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Multi-cellular organisms develop from a single cell that undergoes 
many stages of proliferation and differentiation, resulting in a vast 
array of progenitor and terminal cell types. Although many of the key 
stages and cell populations in these processes have been characterized 
using fluorescence-activated cell sorting and genetic perturbations, 
much of development remains uncharted. Emerging high-throughput 
technologies such as single-cell RNA-Seq1 and mass cytometry2 can 
measure a large number of parameters simultaneously in single cells 
and interrogate an entire tissue without perturbation. As many tissues 
maintain homeostasis through continuous and asynchronous devel-
opment, this presents an opportunity to measure cells at almost all 
stages of maturity at high resolution. The challenge is to devise com-
putational algorithms capable of exploiting this resolution to order 
cells based on their maturity and to identify the branch points that 
give rise to the full complement of functionally distinct cells.

Recently, several reports have demonstrated approaches to order 
single cells based on their maturity3,4. However, these approaches 
assume non-branching trajectories and thus are poorly suited to 
model multiple cell fates. Key challenges to constructing branching 
trajectories are ordering cells on the basis of their developmental 
maturity, identifying the branch point, and associating the cells with 
their respective branches. Methods such as SCUBA5 can identify 
branches in data, along with pseudo-temporal ordering of cells, but 
with considerable loss in temporal resolution and accuracy.

Here we present Wishbone, a trajectory-detection algorithm for bifur-
cating systems. We use mass cytometry data measuring T-cell develop-
ment in mouse thymus, where lymphoid progenitors differentiate  
to either CD8+ cytotoxic or CD4+ helper T cells, to demonstrate the 

accuracy and robustness of Wishbone. The Wishbone algorithm 
recovers the known stages in T-cell development with high accuracy 
and developmental resolution. We order double negative (DN) 1–4, 
double positive (DP), CD4+ and CD8+ cells from a single snapshot 
along a unified bifurcating trajectory. We show that Wishbone de novo 
recovers the known stages in T-cell development with increased accu-
racy and resolution compared with competing methods. The resulting 
trajectory and branches match the prevailing model of T-cell differ-
entiation with the full complement of cell types.

We determine that a substantial part of heterogeneity in expression of 
developmental markers is explained by developmental maturity, rather 
than stochasticity in expression. Additionally, we apply Wishbone to 
early and late human myeloid differentiation data generated using 
mass cytometry2 and mouse myeloid differentiation data generated 
using single-cell RNA-Seq6. Wishbone successfully identifies matu-
ration and branch points in myeloid development de novo, demon-
strating its broad applicability to systems with bifurcating trajectories  
across diverse single-cell technologies.

RESULT
Learning bifurcating developmental trajectories
To infer a branching trajectory directly from data, Wishbone makes 
the following assumptions about the data: (i) differentiation is a 
continuous process, (ii) a snapshot of primary tissue represents the 
entire differentiation process, and (iii) the trajectory of a cell bifur-
cates to one of two fates. Differentiation is punctuated by the rise 
and fall of phenotypic markers, and thus standard distance metrics 
such as Euclidean metrics do not adequately capture the difference in 
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maturity between two cells (Fig. 1a). Similarly to our previous non-
branching trajectory detection algorithm, Wanderlust3, we use nearest- 
neighbor graphs to capture developmental distance and identify 
an initial ordering of cells using shortest paths (Online Methods). 
Each node in the graph represents a cell, and edges connect each 
cell to its most similar cells based on expression (Fig. 1a). Distances 
between cells can be computed using shortest paths, that is, a series 
of short steps through the neighbors in the graph, where each 
step between closely related cells is likely to represent similarity  
in degree of maturity.

Wishbone uses shortest paths from an input ‘early cell’ to build an 
initial ordering of cells, which is subsequently refined using a selected 
set of cells, called waypoints. Finally, the inconsistencies in distances 
between waypoints are used to identify the branch point and branch 
associations for all cells. The quality of the nearest-neighbor graph 
is critical for accurate ordering, and the major source of noise is the 
presence of “short-circuits” —spurious edges between cells that are 
farther apart in maturity3. Notably, a single short-circuit is sufficient 
to route all shortest paths between developmentally distant cells 
leading to incorrect ordering. Short-circuits are particularly preva-
lent in branching data sets, as cells following the bifurcation point 
might not be sufficiently distinct in their phenotypic characteristics 
(Supplementary Fig. 1). Wishbone overcomes these short-circuits by 
reconstructing the graph in projected space of reduced dimensions 
generated using diffusion maps7 (Online Methods). Diffusion maps 
consider all possible paths between any pair of cells to dramatically 
reduce short-circuits. Wishbone uses the top diffusion components 

to construct the graph, capturing the major geometric structures 
in the data, while removing small fluctuations likely resulting from  
measurement noise.

The algorithm uses a select set of cells, called waypoints, to act as 
guides at different regions of the graph. Waypoints are randomly sam-
pled cells, selected to represent regions along the entire trajectory and its 
branches (Online Methods). Each waypoint contributes a perspective, 
based on its computed distance to all other cells (Fig. 1b). The place-
ment of a cell in the trajectory is determined by averaging the perspec-
tives of all waypoints, with closer waypoints getting a higher weighting. 
Thus closer, more reliable waypoints predominantly determine a cell’s 
position, while retaining a degree of influence of the distal waypoints to 
derive a consistent global structure (Fig. 1b, bottom right panel).

Waypoints are also the key to identifying branch points. If two 
waypoints i and t are along the same trajectory, the difference between 
the shortest path from the early cell to t and a path that goes through 
i is close to zero (Fig. 1c, left panel). On the other hand, if the two 
waypoints are on different branches, this difference is substantially  
greater than zero (Fig. 1c, middle panel). In the presence of a true 
branch, the disagreements between waypoints of the two branches 
accumulate to create two sets of waypoints that agree within each set 
and disagree between sets. These disagreements create a structured 
matrix (Fig. 1c, right panel): waypoints on the trunk have low dis-
agreements with all waypoints, waypoints on one branch agree with 
other waypoints on the same branch and have high disagreements 
with all waypoints on the different branch (Online Methods). This 
structure can be identified with clustering approaches.
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Figure 1 Alignment of cells along bifurcating 
trajectories. (a) Wishbone aims to achieve  
high-resolution ordering and branching of  
cells along bifurcating developmental 
trajectories. The data are represented as  
a k-nearest-neighbor graph where each cell  
is a node and edges connect each cell to its 
most phenotypically similar cells. kNN graph 
(right); data are simulated. (b) Wishbone  
uses a set of cells called “waypoints” to guide 
the ordering of cells. An initial ordering is 
derived using the shortest-path distances  
from the input early cell (top left panel).  
The distances from waypoints are aligned to  
the initial ordering to derive waypoint 
perspectives and the refined trajectory is 
determined as a weighted average of these 
perspectives (bottom right panel). The contour 
lines illustrate bands of cells that are at a 
similar distance from the corresponding 
waypoint. (c) Waypoints are also used for  
branch point identification and branch 
associations. The difference between the 
shortest path of waypoint t from early cell  
and a path that goes through another  
waypoint i is ≈ 0 if i and t are on the same 
trajectory (left) and  0 if they are on different 
branches (middle panel). These disagreements 
accumulate in the presence of a true branch 
to create a mutual disagreement matrix Q: 
observed are two sets of waypoints that  
agree within the set and disagree between  
sets (right). (d) The second Eigen vector of  
the Q matrix provides a summary of the 
disagreements with values ≈ 0 for waypoints  
on the trunk, > 0 for waypoints on one branch, 
and < 0 for waypoints on the other branch. The branch point and branch associations are used to further refine the trajectory. The resulting trajectory 
and branches are used to study marker dynamics along differentiation.
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Specifically, from spectral clustering techniques, the second Eigen 
vector of this matrix summarizes all the disagreements for a given 
waypoint and provides a quantitative measure of branch association 
for the waypoints (Fig. 1d, left panel, Online Methods). The extent 
of deviation from zero is a function of the maturity of the cell cre-
ating a Wishbone-like structure and giving the algorithm its name  
(Fig. 1d, left panel). Wishbone recovers the ordering of cells along 
their developmental trajectory, finds the branch point, and assigns 
cells following this point to one of the two branches (Fig. 1d).

Analysis of mouse thymus mass cytometry data set
During T-cell development in the mouse thymus, CD4+ helper T cells  
and CD8+ cytotoxic T cells bifurcate from lymphoid progenitors  
(Fig. 2a)8,9. We applied Wishbone to mass cytometry data from mouse 
thymus, with surface markers and transcription factors chosen based 
on their broad functionality in T-cell development (Supplementary 

Table 1 and Online Methods). We collected data for five inde-
pendent thymuses from Black6 mice; an average of 230k cells were  
collected per sample.

Wishbone was independently applied to each thymus, using only the 
surface markers for computing cell similarities (Supplementary Table 1)  
and defining the DN cell population as the starting point8. Marker 
trends along the resulting trajectory are depicted in Figure 2b (Online 
Methods). Wishbone accurately recovered the known stages in T-cell 
development (Fig. 2b and Supplementary Fig. 2), including the bifur-
cation into two single positive lineages (CD4+ and CD8+). Specifically, 
the trajectory begins at the DN stage (CD4−CD8−), transitions to the 
DP stage (CD4+CD8+) and finally branches to the two single positive 
(SP) populations8. We note that Wishbone correctly ordered the DN 
populations: DN2 (CD44+CD25+), DN3 (CD44−CD25+), and DN4 
(CD44−CD25−), even though these cells are rare and constitute <1% of 
the cells in the thymus. DN1 (CD44+CD25−) cells are extremely rare, 
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Figure 2 Wishbone robustly recovers  
hallmarks of T-cell differentiation.  
(a) T-cell development in the mouse  
thymus is characterized by progression  
of DN cells to two SP populations through  
different stages. (b) Marker trends for DN  
markers CD44 and CD25, and lineage  
markers CD4, CD8, and CD3 are consistent  
with known stages of T-cell differentiation.  
Cells were first binned along Wishbone  
trajectory and weighted averages were  
calculated for each bin to determine marker  
traces (see Online Methods for computational details).  
Following bifurcation, markers with different expression patterns in the two SP populations are shown in a dashed line for CD4 lineage and a dotted 
line for the CD8 lineage. (c) Bcl11b, Runx1, and Notch1 were not used for learning but the dynamics of these markers are consistent with their roles 
in specific developmental stages. (d) The variance of markers along the trajectory is tight, further highlighting the robustness of Wishbone results. 
(e) Derivative plot, showing the changes in expression of markers in successive bins, is used to time key events along the trajectory: (1) CD8+CD4− 
intermediate single positive stage in DN to DP transition, (2) upregulation of CD4 and CD8 establishing DP cells, (3) stable expression of lineage 
markers during DP, (4) downregulation of both CD4 and CD8 accompanied by coordinated upregulation of CD3, TCRβ, CD5, CD69, and CD27 during 
positive selection, (5) specific downregulation of CD8 alongside upregulation of CD4 indicating intermediate thymocytes, (6) lineage commitment to two 
SP population and finally (7) successful completion of negative selection identified by downregulation of CD69 and upregulation of CD62L, indicating 
successful maturation. The branch with the highest expression is shown for markers with different expression patterns in the two SP branches.
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and we do observe a signature resembling these cells at the beginning 
of the trajectory (Fig. 2b). To further test Wishbone’s accuracy, we 
evaluated the expression trends of markers not used while learning 
the trajectory: transcription factors Runx1 and Bcl11b, and signal 
molecule Notch1 (Fig. 2c). The abundance of all these markers is 
consistent with their known roles and timing in DN stages of T-cell 
development (Supplementary Note 1).

Additional evidence of Wishbone’s accuracy is the tightness of 
marker variation over the course of the trajectory (Fig. 2d). Not only 
do the median marker levels follow expected trends, but almost every 
single cell is correctly placed in the trajectory, as indicated by low 
variance of markers across most of the trajectory. The variance is low 
for markers irrespective of whether the marker was used for learning 
the trajectory (Fig. 2d and Supplementary Fig. 3), reinforcing the 
robustness of Wishbone results.

Previous studies characterizing thymic development have largely 
relied on genetic perturbations and subsequent cell sorting that invari-
ably eliminate specific developmental compartments. With 30 channels  
simultaneously measured, we could place DN, DP, CD4+, and CD8+ 
cells from a single thymus along a unified bifurcating trajectory and 
precisely order the course of multiple events along the trajectory 
measured directly from thymic tissue in an unbiased manner. We used 
derivative analysis to time key events along the trajectory (Fig. 2e)  
in a single frame of reference and found that Wishbone recovers a 
precise temporal ordering and branching of cells along with high 
resolution and accuracy using cells collected from a complex primary 
tissue (Supplementary Note 1 and Fig. 2b,e).

Wishbone results are consistent across replicates and are robust 
to parameter choices
To test robustness, we applied Wishbone to three independent 
mouse thymuses and recovered consistent trajectories and branching 
behavior across all replicates. We used cross correlation to align the 
expression of individual markers, providing a quantitative measure 
for consistency across replicates (Fig. 3a). We find that the dynamics 
of marker expression and order of events along the trajectories are 
consistent across the replicates (Supplementary Fig. 4).

We investigated the sensitivity of the trajectory and branching to 
the various free parameters: number of neighbors k for the graph con-
struction, number of waypoints nW, the sampling of waypoints from 
the cells, and number of diffusion components used. The ordering of 
cells and their branch points are remarkably robust to these different 
parameter choices across replicates (Supplementary Figs. 5 and 6, 
and Supplementary Note 2). Wishbone results are also largely robust 
to exclusion of individual markers used for learning (Supplementary 
Fig. 7). Moreover, the branches identified by Wishbone remained 
consistent irrespective of whether cells of DN or SP population are 
used as the input early cell (Supplementary Fig. 8).

Maturity controls for marker levels within individual cell types
We observe considerable heterogeneity in canonical surface markers. 
We hypothesized that at least part of this variation might be a result of 
developmental maturity, where cells from varied developmental stages 
are pooled into a single gated population. Using the fine temporal 
resolution of Wishbone’s trajectory, we compared the marker vari-
ance, conditioned on the developmental progression of the cells, to 
that observed in gated populations. To make this comparison, we first 
identified the two SP populations using the standard gating scheme 
on the expression of the two lineage markers: CD4 and CD8 (Fig. 
3b)8. We next compared the variance in these gated populations to the 
variance of the corresponding markers, conditioned on the Wishbone 
trajectory. In both SP populations, the variance of the lineage markers 
CD4 and CD8 and the co-receptor CD3, when controlled for maturity 
along the trajectory, is substantially lower compared to population 
variance in the gated populations (Supplementary Fig. 9a).

As an additional test, we ran Wishbone without using CD3 as one 
of the markers while learning the trajectory. The identified trajec-
tory and branches are similar to results obtained including CD3 and 
is accompanied with only a minor increase in variance of CD3 all 
along the trajectory (Fig. 3c). However, the variance of all receptor 
and coreceptor molecules, CD4, CD8, and CD3, continue to be sub-
stantially lower along the trajectory compared to variance in the gated 
populations (Fig. 3d). These results similarly hold when either of 
CD4 or CD8 are excluded from learning (Supplementary Fig. 9b,c). 
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Collectively, these results suggest that a substantial part of the het-
erogeneity of marker expression in gated populations are a result of 
comparing cells at different stages along their developmental maturity, 
rather than stochasticity in marker expression.

Transcription factor dynamics along SP trajectories
Next we set out to explore the dynamics of key transcription  
factors along the two SP trajectories, using a revised panel includ-
ing the transcription factors ThPOK, Gata3, and Runx3. ThPOK and 
Gata3 have been shown to be critical for the CD4 SP population10 
and Runx3 has been demonstrated to be key for CD8 SP commit-
ment10. The dynamics of these factors along the trajectory is shown 
in Figure 4a,b.

To place the dynamics of these transcription factors in context, we 
used CD69 and CD62L to identify landmarks of maturation such as 
lineage commitment and successful negative selection (Fig. 4c,d). 
Our results suggest that these factors follow distinct dynamic patterns 
in achieving commitment. ThPOK and Gata3 are upregulated during  
positive selection but Runx3 appears to be upregulated only follow-
ing the detected branch point (Fig. 4c,d, Supplementary Note 3  
and Supplementary Fig. 10). Gata3 has been shown to regulate 
ThPOK expression11 and might offer an explanation as to why 
ThPOK trails Gata3 in expression changes (Fig. 4c). The different 
dynamics can potentially be indicative of distinct regulatory mech-
anisms through which these factors achieve lineage commitment. 
Further experiments are necessary to elucidate these mechanisms.
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Figure 4 Transcription factors show  
distinct dynamics in SP populations.  
(a,b) Plots comparing the dynamics  
of CD4 lineage commitment factors  
ThPOK and Gata3 with dynamics  
of CD8 lineage commitment factor  
Runx3. (c,d) Derivative plots (left  
panels) and expression trends (right  
panels) of key markers in the two SP  
populations along the trajectory  
following positive selection (the highlighted region is indicated  
by a gray two-headed arrow in a,b), showing the distinct dynamics  
of lineage commitment factors. CD69 and CD62L were used to identify  
the landmarks of SP commitment and maturation: CD69hi and CD62Llow  
for successful commitment and CD69low and CD62Lhi for negative  
selection. (1) ThPOK and Gata3 are both upregulated during positive selection  
with ThPOK showing a slower upregulation (2). ThPOK shows a marginal  
upregulation specifically in the CD4 branch following commitment (3). ThPOK and Gata3 show a marginal downregulation in the CD4 branch during 
negative selection (c(4)). On the other hand, these factors are downregulated in the CD8 branch following commitment (d(4)). This downregulation 
is accompanied with a CD8-specific upregulation of Runx3 (5). (e) Cells were gated using the scheme defined in Supplementary Figure 11 and were 
expected to be placed in the following order, indicating CD4 maturity: DP CD69+, CD4+CD8int, CD4SP CD69+, CD4SP CD24int, and CD4SP CD24−. 
Instead cells of the three intermediate gates are placed all along the CD4 Wishbone trajectory. These cells were divided into “early” and “late” 
populations based on their position in the Wishbone trajectory. (f) The “early” cells in the CD4+CD8int gate show significantly higher expression of CD69 
and CD24 and lower expression of CD62L compared to “late” cells (P < 1 × 10−6, Kolmogorov-Smirnov test). This indicates that “late” cells are more 
mature than the “early” cells. (g) mRNA expression of CD69 and CD24 in ImmGen-sorted populations are correlated with mean expression in the gated 
populations, demonstrating that the discrepancy between Wishbone and gating is not data set-specific.
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We compared marker dynamics along the 
Wishbone trajectory to the dynamics derived 
from gating of developing SP cells12–14 
(Supplementary Fig. 11, Online Methods) 
and compared the ordering of cells within each 
population along the Wishbone trajectory.

We observe that cells within most gated 
populations are spread out along the trajec-
tory (Fig. 4e and Supplementary Fig. 12b), 
particularly cells of the CD4+CD8int (int for 
intermediate) population, where the lineage 
decision is thought to occur15. To address this 
discrepancy between Wishbone and gating, 
we divided the CD4+CD8int cells into “early” 
and “late” groups based on their positions in the Wishbone trajectory 
(Fig. 4e, Online Methods) and compared the expression of known 
maturation markers CD69, CD24, and CD62L in the two groups. The 
“early” cells show significantly higher expression of CD69 and CD24, 
and lower expression of CD62L compared to “late” cells (Fig. 4f;  
P < 1 × 10−6, Kolmogorov-Smirnov test) demonstrating that the  
cells in “early” and “late” are immature and mature, respectively. 
Similar results for additional gated populations in the CD4 and CD8 
branch (Supplementary Fig. 12) indicate that the conventional  
gating scheme leads to inclusion of cells at different stages of  
maturation in each gate. We conclude that Wishbone provides  
more reliable estimates of cell maturation and hence marker dynamics 
along SP maturation.

To understand the source of this discrepancy, we compared the 
mean gene expression of markers in Immunological Genome Project 
(ImmGen)-sorted populations16 to Wishbone marker dynamics and 
indeed mean protein expression in our gated populations and mean 
mRNA expression in ImmGen populations was correlated. Thus, the 
discrepancy between dynamics observed along the Wishbone tra-
jectory and gating is not a data set-specific observation (Fig. 4g). 
The mixing of developmentally distinct cells in each gate can lead to 
confounding effects on expression change patterns along maturation. 
Whereas CD24 showed a continuous decrease along the Wishbone 
trajectory, the expression was more variable in the gated and ImmGen 

populations (Fig. 4g, left panel). Sustained upregulation of CD69 fol-
lowing positive selection is not observed in gated populations as CD69 
itself is used for gating (Fig. 4g, right panel). Finally, Gata3 expression 
changes in gated populations do not show the dynamics observed in 
Wishbone (Fig. 4c (1, 5)) even though Gata3 was not used for gating  
(Supplementary Fig. 12g), further demonstrating the ability of 
Wishbone to recover marker dynamics at higher resolution.

Application of Wishbone to human myeloid development
We evaluated the performance of Wishbone on two human myeloid 
development data sets. We used previously published mass cytom-
etry data2 consisting of markers that are suitable to recover early and 
late Myeloid bifurcations17 but not amenable for fine-grained pro-
filing of transitional myeloid populations (Supplementary Fig. 13,  
Online Methods).

Wishbone was able to track the differentiation of monocytes 
(CD14+CD11b+CD11c+) and erythroid cells (CD235ab+) from 
hematopoietic stem and progenitor cells (HSPCs) (Fig. 5a and 
Supplementary Fig. 14a) and accurately recover the monocyte 
and erythroid branches (Fig. 5a). More over, expression of mark-
ers along the trajectory was consistent with known literature18  
(Supplementary Fig. 14c).

Wishbone accurately recovered the trajectory starting from  
HSPCs and the branching of the two-monocyte classes, classical  
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Figure 5 Generalization of Wishbone to 
branches in human and mouse myeloid 
development spanning mass cytometry and 
single-cell RNA-Seq. (a) Wishbone was applied 
to an early step in human myeloid development 
to track the differentiation of classical 
monocytes (CD14+CD11b+CD11c+) and 
erythrocytes (CD235ab+) from hematopoietic 
stem and progenitor cells (HSPCs). (See also 
Supplementary Fig. 14). tSNE maps showing 
each cell colored by the trajectory (left panel) 
and the branch associations (right panel). 
Wishbone accurately orders the cells with 
HSPCs at the start and the differentiated cells 
toward the end. The inferred branch associations 
are also consistent with the annotated cell types 
(Supplementary Fig. 14). (b) Same as in a, for 
tracking differentiation of classical monocytes 
and CD15+ monocytes, a late step in human 
myeloid development. (c,d) Wishbone was 
applied to single-cell RNA-Seq data from the 
hematopoietic precursors from the mouse  
and accurately recovered the trajectory and 
branches to track differentiation of myeloid  
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monocytes and CD16 monocytes (CD16+CD15+) (Fig. 5b). This  
is a harder problem as most of the markers showed identical  
distributions between the two populations except for the char-
acteristic markers, CD15 and CD16 (Supplementary Fig. 14d).  
The expression of markers along the trajectory was consistent  
with known literature (Supplementary Fig. 14e), with the detected 
bifurcation point coinciding with significant downregulation  
of CD38.

Extension of Wishbone to single-cell RNA-Seq data
Single-cell RNA-Seq technologies can profile thousands of single cells 
and enable genome-wide characterization of developing systems6,19. 
However, such data pose a challenge in that the behaviors of many 
genes are related not to developmental maturity but to processes such 
as cell cycle and stress. Thus, the success of trajectory and branch 
detection relies on removing unrelated factors and retaining those 
that track with differentiation.
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Figure 6 Wishbone outperformed competing methods in both ordering of cells and branch associations. (a) tSNE maps showing SCUBA results for a 
random sample of 20,000 mouse thymic cells (left and middle panels). SCUBA trajectory does not distinguish between the DN and DP stages. Although 
SCUBA recovers the SP branches, it suffers from a loss of resolution in the SP stage (right panel). (b) Plots showing Monocle results for a random sample 
of 1,000 mouse thymus cells. Monocle fails to correctly order the cells, and the branches do not correspond to the SP populations. (c) SCUBA accurately 
recovers the ordering of mouse myeloid cells and the marker dynamics are largely consistent with known biology. SCUBA, however, results in a large 
number of incoherent branches. (d) Monocle fails to accurately order the myeloid precursors correctly and also fails to detect a coherent HSPC branch. 
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We used recently published single-cell RNA-Seq data6 to select cells 
involved in differentiation of myeloid and erythroid progenitors from 
HSPCs (Fig. 5c and Supplementary Fig. 15a). We devised an exten-
sion of Wishbone, adapted to single-cell RNA-Seq, that uses diffusion 
maps to help focus on components related to development and matu-
ration. Diffusion maps capture the major structures and trends in the 
data, and in the case of mass cytometry, different diffusion components 
track the differences among constituent cell types (Supplementary 
Fig. 6a). We projected genes down onto each diffusion component, 
ranked genes based on how well their expression tracked along this 
component, and then used this ranking to perform gene set enrichment 
analysis (GSEA)20 (Online methods). Some diffusion components 
were enriched for immune-related functions (e.g., defense response, 
antigen processing, and phagocytosis), whereas other components 
were enriched for other biological processes (e.g., cell cycle, ribos-
ome biogenesis and metabolic processes) (Supplementary Fig. 15c,  
Online Methods). This provides a natural way to retain the components 
that are most relevant to the differentiation processes. With similar  
reasoning, Buettner et al.21 use latent variable models to remove the 
contribution of cell cycle in single-cell RNA-Seq.

We constructed Wishbone’s neighbor graph based on a projection 
of the data onto only the differentiation-related components, and once 
this graph was constructed we proceeded with Wishbone as described 
for mass cytometry. Wishbone accurately recovered the trajectory start-
ing from HSPCs and terminating at the two precursor cell types and the 
branch associations (Fig. 5c). The marker trends showed a consistent 
decrease of HSPC marker CD34 along the trajectory with an increase 
in expression of myeloid marker Mpo22 along the myeloid branch 
(Supplementary Fig. 15c). Consistent with known biology, Gata2 was 
upregulated before Gata1 along the erythroid lineage23 (Fig. 5d).

Wishbone outperformed competing methods in both trajectory 
and branch identification
We compared the performance of Wishbone to Diffusion maps7, 
SCUBA5, and Monocle24 (Fig. 6). Although we used diffusion maps 
to build the kNN graph, we tested whether diffusion maps on their 
own can recapitulate developmental trajectories25,26. Note that diffu-
sion maps did not explicitly provide bifurcations, and we could only 
evaluate their ability to recapitulate an accurate ordering. Diffusion 
maps correctly recovered the various known stages in T-cell develop-
ment (Supplementary Fig. 16b), especially in the early DN states, 
but suffered from a considerable lack of resolution in DP and SP 
populations (Supplementary Fig. 16a,b). Moreover, whereas diffu-
sion maps recovered the right order in the two myeloid data sets 
(Supplementary Fig. 16c,e), in the monocyte data set, diffusion maps 
ordered precursors after the mature cells (Supplementary Fig. 16d). 
Thus, although diffusion maps substantially reduced the noise in the 
data (Supplementary Fig. 1, Online Methods), the additional steps 
taken by Wishbone to refine ordering of cells are critical to derive 
robust, high-resolution trajectories.

Next, we compared Wishbone to SCUBA5. SCUBA has a large 
memory footprint and therefore could only be run by subsampling 
20,000 cells from the thymus data set. The SCUBA trajectory of the 
thymus did not order the stages correctly, and we observed the dif-
ferent DN cells interspersed among the DP cells (Fig. 6a). SCUBA 
did identify the two SP populations as the two branches, but with 
reduced resolution at the bifurcation point compared to Wishbone 
(Fig. 6a). Moreover, different random sample of cells led to largely 
inconsistent results (Supplementary Fig. 17a,c) in both trajectory 
and branching. SCUBA trajectory in the mass cytometry monocyte 
and the single-cell RNA-Seq myeloid data sets was consistent with 

known biology, but yielded a large number of incoherent branches 
(Fig. 6c and Supplementary Fig. 17d). Moreover, SCUBA failed to 
correctly recover the order and branching in the monocyte-erythroid 
data set (Supplementary Fig. 17e).

Finally, we compared Wishbone to Monocle24, which was specifi-
cally developed for application to single-cell RNA-Seq data. Monocle 
could not be run with more than 1,000 cells, and we therefore sub-
sampled 1,000 cells from each data set. Monocle did not recover the  
correct ordering in the thymus data with DN and DP cells interspersed 
(Fig. 6b). Although the trajectory does end at the two SP popula-
tions, the branching identified by Monocle did not correspond to any  
specific stages in T-cell development, and both the SP populations 
were identified to be part of the same branch (Fig. 6b). Repeated 
subsampling of the data resulted in largely inconsistent results with 
the two SP populations repeatedly assigned to the same branch 
(Supplementary Fig. 18a–c). Monocle also failed to recover the tra-
jectory and branches in the single-cell RNA-Seq myeloid data set with 
incorrect ordering of cells and lack of detection of a coherent branch 
(Fig. 6d). Monocle did recover ordering in the monocyte data set, but 
the branching results in all the myeloid data sets did not correspond to 
the correct mature cell populations (Supplementary Fig. 18d,e).

Thus, Wishbone outperformed competing methods in fine order-
ing of cells, identification of branch point and branch associations, 
and consistent robustness across replicates.

DISCUSSION
We have developed an algorithm that enables accurate and high- 
resolution ordering of cells along branched developmental trajec-
tories (Supplementary Fig. 19). We first demonstrated Wishbone 
on T-cell development in the mouse thymus, using the throughput 
of mass cytometry to collect ≥200,000 cells per sample. Wishbone 
constructed a bifurcating trajectory starting from DN stages through 
maturation of the two SP lineages, providing an order and timing of 
events that closely recapitulated previous studies of this system15. The 
high resolution of Wishbone enabled us to identify subtle but key 
dynamics of lineage markers such as detection of the rare CD8+CD4−  
intermediate SP cells during transition of DN to DP cells and the 
intermediate CD4+/CD8low state toward the end of DP.

The selection of a good marker set was key to the resolution we 
achieved. Marker choice can be guided by a combination of prior 
knowledge and preliminary screens. However, in the myeloid branches 
we demonstrated that even with a limited panel that included only 
a small number of distinguishing myeloid markers, Wishbone cor-
rectly ordered cells, identified the bifurcation, and associated cells 
to the proper branch. Although an explicit ground truth is not  
necessarily available, both SCUBA and Monocle failed to recover 
the expression trends and bifurcations that are consistent with 
known biology in these more challenging data sets. Wishbone only 
required a few canonical markers to properly identify bifurcation, and 
achieved increasingly finer resolution in transitional populations, as  
additional markers were included.

Single-cell RNA-Seq is an attractive alternative to mass cytometry 
as its unbiased, genome-wide nature provides measurements for 
thousands of genes and circumvents the need for a priori selection 
of a limited marker set. However, transcriptional changes unrelated 
to development can confound the analysis, and even data for devel-
opmentally related genes has substantial noise, including drop-out 
effects27. We used diffusion maps to consolidate the key biological 
trends and removed unrelated biological processes. We demonstrated 
that Wishbone substantially outperformed methods developed  
specifically for single-cell RNA-Seq data5.
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Even with the increasing throughput of single-cell RNA-Seq, cur-
rent data sets include thousands of cells, as compared to hundreds of 
thousands available in mass cytometry. As transitional populations 
have been shown to be as rare as 1/10,000 cells3, the throughput of 
mass cytometry is better suited to achieve finer temporal resolution. 
In our view, the two technologies are complementary. For example, 
single-cell RNA-Seq can be used for unbiased marker selection in 
less-studied developmental systems, and finer temporal resolution can 
then be achieved with mass cytometry using the identified panel.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Mouse thymus mass cytometry data have been 
deposited to Cytobank under accession 52942.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Mouse thymus data and mass cytometry. Female C57BL/6 mice were obtained 
from Harlan Laboratories. All mice were housed at the Weizmann Institute 
in compliance with national and international regulations. Thymocytes 
were isolated from the thymus of 6-week-old C57Bl mice. Cells were stained 
with metal-conjugated antibodies according to manufacturer’s protocol 
(Supplementary Table 1). Briefly, around 200k cells were stained with cell-
ID TM Cisplatin (Fluidigm) (5 min RT). Next cells were stained with surface 
antibodies (30 min RT), and fixed with 1.6% PFA (10 min RT). After permea-
bilization with 100% ice-cold Methanol (15 min, 4 °C), the cells were stained 
with intracellular antibodies (30 min, RT). Finally, the cells were labeled with 
Iridium DNA intercalator for DNA content and analyzed by CyTOF mass 
cytometry using CyTOF2. Data were normalized using bead normalized with 
bead standards1.

We collected data for five independent thymuses from Black6 mice using two 
different marker panels. The first predominantly contains cell surface markers 
and the second combines the most informative of these surface markers with 
known regulators of lineage commitment (Supplementary Table 1).

Data preprocessing and choice of parameters for Wishbone. Mass cytometry 
data channels were first arcsinh transformed with a cofactor of 5 (ref. 2). Cell 
doublets, barcodes, dead cells, and debris were removed from the data using 
the gating scheme shown in Supplementary Figure 20. Next, the cells were 
clustered using Phenograph28.

For the mouse thymus data set, the clusters corresponding to myeloid 
cells (expression of CD11b, CD11c), B cells (CD19), NK cells (CD161), regu-
latory T cells (CD25) and TCRγδ cells were filtered out from the analysis 
(Supplementary Fig. 21). The remaining clusters correspond to the DN, DP, 
and SP populations. Finally, for each thymus a start cell was sampled from the 
DN population, and the same start cell was used for all the analyses of that 
thymus. The results presented in the paper were generated using number of 
nearest neighbors k = 15 and number of waypoints nW = 250.

Human bone marrow mass cytometry data were downloaded from ref. 2.  
Doublets, cell debris and dead cells were removed as described above. 
Phenograph was used to identify the clusters of cells and all the lymphoid 
clusters were removed (Supplementary Fig. 13) and clusters for generating the 
data sets used in Figures 5 and 6 were identified by expression of characteristic 
markers (Supplementary Fig. 14a,d).

Overview of the Wishbone algorithm. Introduction. Differentiation is a com-
plex process involving multiple cell fate decision points. This process can be 
seen as hierarchical tree with the multipotent stem and progenitor cells at the 
root and the mature differentiated cell types at the bottom with various precur-
sor cells as intermediate cell types15,17,29. Emerging high- throughput tech-
nologies such as single cell RNA-Seq1,19,30 and mass cytometry2 are enabling 
generation of data with unprecedented resolution and require computational 
algorithms capable of exploiting this resolution. Wishbone uses multi-dimen-
sional single-cell data to align cells along bifurcating trajectories. Wishbone 
was developed to study systems where the developmental trajectory bifurcates 
to one of two cell fates (Fig. 1a).

There are two key challenges involved in studying trajectories with 
branches: (i) ordering of cells within the trunk and in each of the branches, 
(ii) identification of branch point and assignment of cells to either the trunk 
or one of the branches. Previous studies attempting to study differentiation 
have largely relied on sorted populations. While these have led to important 
advances, the dynamics of marker behavior along the maturation trajectory 
cannot be characterized without an accurate, high resolution ordering of 
cells, capable of characterizing the order and timing of key molecular events  
during development. The second challenge is to assign the cells to their  
respective branches. Given a right set of markers, it is relatively straightfor-
ward to classify the mature cells into the correct branches. However, there are 
many uncharacterized bifurcations where such markers are not well defined. 
Moreover, a precise identification of branch point is central to achieve a high 
resolution into bifurcating trajectories to understand the series of events 
leading up to and following cell fate decisions. Furthermore, cells can be 
thought of as being in a state of flux at the branch point necessitating a soft  
assignment of branches.

Wishbone addresses these challenges by taking a graph-based approach to 
measure distances between cells, similar to the approach used by Wanderlust3, 
our previously published algorithm for detecting non-branching trajectories. 
Wishbone first constructs a nearest-neighbor graph of cells and estimates dis-
tances between them using the shortest path algorithm. The greedy nature of 
shortest path algorithms makes them susceptible to short-circuits i.e., connec-
tions between developmentally distal cells. Wishbone overcomes this problem 
by use of diffusion maps7, a dimensionality reduction technique, to reduce 
noise and eliminate short-circuits. The initial ordering of cells as determined 
by shortest path distances from an input early cell are increasingly prone to 
noise as distance increases. Wishbone uses a series of cells called waypoints, 
sampled all along the entire trajectory to locally refine the ordering of cells 
and overcome this noise. Finally, the disagreements between waypoint’s and 
the early cell’s distances to other cells are used to detect the branch point 
and branch assignments. The ordering and branch assignments are iteratively 
repeated until convergence. These randomly sampled waypoints provide a 
sparse approximation for the entire data set. Randomly sampled subsets have 
previously been used to achieve more computationally efficient dimensional-
ity reduction31. A key distinction between Wishbone’s waypoints and other 
such sparse approximation schemes is that the waypoints are themselves the 
driving force underlying the algorithm. Thus, Wishbone recovers an accurate  
high-resolution ordering and branching of cells in bifurcating trajectories.

Wishbone makes the following assumptions about the data: (i) the matu-
ration process along differentiation is continuous, and (ii) the snapshot of 
primary tissue at any given point is representative of the entire differentia-
tion process with various intermediate populations represented, and (iii) the 
developmental trajectory bifurcates to one of only two cell fates.

Nearest-neighbor graph and shortest paths. Differentiation is character-
ized by a series of increases and decreases in expression of specific markers3. 
Furthermore, the rise and fall of the markers involved in development create 
nonlinear relations between the markers and their relation to maturity (Fig. 1)3.  
Therefore, distance metrics such as Euclidean distance fail to accurately cap-
ture the similarity between cells that are at distinct stages of development. 
As previously demonstrated3, nearest-neighbor graphs are a powerful alter-
native to capture developmental distances. Here, each cell is a node and is 
connected to its nearest neighbors, that is, the cells that are most similar in 
the phenotypic profiles. The underlying assumption being that for very short 
distances, marker similarity represents a similar developmental maturity.  
The edge weights are set to the similarity between the connected cells.

Given the graph, a path can be defined from one cell to another through a 
series of short steps represented by edges, since each of these edges represent 
a more confident developmental proximity. While there are many possible 
paths through the graph between any given pair of cells, an efficient choice is 
to take a path such that the total weight of edges is minimized. This minimal 
sum of weights is also referred to as the shortest path distance between two 
cells and can be used as a distance metric between cells3. Thus, the shortest 
path distances to all cells from the viewpoint of a cell early in development, 
denoted s, can be used as a starting point to build the trajectory.

Short-circuits and diffusion maps. Key to the success of the algorithm is 
construction of a good graph, where edges in the graph connect cells that are 
indeed close in their developmental progression. One of the problems affect-
ing the construction of a good graph is presence of short-circuits: spurious 
edges between cells that are farther apart in development but are identified 
as neighbors due to measurement noise. A single short-circuit is sufficient 
to route all the shortest paths between distant cells through this anomalous 
edge resulting in incorrect ordering of cells. Since short-circuits are relatively 
rare in non-branching trajectories, Wanderlust proposed the use of ensem-
ble of graphs where trajectories were determined by repeatedly sampling a  
subset of edges from the graph3.

Short-circuits, however, are considerably more prevalent in branching  
data sets, particularly close to the bifurcation point, as the markers that  
characterize the branches might not be sufficiently distinct in this region. 
Furthermore, depending on the extent of separation of the branch and noise 
in the characteristic markers, short-circuits might also be present all along the 
maturation trajectory. An illustrative example is shown in Supplementary 
Figure 22a. The ensemble of graph methods fails to sufficiently remove  
these short-circuits as it assumes the number of short-circuits to be significantly  
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fewer in number (Supplementary Fig. 22b: each panel was derived by  
sampling a subset of edges).

Wishbone therefore uses diffusion maps7 to remove short-circuits in the 
data and construct a graph that is more faithful to the developmental trajec-
tory. Diffusion maps are a nonlinear dimensionality reduction technique to 
derive a low-dimensional description of high dimensional data by exploiting 
local similarities7. Rather than rely solely on the shortest paths in the pheno-
typic marker space, diffusion maps generate a low-dimensional embedding 
by approximating all possible paths through the graph, avoiding the harmful 
effect of short-circuits. One can view diffusion maps as a nonlinear version of 
Principal Component Analysis (PCA). Often data are de-noised by projecting 
data onto the top principal components, assuming the smaller components 
represent noise32. Similarly, by projecting the data onto the top diffusion 
components, we capture the major structures in the graph and remove small 
fluctuations, providing a nonlinear data clean up step.

While diffusion maps often generate a first-order approximation of the 
developmental trajectory, the resulting resolution is not sufficiently fine as 
shown in Figure 6. Therefore, Wishbone constructs a nearest-neighbor graph 
in the embedded space to bring together advantages of graph-based methods 
for trajectory building and de-noising nature of diffusion maps. The graphs 
constructed in the embedded space tend to be free of most short-circuits 
(Supplementary Fig. 22c) and therefore shortest paths can be used for com-
puting distances between cells.

Graph construction and initial ordering of cells. Formally, given a data 
set with N cells and M markers, Wishbone starts by transforming the high- 
dimensional phenotypic data into low-dimensional data using diffusion maps. 
The embedding is computed by using the diffusion geometry code (http://
www.math.duke.edu/~mauro/diffusiongeometries.html) with default param-
eters. This embedded space is used to construct a k-nearest-neighbor graph  
(k - NNG), G, spanning all the cells. Each cell i is connected to its k nearest cells 
via Euclidean distance in the embedded space and edges connecting cells to their 
nearest neighbors are weighted by the Euclidean distance between them.

An early cell s, provided as user input, is then used to compute an initial 
alignment of cells by computing shortest path distances from s to all cells. The 
distance from s to any given cell i is calculated using Dijkstra’s algorithm: 

D Gsi e e
e

=
∈
∑

P P
min 1 2,

where P is a path between s and i, and Ge e1 2,  is the weight of edge e. Note that 
the graph is undirected and therefore Dis = Dsi.

The trajectory or ordering of cells is initialized to the shortest path distance 
from s i.e., ti isD( )0 =  . This initial ordering encapsulates this early cell’s per-
spective of the other cells’ progression, based on their computed shortest-path 
distance from s (Fig. 1b, top right panel).

Waypoints and perspectives. Shortest path distances are robust at short dis-
tances but become less reliable with increasing distance from the source cell. 
Supplementary Figure 23a shows the loss in reliability of shortest path dis-
tances. The additive nature of noise leads to accumulation of mistakes with dis-
tance and becomes the dominant factor with greater distances (Supplementary  
Fig. 23a and Fig. 1b).

Wishbone, like Wanderlust, overcomes this issue by sampling a series of 
cells throughout the trajectory termed “waypoints” to act as guides in order-
ing the cells33. The ordering of cells is then averaged across the waypoints 
with closer waypoints giving a bigger “vote.” This improves the robustness by 
taking advantage of reliability of shortest path distances over short distances. 
As described later, waypoints are also used for branch associations and due 
to the importance of waypoints for both the ordering of the cells and branch 
identification, a key difference between Wanderlust and Wishbone is how 
waypoints are selected and weighted.

A random sample of cells can potentially select outliers as waypoints. 
Wishbone therefore refines the choice of waypoints by using a median filter33. 
For each randomly selected waypoint, its k nearest neighbors are identified 
and the waypoint is replaced by the cell closest to the median profile generated 
using these neighbors. This refinement step has been shown to be effective 
in preventing the outlier cells from being chosen as waypoints for learning 
trajectories33.

(1)(1)

Next, shortest path distances are computed for each of the waypoints  
to obtain the distance matrix, D∈ ×rnW N  , where nW is the number of 
waypoints including the early cell s. Individually, the distances from each way-
point are still affected by the same issues of increasing noise with distance 
from the waypoint (Supplementary Fig. 23a). But collectively, each cell is 
close to a number of waypoints that can reliably estimate the ordering along 
developmental axis.

Waypoints are introduced to robustly order the cells by computing a 
weighted average but the distances from different waypoints in D are not 
aligned and therefore are not directly comparable (Supplementary Fig. 23a). 
Thus, Wishbone computes the positioning or ordering of cells from the per-
spective of each waypoint using the initial trajectory τ(0) as the reference. The 
perspective of a cell i with respect to waypoint w is the distance of i from the 
s from the viewpoint of w and is computed as 
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This ensures that cells beyond the waypoint in the initial ordering have a 
higher perspective than cells that lie before the waypoint (Supplementary 
Fig. 23b and Fig. 1b). Thus, the unaligned distance matrix D is converted  
to an aligned perspective matrix P∈ ×rnW N  where each entry represents  
the position of a cell along the trajectory from the viewpoint of the corre-
sponding waypoint yielding nW proposed orderings for each cell. Note that 
the perspective of the early cell s is the initial ordering τ(0) itself.

These perspectives can now be used to increase the accuracy of the ordering 
by computing a weighted average across the proposed orderings. The weight-
ing scheme should increase the vote for closer waypoints to take advantage 
of reliability of shortest paths over shorter distances. However, it is important 
to also include a degree of influence from the distal waypoints to derive a 
consistent global structure. This requirement is satisfied by weights that are 
inversely proportional to the distance from the waypoint. Thus, the weights are 
calculated by a Gaussian kernel applied to the distances, as defined by 

W D D
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∑exp exp

:
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1s s

where σ is the standard deviation of distance matrix D. The denomina-
tor is the summation of inverted distances over all cells and used for nor-
malization. This defines the weight matrix W ∈ ×rnW N . The weighted  
average is then calculated by 

ti wi wi
w Waypoint set

P W( ) *1 =
∈

∑

The vector τ(1) is the refined trajectory of all cells (Fig. 1b, bottom  
right panel).

Note that the W matrix is adjusted to ensure waypoints on one branch 
have reduced influence on ordering of cells in the other branch by a muting 
scheme described in the section “Refining the ordering using branch associa-
tion scores.”

Branch point identification. Inconsistencies between waypoints are used to 
identify a branch point and the branch associations of each cell. Consider a 
waypoint t and a second waypoint i, with t being further along the trajectory. 
If i and t lie along the same trajectory (either both lie in the trunk, or i lies 
on the trunk and t on of one of the branches, or i and t are both on the same 
branch), the path from s to t will lie roughly along the path used for calculating  
perspective of t relative to i (Fig. 1c, left panel). Therefore, the perspective 
relative to t will be in agreement with (i.e., be similar to) the perspective of 
early cell s. Now consider another waypoint j such that j and t lie on different 
branches. In this case, there will be a disagreement between the perspective of 
s and t regarding the placement of j. The path from s to t will be substantially 
shorter than the path to determine the perspective of t with respect to j (Fig. 1c,  
middle panel). That path first involves a traversal to j from s and another 
traversal back through j’s branch and then back out on t’s branch to reach t.  

(2)(2)

(3)(3)

(4)(4)
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Therefore, for any two waypoints, the mutual disagreement between the 
perspective of one waypoint relative to other and the early cell’s perspective 
provides a quantitative measure of whether the two waypoints lie on same or 
different branches.

Mutual disagreement between a single pair of waypoints alone does  
not suggest a branch point, as such a disagreement could be caused by noise 
accumulated during longer walks. However, when a true branch exists, there 
will be disagreement between a considerable number of waypoints (those on 
different branches), which will cue the existence of a branching. In the case 
of branching, a clear structure emerges, where two groups of branch points A 
and B all disagree between waypoints across A and B and agree with waypoints 
within the same branch.

To identify this structure, Wishbone computes disagreements for all  
pairs of waypoints to construct the matrix Q∈ ×rnW Wn , where 

Q Pij ij j= −| |( )t 0

In particular, Qij » 0 if the two waypoints, i and j, are on different branches 
and Qij ≈ 0 if one or both are on the trunk, or both are on the same branch. In 
summary, the distance matrix D is used to determine a perspective matrix P, 
which in turn is used to both refine the order and calculate the disagreement 
matrix Q used to determine branch associations as described below.

Figure 1c (right panel) shows an example of the Q matrix. This matrix 
captures similarities and differences between waypoints that belong to the 
same or different branch, respectively. In particular, in the case of a branching 
trajectory, Q is effectively composed of three blocks. The first block consists 
of the waypoints in the trunk with Qij ≈ 0 for trunk waypoint i and any other 
waypoint j. The remaining two blocks represent the two branches with Qij ≈ 0 
if i and j are on the same branch and Qij » 0 if they are on different branches. 
A natural way to identify these blocks or clusters is by use of unsupervised 
clustering methods.

Spectral clustering methods are a family of clustering algorithms designed 
to work on adjacency matrices representing graphs. Specifically, spectral meth-
ods are based on Eigen decomposition of the graph adjacency matrix and 
connections between the resulting Eigen vectors and properties of the graph 
structure. The Q matrix can itself be seen as an adjacency matrix with the disa-
greement representing the weight of the edge between waypoints and as such 
spectral clustering can be used to classify the waypoints into trunk and the 
two branches. For a real symmetric matrix, the second highest Eigen value, v2,  
approximates the optimal graph partition34. Specifically, if v2i is the projection 
of the node i onto the second Eigen vector, the graph partition divides the 
nodes into two clusters whose elements can be identified by the sign of v2i.

The Q matrix is real because all the perspectives and distances are real. It 
is also symmetric. Consider any two waypoints, i and j and assume i follows 
j without loss of generality. Then, Q P Dij ij j i ij j= − = + −| | | |( ) ( ) ( )t t t0 0 0  and 

Q P Dji Djiji ji i j i j i= − = − − = − − + +( ) =| | | | | | |( ) ( ) ( ) ( ) ( )t t t t t t0 0 0 0 0
ii jDij( ) ( ) |,0 0+ −t

since Dji = Dij. Therefore, Q matrix is symmetric. Thus, the second highest 
Eigen values of Q can be used to identify branch associations of waypoints. 
Wishbone uses the Matlab eigs function for Eigen value decomposition.

The second Eigen vector, v2, of Q matrix in Figure 1c, right panel is shown 
in Figure 1d. If waypoint w is on of the branches then v2w > 0 or v2w < 0  
and v2w ≈ 0 if w is on the trunk, since Qij ≈ 0 for all pairs of waypoints on the 
trunk. Moreover, |v2w| increases as waypoints progress further along the tra-
jectory away from the branch point. This creates a Wishbone-like structure, 
giving the algorithm its name (Fig. 1d).

The v2w values provide a reliable partitioning of waypoints that lie toward 
the end of developmental trajectory on either branch. However, the values of 
v2w are noisy during transition from trunk to the two branches and care must 
be taken to pinpoint the branching point (Fig. 1d). Any path from a waypoint 
in a particular branch to a waypoint in the other branch will first traverse 
toward the trunk and then away from it. By definition, the point on path with 
minimum trajectory value τ(0), represents the point at which the path will 
be closest be to the early cell. This also represents the point where the path 
changes direction to enter the other branch, or in other words an estimated 
branch point (Supplementary Fig. 24a). For increased robustness, Wishbone 
uses multiple paths between branch waypoints to estimate the branch point. 

(5)(5)

Specifically, all the paths between the five furthest waypoints along the tra-
jectory τ(0), from each side of the v2 spectrum are determined. The position 
with shortest distance to s from each path is selected and the median posi-
tion over all paths is an estimate of the branching point, bp (Supplementary  
Fig. 24b). Formally, let BrA and BrB be the set of five furthest waypoints of 
the two branches. 

BrA

BrB

= >

=

{ | ( ) }

{ |

( )i highest five with sign v

i highest five
i it

t

0
2 0

ii iwith sign v( ) ( ) }0
2 0<

These waypoints are then used to determined the branch point by 

bp median k min p path i j i and jk p p= = ∈{ }{ } ∈ ∈t t( ) ( ): : ( , )0 0 BrA BrB

Branch assignment to cells. The v2w values provide a partition of the way-
points that help determine branch assignments to all cells. Cells toward the 
end of the trajectory would have acquired most of the characteristics of the 
differentiated cell types and thus are relatively easy to classify. However, cells 
undergoing fate decision near the branch point do not always have a clear 
identity. This necessitates the use of a soft score of branch association for cells 
close to the branch point rather than hard branch assignments.

Wishbone uses the v2w values to estimate a branch association score  
or BAS for each cell. The estimated BAS has the following properties: for all 
cells on the trunk, BAS ≈ 0, whereas BAS < 0 or BAS > 0 for cells on the 
two branches. The deviation from zero is a measure of confidence for branch  
association. Note that the v2w values already satisfy these properties. Therefore, 
BAS for each cell is determined by a weighted average of the v2w values, with 
closer waypoints getting higher votes. First, the v2w values are normalized 
for each branch to account for any trajectory value differences between the 
two branches: 

v sign v
abs v

max v sign v sign vw norm w
w

k k w
2 2

2

2 2 2
=

==
( ) *

( )
( | ( ) ( ))

The weight matrix defined in equation (3) and V2wnorm are then used to 
calculate BAS for each cell i 

BAS W vi wi wnorm
w W

=
∈
∑ * 2

An example of scores for all cells is shown in Supplementary Figure 25a. 
These scores satisfy the properties outlined above and represent a soft associa-
tion of branches to cells. For any downstream analyses, BAS scores and the 
branch point bp can be used to determine branch assignments for all cells. Cells 
before the branch point are considered part of the trunk and cells beyond the 
branch point are assigned to one of the two branches based on sign of BAS. 
Formally, branch assignment for cell i is determined as 
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The branch assignments for the illustrative data set are shown in 
Supplementary Figure 24b.

Refining the ordering using branch association scores. Following a branching 
point, waypoints that are part of one branch should not significantly influ-
ence the ordering of cells in the other branch. Wishbone achieves this by 
a cross branch-muting scheme that adjusts the weights defined in section 
“Waypoints and Perspectives” to ensure waypoints of a branch predomi-
nantly influence the ordering of cells in its respective branch. An example of 
weights before adjustment is shown in Supplementary Figure 25a. The left 
panel shows a waypoint in branch B that can influence the ordering of the  
mature cells in branch A.

The BAS scores described in the previous section can also be used  
for cross branch muting. Recall that weights that define the influence of  

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)
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waypoints on ordering cells is determined by a Gaussian kernel on the  
distance matrix D equation (3): 

W exp D exp
D

wi
wi wk

k N
= −





−









=
∑

2 2

1s s:

For any cell i, the sign of BASi defines branch membership. Therefore, for 
a given waypoint w, if the sign of BASw is not the same as the sign of BASi, the 
weight Wwi must be muted to reduce the influence of w in ordering the cell i. 
The extent of muting is directly proportional to the deviation of BASi from 0 
and ensures that the influence of waypoints on one branch for ordering cells on 
the other branch progressively reduces along the developmental trajectory.

For each cell i, the weights of waypoints that belong to a different branch 
are muted as below 

Mut max exp BAS sign BAS sign BAS waypoint k

Wmut

b k k i= − ≠( ( | || ( ) ( ))),

wwi
wi w i

wi i b

W if sign BAS sign BAS
W max exp BAS Mut

=
==

−
, ( ) ( )

* ( ( | |), ),,otherwise




This muting scheme exponentially reduces the influence of waypoints 
that do not belong to same branch. The weights after muting are shown in 
Supplementary Figure 25b. The waypoint in branch B no longer influ-
ences the ordering of mature cells in branch A (Supplementary Fig. 25b, left 
panel). The muting does not affect the weights of waypoints outside branches 
(Supplementary Fig. 25b, right panel).

Finally, as mentioned before, the refined trajectory is calculated by the 
weighted average over all the perspectives using the muted weights as

ti wi wiw Waypoint set P Wmut( ) *1 = ∈∑

Iterative refinement of trajectory and branching. The waypoints are them-
selves cells. Therefore, their position often changes following the refinement 
step. Since all cell positions depend on waypoint positioning, the shift in  
waypoints might obsolete the newly calculated ordering. Therefore, the refine-
ment step is repeated with the new waypoint positions until the ordering of 
all cells converges.

As defined earlier, ti isD( )0 = . At any iteration t, the perspective and Q 
matrix are calculated by 
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The Q matrix is then used to determine the branch point bp and the BAS 
scores. These scores are then used for cross branch muting and a refined  
ordering or trajectory at iteration t is determined by 

ti
t

iw iww W P Wmut( ) *= ∈∑
This procedure is repeated until convergence: corr(τ(t), τ(t − 1)) > 0.9999. 

Finally, the branch assignments are calculated using the branch point bp and 
BAS scores. Note that the most time consuming parts of Wishbone are the 
construction of nearest-neighbor graph G and computation of the shortest 
path distances to all cells from waypoints to build the distance matrix D. These 
are both one-time steps and are not repeated during the iterations. Moreover, 
besides from graph construction, computation of D matrix is the most compu-
tationally intensive task and is performed only once. On the other hand, P and 
Q matrices, determined at each iteration, are not computationally intensive.

In summary, Wishbone aligns cells along bifurcating developmental tra-
jectories in high resolution with accurate detection of the bifurcation point. 
The graph-based approach used by Wishbone is central is achieving the high 
resolution. Diffusion maps help overcome short-circuits, a key hurdle of the 
graph-based approaches for constructing trajectories. Waypoints and their 

(11)(11)

(12)(12)

(13)(13)

(14)(14)

perspectives not only help alleviate the additive noise of shortest path distances 
but also provide the basis for identifying branch associations by means of 
disagreements between waypoint and early cell perspectives. Finally, spectral 
clustering methods are used on these disagreements to determine branch asso-
ciation scores and refine the ordering. The trajectory detection and branch 
associations are repeated until convergence. Supplementary Note 4 shows the 
pseudocode of the Wishbone algorithm.

Selection of diffusion components. Diffusion maps decompose the data along 
the major axes of variation and capture the major structures in the data7. 
In mass cytometry, this is reflected by the first few components capturing 
the differences among constituent cell types provided that the markers were 
chosen appropriately. The subsequent Eigen vectors typically capture noise 
and/or outliers. As an example, the top diffusion components for mouse thy-
mus replicate 1 is shown in Supplementary Figure 6a. The first component is 
trivial with same value for all the cells and is associated with Eigen value of 1. 
Components 2,3 and 4 identify the differences among the constituent DN, DP 
and two SP cell types. The fifth component and beyond do not explain major 
structure in the data and encode for outliers and/or noise. Thus, Wishbone 
was run using components 2,3 and 4.

While this procedure does require manual selection of components, the first 
two to four non-trivial components typically explain the differences between 
cell types in data sets with trajectories with two branches (Supplementary 
Figs. 6a, 14b,c, and 15b), making the selection feasible. Moreover, Wishbone 
is robust to the inclusion of a number of noisy higher order components 
(Supplementary Fig. 6b), with very similar results achieved when including 
any number between 3 to 9 of the top components. A degree of automation 
can be achieved by examining the distribution of Eigen values of the diffusion  
components, and selecting the Eigen vector with biggest Eigen gap (difference 
between successive Eigen values) among first few components. The Eigen 
value distribution of the mouse thymus replicate 1 is shown in Supplementary 
Figure 6c and shows that there is a large Eigen gap between the 4th and 5th 
Eigen values. This is consistent with the observation of fifth and higher  
components encoding outliers and noise, there by justifying the use of the 
components 2, 3 and 4 for learning trajectories.

In single-cell RNA-Seq, diffusion components not only explain the dif-
ferences between cell types, but also identify the variation along various  
biological processes like metabolism, cell cycle etc. See section “Application 
of Wishbone to single-cell RNA-Seq data” for component selection procedure 
for single-cell RNA-Seq.

Marker expression along trajectory and derivative plots. The trajectory was 
first divided into 150 equally spaced bins. A Gaussian filter centered at each 
bin was used to estimate the weighted average expression of individual mark-
ers in each bin. The density of cells is non-uniform along the trajectory and 
binning the trajectory for estimating average expression rather than moving 
average captures the density differences. The weight matrix K 150∈ ×r N  is 
determined as follows: 

K exp
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where bτ is the mean trajectory value in bin b and σ is the standard deviation 
of the trajectory. The weighted average expression of a marker in each bin is 
then calculated as 

E K Mb bi ii
N= =∑ *1

where Mi is the marker expression in cell i. The weighted standard deviation 
for each bin is also calculated along similar lines.

For bins past the branch point, the weighted expression on a particular 
branch is determined by muting the weights of cells on the other branch. 
Markers with a weighted average difference of at least 0.1 in any bin beyond 
the branch point are plotted with dotted lines representing the expression in 
the two branches.

After calculating of the weighted averages, the derivatives were calculated 
as the difference in weighted average in successive bins.

(15)(15)

(16)(16)
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Cross correlation of trajectories. For a given marker, cross correlation of 
expression along trajectories of different replicates were determined. The  
trajectory was shifted to maximize the mean of all cross correlations.

Variance analysis. The two SP populations were identified by the gating 
scheme defined in Fig. 3b. Population level s.d. was calculated for each marker 
in these gated populations. The calculation of s.d. along trajectory is described 
in “Marker expression along trajectory and derivative plots.”

For running Wishbone after exclusion of a particular marker, diffusion 
maps were first used to determine low dimensional embedding of the phe-
notypic space without the marker. Wishbone was then run on the embedded 
space with the same parameters used for the runs with all markers.

Trajectories in gated populations and comparison to ImmGen. Gating of SP cells 
was performed using the scheme recommended by the Immunological Genome 
Project (ImmGen)13. While ImmGen used Forward and Side Scatter channels to 
remove non-lymphoid cells, we used mass channels, which measure non-lymphoid  
cell surface markers and removed these cells using the clustering method 
Phenograph (see “Data preprocessing and choice of parameters for Wishbone”).

Raw mRNA expression data were downloaded from the Immunological 
Genome Project website (GEO accession number: GSE15907). These data were 
background corrected using RMA and quantile normalized using the affy R 
Bioconductor package35. The expression of each gene was then scaled to be 
between 0-1 among the different sorted T-cell populations: T.DP69+, T.4+8int, 
T.4SP69+, T.4SP24int, T.4SP24−, T.4int8+, T.8SP69+, T.8SP24int, T.8SP24−.

Adaptation of Wishbone to single-cell RNA-Seq data. Data processing. The 
count matrix was downloaded from GEO (GSE72857)6. As a first step, cells 
with less than 250 molecules were discarded. Library size correction was per-
formed by dividing the molecule counts of each cell by the library size36. The 
corrected molecule counts were then multiplied by the median of the library 
size across cells36. To address gene drop-out27, the data were transformed using 
PCA to identify “meta-genes.” We note that while phenotypic space defined 
by cells is nonlinear in its nature, the relationships between genes are largely 
collinear, making PCA appropriate on the gene dimension. These meta-genes 
were then used to cluster cells using Phenograph28 and the clusters correspond-
ing to HSPCs, erythroid precursors and myeloid precursors were identified by 
expression of characteristic genes: HSPCs - Cd34, Erythroid precursors - Gata1, 
Gata2, Myeloid precursors - Mpo, Csf1r, Irf8 (Supplementary Fig. 15a).

Selection of diffusion components. Diffusion maps decompose the data along 
the major axes of variation and capture the major structures in the data7.  
In mass cytometry data with a relevant marker set, this amounts to account-
ing for differences in the constituent cell types (Supplementary Fig. 6a).  
In genome-wide data, many of the components reflect additional biologi-
cal processes such as cell cycle, stress and metabolism that would confound 
building trajectories. Therefore, we identify the biological processes associ-
ated with each diffusion component and keep only those that are related to  
development and maturation.

To identify the biology associated with each component, we sought to 
find genes whose expression pattern was correlated with the component. 
Mean expression in sliding windows of 10 cells along the component was 
used to determine the correlation between each gene and component. Gene 
Set Enrichment Analysis (GSEA)20 was performed using the correlation 
based ranking to annotate each component. Gene sets from Gene Ontology 
Biological Process37 database were used for annotations. Once the diffusion 
components are annotated, we can take one of two approaches, in sufficiently 
studied systems we can positively select the relevant components. In less stud-
ied systems, we can simply remove confounding components such as cell cycle, 
ribosomes and metabolism.

In the application here, the top 15 principal components were used for 
constructing the diffusion maps and the resulting enrichments for the top 
diffusion components of the single-cell RNA-Seq data set are shown in 
Supplementary Figure 15c. Components 2 and 3 are enriched for ontologies 
related to immune cell differentiation. Wishbone was run using the compo-
nents 2 and 3 with a randomly selected cell from the HSPC cluster as the input 
early cell. We note that both trajectory and branches are robust to the number 
of principal components used (Supplementary Fig. 15d).

Diffusion maps, Monocle, and SCUBA. Diffusion maps provide low dimen-
sional projections of the phenotypic space. Euclidean distance between the 
points in their low dimensional embedding onto the diffusion map is equivalent 
to their diffusion distance7. Therefore, we used the Euclidean distance from the 
start cell in the space spanned by the first three non trivial diffusion map Eigen 
vectors to construct the developmental trajectories in mouse thymus and human 
myeloid mass cytometry data sets (Fig. 6 and Supplementary Fig. 16). Diffusion 
components used for Wishbone were also used to estimate the distances from 
the start cell in the mouse myeloid single-cell RNASeq data set (Fig. 6).

Monocle was downloaded from Bioconductor24. 1,000 cells were randomly 
sampled from each of the data sets and Monocle was run with default param-
eters apart from number of branches, which was set to two and the root cell 
was set to the start cell used for Wishbone. The results in Supplementary 
Figure 18a–c were obtained by repeatedly sampling 1,000 cells from replicate 
1 with the number of branches set to 2. The start cell was set to the same start 
cell used for Wishbone. Different runs were compared using the procedure 
described in section “Cross correlation analysis.”

SCUBA was downloaded from https://github.com/gcyuan/SCUBA (ref. 5). 
20,000 cells were randomly sampled from the mouse thymus and SCUBA 
was run with default parameters. The MassCytometry_preprocess.m script 
was used. The expected input, processDataMat Matlab data matrix was  
created and the ordering and branches were determined using the func-
tion EstimatePseudotime. As with Monocle, the results in Supplementary  
Figure 17a–c were obtained by repeatedly sampling 20,000 cells from replicate 1  
and the different runs were compared using the procedure in “Cross  
correlation analysis.” SCUBA was run using all cells for the human and  
mouse myeloid data sets.

The resulting trajectory and branches from both Monocle and SCUBA were 
visualized using tSNE (t-distributed stochastic neighbor embedding) projec-
tions of the full data set. Marker expression along the Monocle trajectories 
was determined using the procedure described in “Marker expression along 
trajectory and derivative plots.” A similar procedure was used for SCUBA with 
muting turned off since SCUBA resulted in more than two branches.

Data availability and software. The mouse thymus mass cytom-
etry data can be downloaded from Cytobank (https://www.cytobank.org/ 
cytobank/experiments/52942). The cleaned data along with the Wishbone 
results for different replicates are available at http://www.c2b2.columbia.edu/
danapeerlab/html/wishbone.html. Myeloid mass cytometry data were down-
loaded from Cytobank (http://reports.cytobank.org/1/v1). Mouse myeloid 
single-cell RNA-Seq data were downloaded from GEO (accession number: 
GSE72857). Wishbone results for all the myeloid data sets are available  
at http://www.c2b2.columbia.edu/danapeerlab/html/wishbone.html. Wishbone 
has been integrated into our single analysis suite cyt and can be downloaded 
from (http://www.c2b2.columbia.edu/danapeerlab/html/cyt-download.html) 
and from Supplementary Software. A python package for Wishbone algorithm 
is available through github (https://github.com/ManuSetty/wishbone).
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