenger RNA.

Palantir recapitulates expected hematopoiesis trends. We applied 
Palantir to the hematopoiesis data, selecting a CD34-high cell as 
the start cell (Methods), and analyzed each of the three replicates 
separately to evaluate robustness. The algorithm correctly identi-
fied all expected cell types, including monocytes, erythroid cells, 
megakaryocytes, lymphoid progenitors, and the two dendritic cell 
populations, as terminal states (Fig. 2b,c). The pseudo-time order-
ing identified by Palantir follows the expected progression from 
hematopoietic stem cells (HSCs) to differentiated cell types (Fig. 2c) 
and cells at the beginning of pseudo-time have the potential to reach 
any terminal state, with a gradual loss of plasticity as they commit 
toward a particular lineage (Fig. 2d,e).

To evaluate the trajectories, we computed the expression trends 
of key markers (Fig. 2f). As expected, CD34 shows a decreasing 
trend in all lineages as cells commit11, whereas lineage-specific fac-
tors such as CD79A, GATA1, and IRF8 are selectively upregulated 
in the lymphoid, erythroid, and dendritic cell lineages, respectively. 
MPO shows an initial upward trend across all lineages, which is 
subsequently maintained only in the monocyte lineage (Fig. 2f). 
Finally, CD41 expression is consistent with its role as a marker of 
early erythroid and megakaryocytic precursors, exhibiting contin-
ued upregulation in the megakaryocytic lineages21.

We next evaluated Palantir’s robustness and reproducibility. Our 
experiments demonstrate that both pseudo-time and DP are robust 
to a wide range of parameters, including the number of neighbors for 
graph construction, number of diffusion components, and different 
sampling of waypoints and subsampling of cells (see Supplementary 
Figs. 5-8 and Methods). Pseudo-time and DP are highly correlated 
between independent applications of Palantir to datasets from dif-
ferent bone marrow donors (Supplementary Figs. 9-11), and gene 
expression trends are also reproducible across the biological rep-
licates (Supplementary Fig. 11). These findings collectively show 
that Palantir results are reproducible and suggest that they correctly 
characterize gene expression dynamics in early hematopoiesis.
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A hierarchical, continuous model of hematopoietic fate choice. 
A number of single-cell studies4,6 have hypothesized that hema-
topoietic decision-making is a continuous process, but that it 
lacks hierarchy. However, these studies were based on sorted 
populations and might have missed intermediate cell stages; 
more importantly, the relative proportions of different cell types 
were not retained. On the other hand, lineage-tracing studies of 
murine hematopoiesis22 support a hierarchical developmental 

model with step-wise losses in potential as stem cells differentiate 
into specific cell types.

By comparing the change in DP across lineages, we can use Palantir 
to query human hematopoiesis, where genetic perturbation studies 
are impossible. DP decreases along any given lineage, as cells lose 
their ability to commit to other lineages (Supplementary Fig. 12a-d). 
Tracking branch probabilities and DP along pseudo-time enables us 
to determine when and in what manner these probabilities change for 
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Fig. 1 | Palantir characterizes cell fate choices in a continuous model of differentiation. a, Top: Projection of CD34+ human bone marrow cells along 
diffusion components. Bottom: Expression of gene pairs involved in lineage decisions for cells in the corresponding top panel. Cells colored by Phenograph 
cluster (Supplementary Fig. 4a); arrows highlight continuity in cell fate choices as a pervasive lack of well-defined branch points in decision-making 
regions. Plots show comparison of 3,170, 4,224, and 3,510 cells, respectively. b–d, Palantir phenotypic manifold for a subsampled dataset of CD34+ human 
hematopoiesis. Each dot represents a cell embedded into diffusion space based on the first three components and visualized using tSNE. b, Cartoon 
of Markov chain construction over the manifold. Cells colored by pseudo-time. c, Cells colored by the stationary distribution of the Markov chain in b, 
demonstrating outliers (yellow) in the mature states. Outliers that are also boundary states (circles) are selected as terminal states. d, Cells colored 
by differentiation potential (DP). Highlighted examples (circles) show relationship between pseudo-time, DP, and branch probabilities (histogram with 
bars colored by terminal state or branch, Br). High DP (1) decreases gradually as cells move toward commitment (2 and 3). Modeling cell fate choices as 
probabilities provides a representation of their continuity (4–7). e, Expression of a branch A-specific gene along pseudo-time. Left: Each dot represents a 
cell colored by its probability of reaching terminus A. Black line, gene expression trend for this data. Right. Expression trends for the three lineages. The 
unified framework of pseudo-time and branch probabilities enables gene expression dynamics to be characterized across a common axis. DC, dendritic 
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each terminal fate. Our results suggest continuity in early hematopoi-
etic lineage commitment: DP remains consistently high throughout 
early hematopoiesis, with gradual losses as cells differentiate toward 
specific lineages (Fig. 3a and Supplementary Fig. 12e).

Importantly, we note that the rate of change in DP varies greatly 
along pseudo-time and across lineages (Fig. 3a and Supplementary 
Fig. 12e; see also Methods). If lineage commitment was non-hier-
archical, we would expect DP for different lineages to simultane-
ously drop downward at a particular point along pseudo-time. 
Instead, we observe a sequential commitment to the lymphoid, ery-
throid/megakaryocytic, and, finally, myeloid lineages (Fig. 3a and 
Supplementary Fig. 12e), supporting a hierarchical mode of lineage 
commitment. These results suggest that differentiation in early 
human hematopoiesis is hierarchical.

DP identifies hematopoietic differentiation landmarks. DP rep-
resents a quantitative measure of a cell’s potential to differentiate 

into different lineages and can detect when cell fate specification 
changes. We observe points along pseudo-time where substan-
tial changes in DP occur and posit that these changes reflect key 
molecular and cellular events driving differentiation. Most of these 
changes coincide with commitment to different lineages (Fig. 3a 
and Supplementary Fig. 12), except for a substantial decrease in DP 
in early differentiation (Fig. 3a, early cells) not associated with com-
mitment toward any specific lineage.

To gain insight into this drop in DP, we characterized gene expres-
sion trends in the vicinity of this event. We clustered genes along 
pseudo-time, assuming that genes involved in coherent biological 
processes share similar expression dynamics, and used gene ontol-
ogy enrichment to annotate the resulting clusters (Supplementary 
Note 3). The strongest trends involved upregulation of aerobic 
and mitochondrial respiration, and downregulation of hypoxic 
genes (Fig. 3b, Supplementary Fig. 13b). These data suggest that a 
decrease in DP at the earliest stages of hematopoiesis corresponds 
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Fig. 2 | Differentiation landscape of early human hematopoiesis. Data shown for CD34+ human bone marrow cells, replicate 1. a, MAGIC51-imputed 
expression of genes (rows) differentially expressed between PhenoGraph13 clusters (based on MAST52). Cells (columns) are ordered by cluster; top row 
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with a change in metabolic state, occurring before cells begin to 
commit toward lineages (Fig. 3b).

Studies have shown that HSC differentiation requires an exit 
from the slow-cycling, quiescent long-term HSC state to a metaboli-
cally active short-term HSC state, a process known as the metabolic 
switch23. The range of cell types into which a cell can differentiate 
is thought to remain unaltered during this transition. Consistent 
with these studies, we show that the change in DP correlates with 

the metabolic switch reproducibly and independently in each of 
the three replicate samples (Fig. 3b and Supplementary Fig. 14). DP 
change is also correlated with expression dynamics of THY1(CD90), 
a well-characterized marker of transition between long-term HSCs 
and short-term HSCs (Supplementary Fig. 13c)24. Moreover, change 
in DP is also accompanied by increased expression of early myeloid-
erythroid-lymphoid genes compared with HSC genes (Fig. 3b and 
Supplementary Fig. 14). These results demonstrate that DP, as 
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computed by Palantir strictly from the data, can identify key dif-
ferentiation events such as metabolic switch even when these are 
unrelated to specific cell fate choices.

DP during erythroid commitment. We next characterized DP 
changes during lineage commitment using erythropoiesis as a case 
study. Erythrocytes are derived from megakaryocyte-erythroid 
precursor cells25. On erythroid commitment, we observe a sharp 
decrease in DP (Fig. 3a). To identify processes concordant with 
this decrease, we repeated the pseudo-temporal trend-based gene 
set analysis as before (Supplementary Fig. 13d). Gene expression 
trends in cells undergoing erythroid lineage commitment (increas-
ing branch probability toward erythroid fate) are associated with 
continued upregulation of early erythroid genes and a downregu-
lation of early myeloid genes (Fig. 3c). As expected for maturing 
red blood cells, decrease in DP also coincides with upregulation of 
heme metabolism and oxygen response genes (Fig. 3c).

We reasoned that the transcription factors most closely cor-
related with erythroid branch probabilities are likely to be key 
regulators of erythroid commitment. Hence, we systematically 
correlated all transcription factors with erythroid branch prob-
ability and found the most correlated transcription factors to be 
TAL1, KLF1, and GATA1 (Pearson correlation > 0.99) (Fig. 3d and 
Supplementary Fig. 13e (Cluster 0)). Each has been shown to play a 
central role in erythropoiesis: TAL1 enhances erythroid potential26; 
KLF1 regulates early erythroid precursor genes and suppresses 
the megakaryocyte lineage27; and loss of GATA1 leads to complete 
loss of erythropoiesis28. Thus, we find remarkable correspondence 
between erythroid branch probability, computed based on all genes 

with no previous knowledge, and expression trends of known key 
regulators of erythropoiesis.

The high-resolution ordering of Palantir allows us to character-
ize the order and timing of events during erythropoiesis. We find 
that upregulation of KLF1 is followed by upregulation of KLF3, a 
known target of KLF1 that stabilizes the erythroid program (Fig. 
3d and Supplementary Fig. 13e (Cluster 6))29, and that globin genes 
such as HBB are upregulated in the final wave, conferring functional 
identity to red blood cells (Fig. 3d and Supplementary Fig. 13e 
(Cluster 8)). These results strongly suggest that erythroid specifica-
tion occurs in stages of coordinated gene upregulation.

Transcriptional regulation of erythroid commitment. Given the 
strong correspondence between key erythroid transcription factor 
expression and erythroid branch probability, we next sought to use 
Palantir to identify factors that influence lineage fate choices. We 
reasoned that such transcription factors should be expressed before 
the lineage decision, should be upregulated during early specifica-
tion and correlate with increasing lineage probability, and should 
also be downregulated in alternate lineages.

Upon a systematic evaluation of all transcription factors 
expressed in the erythroid lineage (Supplementary Note 4), we 
identified GATA2, LYL1, and MXD4 as best satisfying our criteria of 
high expression in precursor cells and strong correlation with ery-
throid commitment (Supplementary Fig. 15a,b). GATA2 shows the 
highest expression and correlation (Supplementary Fig. 15b). The 
interplay between GATA1, GATA2, and PU.1 (SPI1) has been pro-
posed to drive the myeloid-versus-erythroid lineage decision30, with 
mutual antagonization between PU.1 and GATA1 driving myeloid 
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and erythroid lineage commitments respectively30,31. More recently, 
GATA2 rather than GATA1 has been proposed to be the agonist 
of PU.132,33, consistent with Palantir identification of GATA2 as a 
potential driver of erythroid commitment.

Previous studies have shown that expression ratios between com-
peting transcription factor pairs can be critical determinants of lin-
eage specification31,34. While average GATA2 levels remain relatively 
constant during early hematopoiesis (Supplementary Fig. 15c), we 
observe that a decrease in the ratio of PU.1 to GATA2 precedes the 
drop in DP (Supplementary Fig. 15d), suggesting that gene expres-
sion programs conferring erythroid fate are initiated as the balance 

of expression tilts toward GATA2 dominance. Indeed, the ratio of 
PU.1 to GATA2 is correlated with DP change along the erythroid 
lineage (Fig. 4c).

To explore this further, we characterized the behavior of PU.1 and 
GATA2 target genes along the erythroid lineage. Measuring the con-
cordant behavior of multiple target genes not only mitigates individ-
ual gene measurement noise, but also provides a functional readout 
of transcription factor activity. We leveraged published bulk ATAC-
seq data10 from sorted erythroid and GMP cells for GATA2 and PU.1 
targets, respectively, to determine transcription factor activities at the 
single-cell level (Fig. 4b, Supplementary Fig. 15e, and Supplementary 
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Note 5). In line with the expression ratios, the change in PU.1 and 
GATA activity difference precedes the change in DP (Supplementary 
Fig. 15d) and is also strongly correlated with the decrease in DP 
along the erythroid lineage (Fig. 4c and Supplementary Fig. 15f-g). 
Together, these results provide in vivo evidence that GATA2, rather 
than GATA1, functions as a mutual agonist of PU.1 to achieve ery-
throid specification during human hematopoiesis.

Analysis of mouse hematopoiesis and colon differentiation. 
Palantir is ideally suited for our CD34+ human hematopoiesis data-
set, which is heavily enriched for multipotent precursors and pro-
vides sufficient early cells for fine resolution mapping of lineage fate 
decisions. To test Palantir on more challenging data with a paucity 
of early cells and potential bias induced by cell sorting, we selected 
a mouse hematopoiesis dataset that profiled Lin−c-Kit+Sca-1+ 
cells using MARS-seq2 (ref. 6). This study sorted cells for differ-
ent myeloid and erythroid precursor populations, but excluded the 
most multipotent stem cells, creating a challenge to correctly resolve 
branch probabilities.

Even with a paucity of early cells (Fig. 5a), Palantir was able to 
correctly identify terminal states and estimate pseudo-time and DP 
characterizing mouse hematopoiesis (Fig. 5b,c and Supplementary 
Fig. 16a; see also Methods). The small number of multipotent cells 
does appear to affect accuracy and resolution in early hematopoi-
esis, as the peak DP is not located at the start of the pseudo-time 
ordering (Fig. 5d). Despite these limitations, we observe a clear 
hierarchical structure in lineage specification, consistent with 
recent lineage-tracing experiments22. The hierarchical structure is 
similar to human hematopoiesis, with commitment to erythroid 
lineage followed by specification of the different myeloid lineages 
(Fig. 5d). In further support of the Palantir model, the expression 
of key erythroid and myeloid genes Mpo and Klf1 is consistent with 
their roles in their respective lineages (Fig. 5e)27 and their patterns 
in human hematopoiesis (Figs. 2f and 3d).

To test whether Palantir generalizes beyond hematopoietic data-
sets, we applied it to a mouse colon differentiation dataset gener-
ated using the InDrop platform35. Lgr5+ stem cells were shown to 
differentiate to colonocytes, tuft cells, goblet cells, and Reg4+ gob-
let cells (Fig. 5f). Palantir automatically identified the two goblet 
populations and colonocytes as terminal states but failed to identify 
tuft cells as a terminal state since this population is not completely 
mature and is situated closer to Lgr5+ cells (Fig. 5f,g). By manu-
ally setting tuft cells as one of the terminal states, Palantir correctly 
identified the pseudo-time ordering, hierarchical relationships, and 
order of lineage commitment in mouse colon differentiation (Fig. 
5g-i and Supplementary Fig 16b)36. Palantir also recovers expected 
gene expression trends: Clca1 is specifically upregulated in goblet 
cells, Car1 first increases and then drops slightly in colonocytes, 
Muc2 shows strongest induction in Reg4+ goblet cells, and Lgr5 is 
downregulated across all lineages (Fig. 5j and Supplementary Fig. 
16c)35. Branch probability changes and expression trends along lin-
eages other than tuft were not substantially altered when tuft cells 
were not set as a terminal state (correlation: 0.98; Supplementary 
Fig. 16d), demonstrating that Palantir is robust to missing popula-
tions and mislabeled cells.

Comparison with trajectory inference algorithms. While signifi-
cant advances have been made for resolving the ordering of cells, 
state-of-the-art pseudo-time algorithms continue to model dif-
ferentiation as a series of discrete, deterministic bifurcations, pre-
dominantly approximated by clustering the data7,8. We compared 
Palantir with leading and widely used pseudo-time algorithms such 
as Monocle2 (ref. 17), Partition-Based Graph Abstraction (PAGA)7, 
Diffusion Pseudotime (DPT)3, Slingshot8, and FateID37.

We evaluated the algorithms based on their ability to identify 
lineages and recover known gene expression trends in human 

hematopoiesis, a well-studied system with scientific consensus 
on ground truth benchmarks (Supplementary Figs. 17–22 and 
Supplementary Note 6). In particular, we assessed their ability to iden-
tify low-frequency lineages such as megakaryocytes, cDCs, and pDCs 
and recover the expression trends of key genes such as CD34 (ref. 11),  
MPO (ref. 38), CD79B (ref. 39), GATA1 (ref. 28), CSF1R (ref. 40),  
and CD41 (ref. 21). We also compared the nature of the outputs gen-
erated and the amount of previous biological knowledge needed 
as input to each algorithm. Palantir requires the least amount of a 
priori biological information (start cell) and provides both pseudo-
time and cell fate probabilities as output (Supplementary Fig. 17a). 
However, PAGA is the only algorithm that allows a general topo-
logical structure.

Palantir outperforms the other algorithms (Supplementary 
Fig. 17b) by distinguishing the two dendritic cell populations, 
identifying megakaryocytic cells as separate from the erythroid 
lineage (Fig. 2e and Supplementary Fig. 6), and accurately recov-
ering the expression dynamics of key lineage genes (Fig. 2f; 
see also Supplementary Note 6 for details of the evaluations). 
Monocle 2 (ref. 17) and FateID37 (using RaceID clustering) fail to 
generate a coherent map of hematopoiesis (Supplementary Figs. 
18 and 21). PAGA41 and DPT3 identify the major lineages, but 
are unable to identify rarer lineages and lose resolution in gene 
expression trends (Supplementary Fig. 19). Slingshot8 identifies 
the major lineages but not rare populations, resulting in incorrect 
gene expression dynamics (Supplementary Fig. 20), and it does 
not provide a unified framework for comparing expression trends 
across lineages8. FateID37 using Palantir’s preprocessing and clus-
tering is still largely incorrect for most cell fate probabilities and, 
critically, includes all early cells in the lymphoid lineage, lead-
ing to mischaracterized expression dynamics (Supplementary 
Fig. 21). Finally, while individual diffusion components have 
been used to model differentiation trajectories15,42, in the CD34+ 
human bone marrow data they can only be used to infer order-
ing in lymphoid and monocyte lineages (Supplementary Fig. 22). 
Notably, none of the algorithms discussed above explicitly model 
and quantify the plasticity and branch probabilities along the dif-
ferentiation landscape. Taken together, only Palantir could accu-
rately associate expression changes in key transcription factors 
with changes in commitment to the lineages these regulate.

Discussion
Unlike existing algorithms, Palantir generates a probabilistic 
model of cell fate choice as a continuous process. Palantir is robust 
to parameters, reproducible across replicates, and generalizes to 
diverse datasets. Palantir’s high-resolution mapping of cells along 
differentiation trajectories allowed us to characterize the order and 
timing of regulatory factors that drive lineage choices in hematopoi-
esis. Our findings clarified that DP drops gradually during the pro-
gression from stem to differentiated cells and is hierarchical, such 
that cells are predisposed sequentially toward lymphoid, erythroid, 
and finally myeloid lineages (potential drops gradually within  
each lineage).

The key to Palantir’s high resolution in pseudo-time is the use 
of multiple diffusion components and neighbor graphs to measure 
distances between cells in this embedded space (Supplementary 
Fig. 23a-c). This enables Markov chain construction, which is cen-
tral to both terminal state identification and modeling continuities 
in lineage choices. Palantir outperforms other pseudo-time algo-
rithms, which largely treat lineage choices as discrete bifurcations, 
in recovering biologically consistent gene expression trends and 
lineage relationships. Enrichment of stem and precursor cells from 
bone marrow was necessary to characterize lineage choices in early 
human hematopoiesis at high resolution. However, Palantir can 
robustly recover expression trends in datasets for which precursors 
are not enriched.
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We anticipate that Palantir will be a valuable discovery tool for 
many less-characterized systems, including those profiled by the 
Human Cell Atlas Project43. A key requisite is the presence of the 
full range of differentiating cells, made possible by the asynchro-
nous nature of differentiation in tissues such as bone marrow, 
colon, and olfactory epithelium8,18,35. We note that this is not a fea-
ture of embryogenesis, which is typically studied using time course 
experiments42,44. Time course data require explicit modeling of con-
nectivity between time points and corrections for confounding by 
batch effects.

The most important assumption made by pseudo-time algo-
rithms, including Palantir, is that differentiation is unidirectional 
and proceeds toward functionally mature cells. While this is reason-
able for healthy differentiation, the assumption is violated in systems 
such as tissue regeneration45 and cancer46. If cells dedifferentiate or 
trans-differentiate to earlier transcriptional states, scRNA-seq data 
alone will be insufficient to distinguish these populations and their 
differentiation paths. In vivo lineage-tracing technologies can pro-
vide ground truth for lineage relationships47,48 but require genetic 
modification, and hence are unsuitable to study cancer progression, 
metastasis, and healthy development in human tissues. As an alter-
native, mutations occur rapidly in most cancers and can provide a 
source of directionality and lineage information in human systems. 
Recent studies49 have demonstrated that somatic mutations occur 
at a rate that enables lineage tracing even in healthy human tissues. 
The ability to simultaneously profile the transcriptome and DNA50 
has great potential to elucidate disease initiation and progression by 
extending Palantir to incorporate lineage information to model cell 
fate decisions.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41587-019-0068-4.
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Methods
scRNA-seq of CD34+ human bone marrow cells. Cryopreserved bone marrow 
stem/progenitor CD34+ cells from healthy donors were purchased from AllCells, 
LLC. (catalog no. ABM022F) and stored in vapor phase nitrogen until use. Typical 
for scRNA-seq, a vial was removed from the storage and immediately thawed at 
37 °C in a water bath for 2–3 min. Next, vial content (1 ml) was transferred to a 50-
ml conical tube. To prevent osmotic lysis and ensure gradual loss of cryoprotectant, 
1 ml of warm medium (IMDM with 10% FBS supplement) was added dropwise, 
while gently shaking the tube. Then, the cell suspension was serially diluted 5 
times with 1:1 volume additions of complete growth medium with 2-min wait 
between additions. The final ~32-ml volume of cell suspension was pelleted at 
300g for 5 min. After removing supernatant, cells were washed twice in ice-cold 
1× PBS with 0.04% (wt/vol) BSA supplement to remove traces of medium. Cell 
concentration and viability were determined with a Countess II automatic cell 
counter employing the trypan blue staining method.

scRNA-seq was performed with 10X genomics system using Chromium 
Single Cell 3’ Library and Gel Bead Kit V2 (catalog no. 120234). Briefly, 8,700 
cells (viability 90–97%) were loaded per reaction, targeting recovery of 5,000 cells 
with 3.9% multiplet rate. After reverse transcription reaction emulsions were 
broken, barcoded complementary DNA was purified with DynaBeads, followed 
by 12 cycles of PCR amplification. The resulting amplified cDNA was sufficient 
to construct next-generation sequencing libraries, which were sequenced on an 
Illumina HiSeq 2500 system (HiSeq SBS V4 chemistry kit).

scRNA-seq data processing. Data preprocessing. Data derived from each replicate were 
processed independently. scRNA-seq data were preprocessed using the SEQC pipeline19 
using hg38 human genome and the default SEQC parameters for 10X to obtain the 
molecule count matrix. The SEQC pipeline aligns the reads to the genome, corrects 
barcode and unique molecular identifier (UMI) errors, resolves multi-mapping reads, 
and generates a molecule count matrix19. SEQC also performs a number of filtering 
steps: (1) Identification of true cells from cumulative distribution of molecule counts 
per barcode, (2) removal of apoptotic cells identified at cells with >20% of molecules 
derived from the mitochondria, and (3) removal of low-complexity cells identified as 
cells where the detected molecules are aligned to a small subset of genes19. In addition, 
cells with less than 1,000 molecules detected were filtered out. Finally, genes that were 
detected in at least ten cells were retained for downstream analysis. The retained cells 
have a median molecule count of ~3,200 and median gene count of ~1,800, indicating 
the high quality of the data (Supplementary Fig. 24).

The filtered count matrix was normalized by dividing the counts of each cell by 
the total molecule counts detected in that particular cell. The normalized matrix 
was multiplied by the median of total molecules across cells to avoid numerical 
issues53. Normalized data were log transformed with a pseudo-count of 0.1.

Cell cycle correction. Expression of cell cycle genes can confound the ordering of 
cells in a differentiation trajectory, and hence we applied f-scLVM54,55 to factor 
out the cell cycle effect across all cells. Normalized and log-transformed data were 
used as input to f-scLVM correction with default parameters. The following gene 
ontology annotations were used to annotate the cell cycle effect: GO:0000279 M 
phase, GO:0006260 DNA replication, GO:0007059 chromosome segregation, 
GO:0000087 M phase of mitotic cell cycle, and GO:0048285 organelle fission.

Following cell cycle correction, principal component analysis was performed 
keeping the top 300 components, and diffusion maps were computed using 
the principal components as input14. See Supplementary Note 1 for details on 
constructing the diffusion maps.

Annotation of cell types and filtering of mature populations. Gene expression 
profiles from sorted bulk hematopoietic populations were used to annotate the cell 
types19,20. Cell cycle corrected data were clustered with Phenograph13 using default 
parameters and the top 300 principal components as inputs. Cluster centroids were 
determined for each cluster and the expression of each gene was standardized. 
Bulk expression data were downloaded from the Dmap portal (http://portals.
broadinstitute.org/dmap/home) and expression of each cell type was standardized. 
For each cluster, average correlation across bulk replicates was computed for each 
cell type and the cell type with the highest correlation was used to annotate the 
cluster (Supplementary Fig. 4c). Note, the inferred cell types are used only for 
interpretation and not used by Palantir.

To limit the data to cell types undergoing differentiation in the bone marrow, 
clusters that were annotated as T cells and mature granulocytes were filtered out. 
T cells were filtered out because these migrate from the periphery and do not 
differentiate in the bone marrow. Mature granulocytes were filtered out since no 
coherent precursor population was identified in the data.

tSNE (t-distributed stochastic neighbor embedding) visualization. tSNE maps56 were 
generated using diffusion components scaled by the eigenvalues as inputs rather 
than principal components of the data and perplexity set to 150. The scaling of 
eigenvectors ensures less sensitivity to outliers in the data and is performed as follows:
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l
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This scaling is equivalent to estimating diffusion distances from 1, 2, … ∞ 
steps. See section ‘Measuring distances between cells using multi-scale distance’ 
under the Palantir algorithm description for details on scaling and its impact 
on the representation. The number of components was chosen based on the 
eigengap of the eigenvalue decomposition of the diffusion operator. The set of 
diffusion components is the same set used for running Palantir. Using diffusion 
components as inputs led to maps more representative of differentiation when 
compared with the maps generated on principal components or force-directed 
graphs (Supplementary Fig. 25). We found that force-directed graphs represent 
the distinct mature populations better and provide less resolution in the regions of 
manifold where lineage decisions are being made. An example of generating tSNE 
maps using diffusion components is available at http://nbviewer.jupyter.org/github/
dpeerlab/Palantir/blob/master/notebooks/Palantir_sample_notebook.ipynb

Differential expression of genes. Differentially expressed genes between clusters 
were determined using MAST52. MAST was run using default parameters with 
normalized counts (without log transform) as the input. Genes with FDR (false 
discovery rate)-corrected P value <1 × 10−2 and absolute log(fold change) > 1.25 
were considered significantly different.

Subsampled data used for figure generation. A dataset for Fig. 1 was generated 
using the human CD34+ hematopoiesis dataset by waypoint sampling of cells from 
erythroid and myeloid lineages (clusters 0, 1, 2, 3, 4, 6, 7, 8; Supplementary Fig. 4a). 
A tSNE map was generated as described in ‘scRNA-seq data preprocessing’ and the 
projection of stem cells was manually adjusted for cleaner visualization.

Application of Palantir to CD34+ cells. Palantir was applied to each replicate 
separately using 1,200 waypoints and 1 of the CD34+ cells as the start cell. The 
parameter k was set to 10% of the total number of cells in the data. The results, 
however, are stable to the choice of k (Supplementary Fig. 6). The number of diffusion 
components was chosen based on the eigengap of the eigenvector decomposition 
of the diffusion operator. The results are stable to the choice of number of diffusion 
components and the choice of waypoints (Supplementary Fig. 7).

Robustness of Palantir results to parameters. Palantir has the following 
parameters or variables: (1) k, number of neighbors for constructing the 
nearest-neighbor graph, (2) waypoint sampling (random waypoints selected), 
and (3) number of diffusion components, which by default is determined based 
on the eigengap. We systematically evaluated the robustness of Palantir using 
data from replicate 1 of the CD34+ bone marrow data (Supplementary  
Figs. 5-8). The same start cell was used across all runs. Palantir was run with 
different parameters and the robustness of the results was measured using the 
following criteria:

	(1)	 Pearson correlation of pseudo-time, DP, and branch probabilities for the dif-
ferent branches between a given pair of Palantir runs.

	(2)	 Pearson correlation of pseudo-time, DP, and branch probabilities for a subset 
of cells sampled from the middle of the differentiation process (Supplemen-
tary Fig. 4, Cluster 1). The lymphoid lineage was excluded from this analysis 
since cells of Cluster 1 have differentiated away from this lineage.

Robustness to waypoint sampling. Robustness to waypoint sampling was tested by 
fixing k and the number of diffusion components (Supplementary Fig. 5). The 
correlations of pseudo-time, DP, and branch probabilities for all branches, for all 
cells, are shown in Supplementary Fig. 5a,b. All of the correlations comparing 
between runs are >0.98. A subset of cells sampled from the middle of the 
differentiation process is shown in Supplementary Fig. 5c with the corresponding 
pseudo-time, DP, and branch probability correlations shown in Supplementary 
Fig. 5c,d. Pseudo-time ordering correlations are all >0.97. DP correlations range 
between 0.85 and 0.95, with 75% of correlations >0.9 (Supplementary Fig. 
5c). Branch probability correlations range between 0.85 and 0.95, with 90% of 
correlations >0.9 (Supplementary Fig. 5d).

Robustness to k, the number of neighbors for k-nearest neighbor graph construction. 
Robustness to k was tested by fixing the number of diffusion components, 
waypoints, and terminal states (Supplementary Fig. 6). The correlations of 
pseudo-time, DP, and branch probabilities for all branches for all cells are shown 
in Supplementary Fig. 6a, b. All of the correlations comparing between runs are 
>0.97. A subset of cells sampled from the middle of the differentiation process is 
shown in Supplementary Fig. 6c, with the corresponding pseudo-time, DP, and 
branch probability correlations shown in Supplementary Fig. 6c,d. Pseudo-time 
ordering correlations are all >0.97. DP correlations are all >0.9 (Supplementary 
Fig. 6c). Branch probability correlations are >0.94, except for pDC branch with 
k = 25 where the correlations are lower because of insufficient connectivity of the 
graph. (Supplementary Fig. 6d).

Robustness to number of diffusion components. Robustness to number of 
diffusion components was tested by using fixing k, waypoints, and terminal 
states (Supplementary Fig. 7). The correlations of pseudo-time, DP, and branch 
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probabilities for all branches for all cells are shown in Supplementary Fig. 7a,b. 
Pseudo-time ordering and DP correlations are all >0.96 (Supplementary Fig. 7a).  
Branch probability correlations are >0.94 (Supplementary Fig. 7b). A subset 
of cells sampled from the middle of the differentiation process is shown in 
Supplementary Fig. 7c, with the corresponding pseudo-time, DP, and branch 
probability correlations shown in Supplementary Fig. 7c,d. Pseudo-time ordering 
correlations are all >0.97. DP correlations range between 0.84 and 0.99, with 75% 
of correlations >0.9 (Supplementary Fig. 7c). Branch probability correlations are all 
>0.94 (Supplementary Fig. 7d).

Robustness to subsampling of cells. To test the robustness of Palantir to subsampling 
of the cells, cells from the different lineages were subsampled at different 
rates (25%, 50%, and 75%) from each of the following clusters individually 
(Supplementary Fig. 2): (1) 3, 6—monocytic, (2) 5—lymphoid, and (3) 2,  
8—erythroid lineage (Supplementary Fig. 8). The robustness was measured using 
Pearson correlation between pseudo-time, DP, and branch probabilities with and 
without subsampling (Supplementary Fig. 8). All correlations are >0.94.

Comparison of Palantir results across replicates. Palantir results, specifically pseudo-
time and DP, from one replicate are projected onto cells from a second replicate 
using mutually nearest neighbors (Supplementary Fig. 10). The projected results 
are then correlated with Palantir results derived de novo from the second replicate 
to measure reproducibility of Palantir results across the replicates.

Let N1 and N2 be the numbers of cells in replicates 1 and 2, respectively. As a 
first step, the count matrices of both replicates are combined to create a unified 
molecule count matrix using genes detected in both replicates. This matrix is 
normalized as described for scRNA-seq analysis in Data preprocessing and log 
transformed with a pseudo-count of 0.1, followed by PCA. Principal component 
space of the combined count matrix is used to determine the k-nearest replicate 
1 neighbors of replicate 2. This neighborhood graph can be represented by an 
adjacency matrix ∈ ×D RN N21 2 1, where Dij

21 is the distance between cell i of replicate 
2 and cell j of replicate 1 if i and j are neighbors. Similarly, let ∈ ×D RN N12 1 2 
represent the adjacency matrix of replicate 2 neighbors of replicate 1.

Mutually nearest neighbors between the two replicates are computed as below

= ⊙D DMNN (2)2 21 12T

where ∈ ×RMNN N N2 1 and ⊙ is the Hadamard product or element-wise 
multiplication operator. The distances of the MNN adjacency matrix are converted 
to an affinity matrix using equation (12) (Supplementary Note 1).
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Palantir results of replicate 1 are projected on to the cells of replicate 2 using the 
weights computed in equation (27) (Supplementary Note 1). The projected results 
are thus a weighted average of the mutually nearest neighbors of each cell.

Let τRep1 and τRep2 be the de novo psuedo-time ordering of replicates 1 and 2, 
respectively. The projected pseudo-time is computed as follows

τ τ= ×_ W (4)Rep2 projected Rep1

Pearson correlation between τRep2_projected and τRep2 gives a measure of reproducibility 
of Palantir pseudo-time. Similarly, the projected DP is computed as follows

= ×_E W E (5)Rep2 projected Rep1

Similar to the pseudo-time, Pearson correlation between ERep2_projected and ERep2 gives 
a measure of reproducibility of the DP.

Additional datasets. Mouse hematopoiesis dataset. The mouse hematopoiesis 
dataset6 was downloaded and preprocessed using the procedure outlined in 
Scanpy57 (https://github.com/theislab/paga/blob/master/blood/paul15/paul15.
ipynb). A cluster of cells annotated as dendritic cells was projected as a clear outlier 
along a diffusion component without a well-defined differentiation path (probably 
due to insufficient cell sampling) and therefore was excluded from the analysis. 
PCA was performed on the preprocessed data and components that explain 
85% of the variance were used for generating diffusion maps as described in The 
Palantir algorithm. The eigengap suggested use of 7 diffusion components, but 
13 components were used instead to ensure inclusion of all cell types. Note that 
the frequencies of some of the populations such as basophils are extremely low, 
necessitating the inclusion of additional components.

Palantir was run using one of the cells annotated as a megakaryocyte-erythroid 
precursor cell since these are the most primitive cells present in the data. Palantir 
automatically determined the different terminal states and determined pseudo-
time ordering, DP, and branch probabilities. DP trends and gene expression trends 
were generated as described in Supplementary Note 2.

Mouse colon data. Raw counts for the mouse colon dataset35 were downloaded 
from GEO (GSE102698). Cells with low molecule count (<1,000) and high 

mitochondrial molecule fraction (>0.2) were excluded from the analysis. Immune 
cells were also excluded since they are not relevant for differentiation. Data were 
normalized as described in ‘scRNA-seq data preprocessing’. Phenograph clustering 
of data revealed a cluster of cells with low molecule count distribution, which was 
excluded from the analysis. To maintain consistency with the analysis in  
the original publication, the data were not log transformed and were restricted  
to genes used by the authors. The gene list was downloaded from Flowrepository 
(FR-FCM-ZYAG).

As before, PCA was performed to reduce the data to 20 components 
(explaining 85% of the variance) and diffusion maps were computed using 
principal components as the input. Palantir was run using one of the Lgr5+ stem 
cells as the start. Palantir automatically identified colonocytes, goblet cells, and 
Reg4+ goblet cells as the terminal states but failed to identify tuft cells as one of the 
terminal states. Tuft cells are very similar in their expression profiles to the early 
cells and thus there was not sufficient variability for the small number of tuft cells 
to be projected onto a distinct diffusion component (note, we believe that greater 
cell numbers would have resolved this). The results in Fig. 5b were generated by 
manually setting tuft cells as one of the terminal states.

Performance of competing methods on the CD34+ marrow data. We undertook 
a systematic evaluation of the performance of Palantir in comparison with widely 
used trajectory inference algorithms such as Monocle2, DPT, PAGA (based on 
DPT), Slingshot, FateID, and Monocle 2.

We first compared the algorithms by evaluating their setup—the previous 
biology knowledge required as input and the diversity of outputs provided by each 
algorithm—using the following criteria:

	(1)	 Does the algorithm require the specification of start cell or start state?
	(2)	 Does the algorithm require the specification of number of branches or clus-

tering/segmentation of the data a priori?
	(3)	 Are the terminal states automatically determined by the algorithm?
	(4)	 Does the algorithm generate a unified pseudo-time ordering of cells that 

enables the comparison of gene expression patterns across different lineages?
	(5)	 Does the algorithm identify continuities in cell fate specification by determin-

ing branch probabilities, fate biases, or DP?
	(6)	 Does the algorithm generalize to topological structures beyond a tree 

topology?

Supplementary Fig. 17a summarizes the characteristics of the different 
algorithms according to the criteria outlined above:

	(1)	 All of the algorithms require the specification of a start cell or state to orient 
the pseudo-time ordering.

	(2)	 DPT, Slingshot, and FateID all require the specification of either the number 
of branches and/or predetermined clustering of the data, making them 
sensitive to the number of branches selected and the quality of the clustering, 
which is notoriously sensitive in the case of continuous differentiation data.

	(3)	 Palantir and Slingshot can automatically determine the terminal states. PAGA 
requires specification of the PAGA clusters that belong to a particular lineage. 
FateID and Monocle 2 require explicit specification of the terminal states. 
DPT requires the specification of number of branches.

	(4)	 Slingshot and FateID do not provide a unified pseudo-time ordering of  
cells and thus do not facilitate comparison of gene expression trends across 
lineages

	(5)	 Palantir and FateID both output a probability vector of cell fate choice conti-
nuities for each cell. Furthermore, Palantir also quantifies the DP of a cell by 
summarizing the cell fate choice branch probabilities.

	(6)	 PAGA is the only algorithm that determines the topological structure of the 
differentiation hierarchy without previous assumptions about the topology.

Thus, Palantir uses minimal a priori biological information to (1) automatically 
determine the different terminal states, (2) generate a unified pseudo-time 
ordering to compare gene expression trends across lineages, and (3) identify 
continuous branch probabilities and DP for each cell.

We next used the CD34+ human bone marrow data (replicate 1) as a 
benchmark to compare the results of the different algorithms. Due to the varied 
nature of the different outputs, we evaluated the ability of the algorithm to 
determine known and well-established features of human hematopoiesis, such as 
(1) identification of the different lineages represented in the data, with emphasis 
on less frequent populations such as megakaryocytes, cDCs, and pDCs, which 
are more subtle and challenging to infer, and (2) recovery of known expression 
trends of key genes across multiple lineages. We choose well-studied canonical 
genes across the different lineages, whose expression dynamics are known and can 
thus serve as ground truth. The following canonical genes, representing a broad 
spectrum of gene expression dynamics, were chosen for this evaluation:

	(1)	 CD34. Marker of stem and precursor cells and known to be downregulated 
with differentiation in all cells11.

	(2)	 MPO. Early marker for myeloid lineages with higher expression during 
monocyte lineage commitment38.

	(3)	 CD79B. Marker for lymphoid lineage commitment39.
	(4)	 GATA1. Marker for erythroid lineage commitment28.

Nature Biotechnology | www.nature.com/naturebiotechnology

https://github.com/theislab/paga/blob/master/blood/paul15/paul15.ipynb
https://github.com/theislab/paga/blob/master/blood/paul15/paul15.ipynb
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102698
http://flowrepository.org/id/FR-FCM-ZYAG
http://www.nature.com/naturebiotechnology


ArticlesNAtuRe BiotecHnology

	(5)	 CSF1R. Known to be upregulated in cDCs and downregulated in pDCs fol-
lowing an initial upregulation40.

	(6)	 CD41. Marker for megakaryocyte lineage commitment21.

Supplementary Fig. 17b shows the results of this comparison for the different 
algorithms. Palantir and DPT were able to identify the megakaryocyte lineages, 
whereas PAGA and Slingshot included these cells as part of the erythroid lineage. 
Palantir was the only algorithm able to recover the distinction between the two 
dendritic cell lineages. Comparing the expression trends, all algorithms except 
Monocle 2 recovered the downregulation of CD34 across all lineages. Palantir 
recovers the known gene expression trends across all lineages (Fig. 2). While 
PAGA, DPT, and Slingshot identify the trends in the larger lineages, PAGA (and 
DPT) suffers from a loss in resolution in gene expression trends and Slingshot does 
not provide a unified ordering of cells to compare gene expression trends across 
lineages. FateID with the default clustering using RaceID failed to identify any 
correct lineages and gene expression trends, whereas FateID with a preprocessing 
procedure and clustering followed in Palantir identifies correct expression trends 
in only the monocytic and lymphoid lineages. Monocle 2 could not recover the key 
hematopoietic lineages or expression trends from the CD34+ bone marrow data. 
See Supplementary Note 6 for a detailed description of the different algorithms and 
their performances.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
Palantir is available as a Python module at https://github.com/dpeerlab/Palantir/. 
A Jupyter notebook detailing the workflow including data preprocessing, running 
Palantir along with a demonstration of various plots, and visualizations is available 

at http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/
Palantir_sample_notebook.ipynb. The code and data for this article, along with an 
accompanying computational environment, are available and executable online as 
a Code Ocean capsule: https://doi.org/10.24433/CO.6f3a9d2b-82d6-45bd-a583-
5346a30e0c5d (ref. 58).

Data availability
Raw and processed data are available through the Human Cell Atlas data portal 
at https://data.humancellatlas.org/explore/projects/091cf39b-01bc-42e5-9437-
f419a66c8a45.
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