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Spatial self-organization favors 
heterotypic cooperation over cheating
Babak Momeni*, Adam James Waite, Wenying Shou*

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United 
States

Abstract Heterotypic cooperation—two populations exchanging distinct benefits that are 
costly to produce—is widespread. Cheaters, exploiting benefits while evading contribution, can 
undermine cooperation. Two mechanisms can stabilize heterotypic cooperation. In ‘partner choice’, 
cooperators recognize and choose cooperating over cheating partners; in ‘partner fidelity 
feedback’, fitness-feedback from repeated interactions ensures that aiding your partner helps yourself. 
How might a spatial environment, which facilitates repeated interactions, promote fitness-feedback? 
We examined this process through mathematical models and engineered Saccharomyces cerevisiae 
strains incapable of recognition. Here, cooperators and their heterotypic cooperative partners 
(partners) exchanged distinct essential metabolites. Cheaters exploited partner-produced metabolites 
without reciprocating, and were competitively superior to cooperators. Despite initially random 
spatial distributions, cooperators gained more partner neighbors than cheaters did. The less a 
cheater contributed, the more it was excluded and disfavored. This self-organization, driven by 
asymmetric fitness effects of cooperators and cheaters on partners during cell growth into open 
space, achieves assortment.
DOI: 10.7554/eLife.00960.001

Introduction
Cooperation, providing a benefit available to others at a cost to self, has been postulated to drive 
major transitions in evolution (Maynard Smith and Szathmary, 1998). Cooperation may take place 
between similar individuals contributing and sharing identical benefits (homotypic cooperation) or 
between two populations exchanging distinct benefits such as in some forms of mutualism (heterotypic 
cooperation). Both homotypic and heterotypic cooperation are vulnerable to cheaters (Turner and 
Chao, 1999; Strassmann et al., 2000; Bronstein, 2001; Rainey and Rainey, 2003; Travisano and 
Velicer, 2004). Cheaters exploit cooperative benefits without contributing their fair share and are there-
fore competitively superior to their cooperating counterparts. How might cooperation avoid being taken 
over by cheaters? The answer lies in ‘positive assortment’ (Fletcher and Doebeli, 2009), in which bene-
fit-supplying individuals interact more with other benefit-supplying individuals than with cheaters.

In homotypic cooperation that involves genetic relatives, positive assortment can be realized 
through ‘kin discrimination’, which is based on the active recognition and preferential treatment of 
more closely related individuals over distantly related ones (Sachs et al., 2004). Positive assortment 
can also be realized through ‘kin fidelity’ (Sachs et al., 2004). For example, restricted migration in a 
spatial environment causes homotypic cooperators and cheaters to cluster with their respective 
progeny. This clustering allows cooperators to preferentially interact with each other (Figure 1A, 
top). Both mechanisms of positive assortment can favor cooperation (Hamilton, 1964a; Hamilton, 
1964b; Maynard Smith, 1964; Chao and Levin, 1981; Nowak and May, 1992; Fletcher and 
Doebeli, 2006; Kerr et al., 2006; MacLean and Gudelj, 2006; West et al., 2006; Lion and Baalen, 
2008; Wild et al., 2009; West and Gardner, 2010). A spatial environment may also impede homo-
typic cooperation by intensifying competition among cooperators (Taylor, 1992; Wilson et al., 1992; 
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West et al., 2002) and in certain cases, by potentially encouraging cheating strategies (Hauert and 
Doebeli, 2004).

Heterotypic cooperation can occur between populations that are genetically related but phenotyp-
ically differentiated, such as between different cell types in a multicellular organism. Alternatively, 
heterotypic cooperation can involve two genetically unrelated populations (e.g., species) exchanging 
distinct benefits that are costly to produce. For example, legume plants supply organic carbon and 
other essential nutrients to rhizobia, and rhizobia reciprocate with fixed nitrogen (Udvardi and Poole, 
2013). Positive assortment in heterotypic cooperation can be achieved through ‘partner choice’ and 
‘partner fidelity feedback’ (Bull and Rice, 1991; Sachs et al., 2004; Foster and Wenseleers, 2006; 
Weyl et al., 2010). In partner choice, active mechanisms (disruptable through for example mutational 
or pharmacological means) enable an individual to differentially reward cooperative instead of non-
cooperative partners based on a signal. Thus, discrimination mediated by partner choice can occur in 
advance of exploitation (Bull and Rice, 1991). For instance, in the mutualism between client fish and 
cleaner fish in which cleaner fish obtain food from removing client parasites, client fish recognize and 
avoid cheating cleaners that also bite healthy tissues (Bshary, 2002). In partner fidelity feedback, fit-
ness-feedback from repeated interactions ensures that aiding the partner helps self. Examples of 
partner fidelity feedback can be found in mutualism between hosts and their vertically transmitted 

eLife digest Cooperation between individuals of the same species, and also between different 
species, is known to be important in evolution. Large fish, for example, rely on small cleaner fish to 
remove parasites, while the small fish benefit from the nutrients in these parasites. However, 
cooperation can be undermined by other individuals or species who “cheat” by taking advantage of 
those who cooperate, without providing any benefits in return. For example, some cleaner fish 
cheat by biting off healthy tissue from their host, in addition to parasites.

Genetically-related individuals who cooperate by sharing identical benefits can combat cheaters 
by giving preferential treatment to their relatives (a process known as kin discrimination) or by 
staying close to the relatives to form clusters (kin fidelity). However, two genetically-unrelated 
populations that mutually cooperate by sharing different benefits cannot employ these methods to 
overcome cheaters. Instead they rely on either partner choice or partner fidelity feedback.

Partner choice – the approach adopted by cleaner fish and their hosts – relies on one population 
recognizing a signal from the other population and responding accordingly: for example, large fish 
observe cleaner fish and approach those that cooperate with their current host and avoid those that 
cheat. Partner fidelity feedback, on the other hand, relies on repeated interactions between the two 
populations providing an advantage in terms of evolutionary fitness to both: for example, 
organelles called mitochondria and chloroplasts live inside cells, helping the cells to harvest energy 
and providing energy for themselves and the host cells in the process. In some cases – such as the 
cooperation between figs and fig wasps, or between certain plants and the bacteria that fix 
nitrogen in their roots – researchers cannot agree if the populations are relying on partner choice or 
partner fidelity feedback.

Now Momeni et al. have used a combination of experiments on yeast and mathematical 
modeling to explore partner fidelity feedback in greater detail. They started by using genetic 
engineering techniques to produce two species of yeast that mutually cooperate, each providing a 
metabolite that is essential to the other, but are not able to recognize each other: this means that 
these populations cannot rely on partner choice to combat cheaters. Momeni et al. then observed 
how these two species interacted with each other and a third species of yeast that cheated by 
consuming one of the metabolites without releasing any metabolite of its own.

Momeni et al. found that as long as there was space for the yeast cells to grow into, the two 
species that cooperated self-organized into mixed clusters, with the cheating species being excluded 
from these clusters. The self-organization was driven by a positive feedback loop involving the two 
species that cooperated, with each species helping to increase the fitness of the other. The results 
of Momeni et al. demonstrate that it is possible for two genetically unrelated populations to 
cooperate and combat cheaters without the use of partner choice.
DOI: 10.7554/eLife.00960.002
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symbionts, for example, between eukaryotes and their endosymbioic mitochondria and chloroplasts 
(Sachs et al., 2011).

Natural heterotypic cooperative systems often benefit from a combination of partner choice and 
partner fidelity feedback. Often, for a particular system, it is challenging to determine which mechanism 
is mainly responsible for fending off cheaters. For instance, the mutualism between fig and fig wasp 
and between legume and rhizobia have been thought to employ partner choice by some investigators 
(Kiers et al., 2003; Sachs et al., 2004; Foster and Wenseleers, 2006; Jandér and Herre, 2010) and 
partner fidelity feedback by others (Weyl et al., 2010).

In this study, using engineered yeast strains and mathematical models devoid of possibilities for 
partner choice, we examined how through partner fidelity feedback heterotypic cooperation between 
microbes may be protected against cheaters. Spatial environment, which facilitates repeated interactions 
between neighboring individuals, has been shown to promote heterotypic cooperation (Boucher 
et al., 1982; Doebeli and Knowlton, 1998; Yamamura et al., 2004; West et al., 2007; Harcombe, 
2010; Mitri et al., 2011). However, the mechanism for how partner fidelity feedback unfolds in a spatial 
environment is not well understood. Specifically, how might spatial correlation in the tendency to 
contribute arise between genetically unrelated heterotypic cooperators when such correlation was 
initially absent (Frank, 1994)? If population viscosity was the sole driving force, then clusters of 
cooperators and clusters of competitively superior cheaters would be expected to have equivalent 
access to clusters of heterotypic cooperative partners. This would seem to favor cheaters (Figure 1A, 
bottom). Instead, we show that in a spatial environment, asymmetric fitness effects of cooperators and 
cheaters on partners during cell growth into open space drives assortment. This emergence of non-
random patterns from initially random spatial distributions, known as self-organization, automatically 
grants cooperators instead of cheaters more access to heterotypic cooperative partners, disfavoring 
cheaters. Thus, partner fidelity feedback through self-organization excludes cheaters without evolving 
recognition mechanisms.

Figure 1. A spatial environment favors heterotypic cooperation over cheating. (A) Top: clustering with self-type can favor 
homotypic cooperators (yellow) over cheaters (black). Bottom: clustering with self-type should not favor heterotypic 
cooperation since cooperator clusters (red) and competitively superior cheater clusters (blue) should have equivalent 
access to the heterotypic cooperative partner (green). (B) We engineered three yeast strains: a red-fluorescent R←L→A strain 
requiring lysine and releasing adenine; a green-fluorescent G←A→L  strain requiring adenine and releasing lysine; and a 
cyan-fluorescent C←L  strain requiring lysine and not releasing adenine. The three strains purely competed (‘Comp’) or 
additionally cooperated and cheated (‘Co&Ch’), depending on whether the medium contained or lacked adenine 
(‘Ade’) and lysine (‘Lys’), respectively. (C) In competitive communities, R←L→A:C←L  dropped below the initial value of 1 (dotted 
line) during community growth due to the fitness advantage of C←L  over R←L→A. In contrast, R←L→A:C←L  rose above 1 when 
the strains engaged in cooperation and cheating. Population ratios in experiments were measured using flow cytometry. 
All communities started from an initial density of 3000 total cells/mm2 with the three strains at a 1:1:1 ratio on top of an 
agarose column (Figure 1—figure supplement 1A) and were analyzed after approximately six to eight generations 
(Figure 1—figure supplement 2). p Values are from the Wilcoxon signed rank test, comparing the median with 1.
DOI: 10.7554/eLife.00960.003
The following figure supplements are available for figure 1:

Figure supplement 1. Community setup. 
DOI: 10.7554/eLife.00960.004

Figure supplement 2. In experimental spatial communities, cooperators R←L→A are favored over cheaters C←L . 
DOI: 10.7554/eLife.00960.005
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Results
Environment-dependent engineered heterotypic cooperation and 
cheating
To examine how partner fidelity feedback unfolds in a spatial environment, we started with an engi-
neered experimental system incapable of partner recognition (Shou et al., 2007; Waite and Shou, 
2012). This system consisted of three reproductively isolated Saccharomyces cerevisiae strains: a 
green-fluorescent strain requiring adenine and releasing lysine (G←A→L ), a red-fluorescent strain requiring 
lysine and releasing adenine (R←L→A), and a cyan-fluorescent strain requiring lysine and not releasing 
adenine (C←L). Release of lysine or adenine was caused by metabolite overproduction due to a muta-
tion that made the first enzyme of the biosynthetic pathway (Lys21 and Ade4, respectively) insensitive 
to end-product inhibition (Armitt and Woods, 1970; Feller et al., 1999). C←L still produced adenine 
for itself at the wild-type level, but without the overproduction mutation, the adenine produced by C←L 
was not sufficient to support the growth of G←A→L  (Figure supplement 6 in Shou et al., 2007).

These strains engaged in different types of interactions depending on the environment. In minimal 
medium supplemented with abundant adenine and lysine, they competed for nutrients required by all 
three strains (e.g., glucose and nitrogen) and limited space (Figure 1B, ‘Comp’). In minimal medium 
without supplements, in addition to competition, G←A→L  and R←L→A exchanged essential metabolites lysine 
and adenine (Shou et al., 2007), while C←L consumed lysine without releasing adenine. Not overpro-
ducing adenine, C←L showed a ∼2% growth rate advantage over R←L→A when lysine was abundant 
(competition assay in Figure 1 of Waite and Shou, 2012). In the absence of lysine, there was no signif-
icant difference in the death rates of R←L→A and C←L (Figure S1 in Waite and Shou, 2012). Finally, in 
media lacking lysine and adenine, binary cocultures of R←L→A and G←A→L  could grow from low to high cell 
densities (Figure 1 in Shou et al., 2007), whereas cocultures of C←L and G←A→L  failed to grow (Figure 
supplement 6 in Shou et al., 2007). These results collectively suggest that C←L acts as a cheater variant 
of R←L→A (Waite and Shou, 2012). In other words, in the absence of supplements, cooperator R←L→A and 
the competitively superior cheater C←L competed for the lysine supplied by the heterotypic coopera-
tive partner (partner) G←A→L  (Figure 1B, ‘Co&Ch’). Cooperator R←L→A ‘reciprocated’ by releasing adenine, 
which is essential for partner G←A→L , but cheater C←L did not release adenine.

A spatial environment can stabilize heterotypic cooperation against 
cheaters
We first verified that a spatial environment could stabilize heterotypic cooperation against a competi-
tively superior cheater in our system. We initiated experimental communities from randomly distrib-
uted equal proportions of the three cell populations on agarose pads (Figure 1—figure supplement 1A). 
During pure competition in the presence of supplemented adenine and lysine, the R←L→A:C←L ratio 
dropped below the original value of 1 after approximately six to eight generations (Figure 1C), consistent 
with the known 2% growth advantage of C←L over R←L→A (Waite and Shou, 2012). In contrast, during 
cooperation and cheating in the absence of adenine and lysine supplements, cooperating R←L→A was 
favored over cheating C←L (Figure 1C, time course in Figure 1—figure supplement 2).

If the spatial aspect of the environment is disrupted, either by periodically mixing a community or 
by growing it as a well-mixed liquid coculture, partner fidelity feedback should not operate and cheaters 
are expected to be favored over cooperators. However, the ratio of cooperators R←L→A to cheaters C←L 
in periodically mixed replicate communities varied dramatically (Figure 2—figure supplement 1). This 
was because the lysine-limited environment strongly selected for adaptive mutants in C←L and R←L→A 
(Waite and Shou, 2012). Thus, C←L and R←L→A engaged in an ‘adaptive race’ (Waite and Shou, 2012) 
akin to clonal interference: if C←L had the best mutation to grow under lysine limitation, then the coculture 
was quickly destroyed by cheaters; if R←L→A had the best adaptive mutation, then the coculture quickly 
purged cheaters. As a result, C←L outcompeted R←L→A or R←L→A outcompeted C←L depending on which 
population had a better mutation, not because of social interactions. This kind of phenomenon has 
also been observed for non-engineered cooperating and cheating microbes (Morgan et al., 2012). 
We chose two evolving cocultures in which the C←L populations were increasing in frequency, When 
we grew these two cocultures in well-mixed and in periodically perturbed spatial environments, C←L 
was favored (Figure 2—figure supplement 2; ‘Materials and methods’). However, in a spatial envi-
ronment, R←L→A was favored (Figure 2—figure supplement 2), consistent with previous experiments 
on a different microbial system (Harcombe, 2010). Our experiments involved non-clonal and non-isogenic 
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populations. In nature, cheaters can be of different species (such as the non-pollinating wasps of fig) 
and therefore not isogenic with their cooperating counterpart. Additionally, upon environmental stresses, 
originally isogenic cooperators and cheaters can quickly acquire different mutations and become 
nonisogenic (Morgan et al., 2012; Waite and Shou, 2012). Regardless, we resorted to mathematical 
models to eliminate the confounding influence of adaptive mutations.

We extended a three-dimensional individual-based model of community growth (previously 
described as the ‘diffusion model’ in Momeni et al., 2013) to include cooperators, cheaters, and hetero-
typic partners. The main assumptions of this model were: (1) that the growth of individual cells depended 
on consumption of the limiting metabolite, and the consumption rate in turn depended on the local 
concentration of the limiting metabolite according to Michaelis–Menten kinetics; (2) that spatial distribu-
tion of metabolites was governed by release, diffusion, and consumption; and (3) that cells rearranged 
when necessary to accommodate new cells as per experimental observations (‘Materials and methods’). 
Parameters of this model (such as the rates of growth, death, and metabolite consumption and release) 
were experimentally determined (Momeni et al., 2013), mostly through characterizing properties of 
monocultures (Figure 2—source data 1). C←L was assumed to have a constant intrinsic fitness advantage 
over R←L→A at all lysine concentrations, as modeled by a higher maximum uptake rate (vm,C>vm,R in ‘The 
diffusion model’ in ‘Materials and methods’). In the absence of adaptations, simulation results confirmed 
that a spatial environment favored cooperators over cheaters and that disrupting the spatial aspect of 
the environment gave cheaters an advantage over cooperators (Figure 2).

During spatial growth of the yeast community, ancestral R←L→A and C←L should also engage in an adaptive 
race to adapt to the lysine-limited environment. However, unlike in the liquid environment, mutants 
in R←L→A and C←L were spatially restricted to the neighborhood of their origins, and thus these mutants 
could not sweep through the entire community. Consequently, population dynamics from different 
replicates were highly reproducible (Figure 1—figure supplement 2). Thus, we used ancestral R←L→A and 
C←L for all other experiments.

Differential spatial association with partner favors heterotypic cooperation 
over cheating
How might a spatial environment promote heterotypic cooperation? The relative positioning of cells 
in a community, the ‘spatial pattern’ of a community, can develop differently based on the fitness 
effects of cell–cell interactions (Momeni et al., 2013). Due to the inability of confocal or two-photon 
microscopy to yield three-dimensional patterns of cells in yeast communities, we only had access to 
the top-views (xy) and vertical cross-sections (z), with the latter being obtained through cryosectioning 
(Momeni and Shou, 2012). In vertical cross-sections, we have previously shown that in the absence of 
adenine and lysine supplements, R←L→A and G←A→L  as a strongly cooperative pair (i.e., there is a large fit-
ness gain from interacting with the other population) are expected to spatially mix (Momeni et al., 
2013). In contrast, R←L→A and C←L, a competing pair, should form segregated columns, with each column 
consisting primarily of a single cell type (Momeni et al., 2013). Finally, for the commensal pair G←A→L  and 
C←L in which each G←A→L  cell can support the local growth of multiple C←L cells, C←L is expected to grow 
over G←A→L  (Momeni et al., 2013). However, it is unclear what patterns would form when the three 
strains grow together in a community and how the patterns might impact cooperators and cheaters 
differently.

To examine how cooperation and cheating might affect community patterns, we compared com-
munities grown in a spatial environment under conditions of competition (‘Comp’) or cooperation and 
cheating (‘Co&Ch’) (Figure 1B). Specifically, equal proportions of R←L→A, G←A→L , and C←L cells were ran-
domly distributed on top of an agarose surface and allowed to grow. Top-views of experimental (‘Exp’) 
communities grown in the presence of adenine and lysine supplements revealed that R←L→A, G←A→L , and 
C←L, when engaged in pure competition, were evenly distributed in the horizontal xy plane (Figure 3A, 
top panel). This pattern was caused by the initial cells growing into microcolonies which, after running 
into each other, were forced to grow upward (Figure 3—figure supplement 1A) (Momeni et al., 2013). 
Indeed, vertical cross-sections exhibited patterns consistent with our expectations that competitive pop-
ulations should form segregated columns (Momeni et al., 2013) (Figure 3A, bottom panel).

In the absence of adenine and lysine supplements, the three populations engaged in heterotypic 
cooperation and cheating in addition to competition for shared resources. Top-views of these experi-
mental communities showed patterns distinct from those of purely competitive communities. Regions 
dominated by a mixture of the cooperating pair R←L→A and G←A→L  appeared isolated from regions dominated 
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by the cheater C←L (Figure 3B, top panel and 
Figure 3—figure supplement 1B). Vertical 
cross-sections of these communities revealed that 
cooperating R←L→A and G←A→L  intermixed and formed 
tall ‘pods’. In contrast, cheating C←L was relegated 
to the periphery of these pods and grew relatively 
poorly (Figure 3B, bottom panel).

To quantify differential partner association, the 
result of partner fidelity feedback, we define 
‘partner association index’ ARG/CG : for those R←L→A 
and C←L cells bordering at least one other cell 
type (‘Materials and methods’), ARG/CG  is the ratio 
of the average number of G←A→L  in the immediate 
neighborhood of R←L→A to the average number of 
G←A→L  in the immediate neighborhood of C←L. 
A partner association index ARG/CG> 1 indicates 
more G←A→L  neighbors surrounding R←L→A than sur-
rounding C←L. Using a two-dimensional neighbor-
hood to quantify ARG/CG  in top-views and vertical 
cross-sections, we found that ARG/CG  significantly 
exceeded 1 during cooperation and cheating but 
not during competition (Figure 3C). This self-
organization—the formation of non-random pat-
terns from initially randomly distributed individuals 
purely driven by internal local interactions 
(Camazine et al., 2003; Solé and Bascompte, 
2006)—automatically makes G←A→L  partner more 
accessible to cooperating R←L→A than to cheating C←L.

Similar to the experiments, top-views and 
vertical cross-sections in the communities simulated 
through the diffusion model (‘Sim’) also showed 
that cooperating R←L→A and G←A→L  preferentially asso-
ciated with each other and formed tall pods, 
while cheating C←L was isolated (Figure 3E). Such 
self-organization was absent in pure competition 
(Figure 3D). We quantified the partner association 
index of simulated communities using a three- 
dimensional neighborhood averaged across the 
entire community (A3D

RG/CG), which turned out to be 
much less variable than analyzing two-dimensional 
slices (Figure 3—figure supplement 2). During 
cooperation and cheating, A3D

RG/CG  increased from 
an initial value of 1 to a steady level greater than 1 
(Figure 3F, top). This greater-than-1 A3D

RG/CG  
favored cooperating R←L→A over cheating C←L, as 
the ratio R←L→A:C←L continued to increase even after 
A3D
RG/CG had leveled off (Figure 3F, bottom). In con-

trast, during pure competition, A3D
RG/CG  was close 

to 1 and C←L was favored over R←L→A (Figure 3F).

Self-organization can in theory 
discriminate among cooperators 
of varying quality
In addition to generating information difficult to 
obtain from experimental communities (such as the 
detailed time course of A3D

RG/CG  described above), 

Figure 2. In simulated communities, a spatial environment 
is required to promote heterotypic cooperation. The 
R←L→A:C←L  ratios of simulated (‘Sim’) spatial cooperating 
and cheating communities were grown either unper-
turbed (purple circles) or periodically mixed (orange 
squares). To simulate periodic mixing, the arrangement 
of cells was completely randomized every 12 hr. In each 
mixing event, the concentration of adenine and lysine 
throughout the community was assigned to be the 
average value over the entire community. Error bars 
show the standard deviation of ratios in six independent 
communities. The solid black line shows the ratio in a 
simulated well-mixed liquid coculture using the same 
parameters as simulated communities on agarose 
(Figure 2—source data 1). The fitness advantage of 
cheater over cooperator was either 2% (top panel) or 
8% (bottom panel).
DOI: 10.7554/eLife.00960.006
The following source data and figure supplements are 
available for figure 2:

Source data 1. Parameter values used in the diffusion 
model simulations. 
DOI: 10.7554/eLife.00960.007
Figure supplement 1. Stochastic cheater outcomes in 
periodically mixed communities of ancestral cooperators, 
cheaters, and partners. 
DOI: 10.7554/eLife.00960.008

Figure supplement 2. A spatial environment is 
required to favor heterotypic cooperation over 
cheating. 
DOI: 10.7554/eLife.00960.009

http://dx.doi.org/10.7554/eLife.00960
http://dx.doi.org/10.7554/eLife.00960.006
http://dx.doi.org/10.7554/eLife.00960.007
http://dx.doi.org/10.7554/eLife.00960.008
http://dx.doi.org/10.7554/eLife.00960.009
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Figure 3. Growing cells self-organize to exclude cheaters from heterotypic cooperators. (A and B) Experimentally, 
as the initially randomly distributed cells grew, different patterns emerged depending on whether the medium 
contained or lacked adenine and lysine supplements and consequently whether the dominant cell-cell interaction 
was respectively competition (‘Comp’) or cooperation and cheating (‘Co&Ch’). Top-views: ‘xy’; vertical sections: ‘z’. 
(C) Compared to C←L , R←L→A had a higher level of association with G←A→L  during cooperation and cheating (ARG/CG> 1) 
but not during competition. In (C), the communities were analyzed after approximately six to eight generations. 
(D, E and F) We observed similar results in the simulated communities. In simulated top-views, higher color 
intensity indicates a greater number of cells of the corresponding fluorescent color stacked at that position. In 
simulated vertical cross-sections, low and high color intensity represent dead and live cells, respectively. Scale bar: 
100 μm. In C and F, grey: competition; magenta: cooperation and cheating. p Values are from the Mann–Whitney 
U-test. All communities started from an initial density of 3000 total cells/mm2 (Figure 1—figure supplement 1A).
DOI: 10.7554/eLife.00960.010
The following figure supplements are available for figure 3:

Figure supplement 1. Cooperation-cheating and pure competition led to distinct community patterns in top-views. 
DOI: 10.7554/eLife.00960.011
Figure 3. Continued on next page

http://dx.doi.org/10.7554/eLife.00960
http://dx.doi.org/10.7554/eLife.00960.010
http://dx.doi.org/10.7554/eLife.00960.011
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simulations enabled us to explore a broader class of cooperator–cheater communities. Simulations showed 
that self-organization also allowed discrimination among cooperators of varying quality (Figure 4). 
Specifically, we initiated diffusion-model simulations using three populations: G←A→L , R←L→A, and ←

→ ,

L

A
R dddd

. The 
adenine release rate of ←

→ ,

L

A
R dddd

 was a fraction d (< 1) of that of R←L→A, and like C←L, ←
→ ,

L

A
R dddd

 had a constant 
growth rate advantage over R←L→A at all lysine concentrations. When grown in the absence of 

Figure supplement 2. The partner association indexes in simulated communities showed more association 
between R←L→A and G←A→L  than between C←L  and G←A→L  during cooperation and cheating but not during competition. 
DOI: 10.7554/eLife.00960.012

Figure 3. Continued

Figure 4. Self-organization leads the most giving cooperator to associate most with the heterotypic cooperative 
partner, allowing discrimination of cooperators of varying quality. In diffusion model simulations, ,

L

A
R

←
→ dddd

 produced 
adenine at a rate d-fold (0 ≤ d < 1) of the release rate of R←L→A. 

,

L

A
R

←
→ dddd

 had a 5% fitness advantage over R←L→A at all lysine 
concentrations. 

,

L

A
R

←
→ dddd

 that released less (smaller values of d) were isolated more in spatial patterns (A, steady-state 
values summarized in B) and disfavored more as the community grew (C and D). In (D), the fitness advantage of R←L→A 
over 

,

L

A
R

←
→ dddd

 was calculated from the rate of changes in the ratio R←L→A: ,

L

A
R

←
→ dddd

 between generations 2 and 6 in (C). In (B) and 
(D), data from six replicates were plotted. The communities were initiated at 3000 total cells/mm2. Sim: simulation.
DOI: 10.7554/eLife.00960.013
The following figure supplements are available for figure 4:

Figure supplement 1. Spatial self-organization allowed R←L→A to increase in frequency even when , 0

L

A
R

←
→ =dddd

 was much fitter. 
DOI: 10.7554/eLife.00960.014

Figure supplement 2. Cheaters with a much higher affinity for cooperative benefits than cooperators can destroy 
heterotypic cooperation even in a spatial environment. 
DOI: 10.7554/eLife.00960.015

Figure supplement 3. In obligatory byproduct mutualism (benefit production incurs no cost and non-producers 
have no fitness advantage over producers), high levels of non-producers can still destroy byproduct mutualism in a 
spatial environment. 
DOI: 10.7554/eLife.00960.016
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supplements, ←
→ ,

L

A
R dddd

 were isolated and outcompeted by R←L→A. This effect was quantitative, as a lower d 
value resulted in a larger ARG/RdG (i.e., the less ←

→ ,

L

A
R dddd

 released, the more it was excluded; Figure 4A,B), 
and a greater advantage of R←L→A over ←

→ ,

L

A
R dddd

 (Figure 4C,D). In contrast, ARG/RdG was not highly sensitive 
to the intrinsic growth rate advantage of ←

→ ,

L

A
R dddd

 over R←L→A (Figure 4—figure supplement 1). ←
→ ,

L

A
R dddd

 was 
still strongly disfavored even when it had relatively large (50%) intrinsic growth rate advantage over 
R←L→A (Figure 4—figure supplement 1). Taken together, self-organization favors cooperators that supply 
the most benefits.

Heterogeneity in the initial spatial distribution of cells facilitates but is not 
required for self-organization
One might hypothesize that among the initially randomly distributed cell populations, the occasional 
fortuitous proximity of a cooperator cell to a partner cell is necessary for self-organization. To examine 
this hypothesis, we simulated communities starting from a periodic and symmetric initial distribution 
of cells (Figure 5A). In the absence of initial spatial asymmetry, other stochastic effects such as the 
initial metabolite-storage state of the cell, cell rearrangement, and death events broke the symmetry and 
self-organization still emerged (Figure 5B). Even though the final partner association index from random 

Figure 5. Heterogeneity in the initial spatial distribution of cells facilitates but is not required for cheater isolation. 
Starting from a symmetric and periodic distribution in which all cooperators R←L→A and cheaters C←L  had an equal 
access to the partner G←A→L  (A), heterotypic cooperators self-organized (B and C) and were favored (D). (B–D) 
corresponded to generation 6. Break of symmetry from the initial symmetric spatial distribution can be due to stochastic 
effects such as differences in the initial amounts of metabolites cells possessed, death of cells, or the random direction 
of cell division. Compared to a random initial distribution, communities with a periodic initial distribution showed smaller 
mean ARG/CG; nonetheless, ARG/CG significantly exceeded 1 (Wilcoxon signed rank test). In these simulations, the 
growth rate advantage of C←L  over R←L→A was assumed to be 10% at all concentrations of lysine. The communities were 
initiated at 4400 total cells/mm2. Scale bar: 100 μm. In simulated top-views, higher color intensity indicates a 
greater number of cells of the corresponding color stacked at that position. Sim: simulation.
DOI: 10.7554/eLife.00960.017
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initial distribution was greater than that from periodic distribution, the latter was still significantly greater 
than 1 (Figure 5C). Consequently, cooperators still outperformed cheaters in periodic initial distribu-
tion, even though the degree of outperformance was greater in random initial distribution (Figure 5D). 
These simulation results suggest that the heterogeneity in the initial spatial distribution of cells pro-
moted but was not required for self-organization.

Asymmetric fitness effects of cooperators and cheaters on partners 
drives self-organization
What drives differential partner association during self-organization? Since self-organization was only 
observed during cooperation and cheating but not during competition, the very acts of cooperation 
and cheating are required. When the fitness effects of interactions are the major driving force of 
patterning, interacting populations are expected to intermix if both supply spatially localized 
large fitness benefit to the other (Momeni et al., 2013). In contrast, lack of benefit to either pop-
ulation causes population segregation (Momeni et al., 2013). Thus, we reason that the asymmetry 
between cooperators and cheaters in their capacity to reciprocate partner’s benefits drives self- 
organization.

To examine how this asymmetry leads to self-organization, we simulated a community in which a 
center stripe of partners was initially bordered by a stripe of cooperators on one side and cheaters on 
the other (Figure 6). This simulation configuration allowed us to examine the process of self-organization 
from the simplest form of initial symmetry. Near the cooperator side, partners intermixed with cooperators 
due to the spatially localized large benefits to both (Momeni et al., 2013; red and green in Figure 6). 
In contrast, near the cheater side, the lack of benefits to partners caused minimal intermixing between 
cheaters and partners (Momeni et al., 2013; blue and green in Figure 6). This isolation of cheaters 
allowed cooperators to increase in frequency despite the intrinsic fitness advantage of cheaters over 
cooperators.

Figure 6. Asymmetric fitness effects of cooperators and cheaters on partners drive self-organization. Time 
progression of self-organization in a simulated community as observed in top-views (top) and vertical cross-
sections (bottom). Heterotypic cooperative partners (green) supply large benefits to both cooperators (red) and 
cheaters (blue). Since the benefit is spatially localized, only cooperators and cheaters that are close to partners 
will grow. Given that cells dividing toward partners will on average have more access to benefits than those 
dividing away from partners, both cooperators and cheaters pile over partners. Cooperators reciprocate by supplying a 
large, but different, localized benefit to the partner, while cheaters do not. Thus, partners grow and pile over 
cooperators but not cheaters. Consequently, further growth of cooperators is facilitated, while cheaters become 
isolated and disfavored. In this simulation, cheaters have an 8% fitness advantage over cooperators. To mimic 
the top-view from microscopy, the top-view in this simulation represents the top-most layer of cells instead of the 
total intensity integrated over z at each pixel.
DOI: 10.7554/eLife.00960.018
The following figure supplements are available for figure 6:

Figure supplement 1. Localization of cooperative benefits is required for self-organization. 
DOI: 10.7554/eLife.00960.019
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Cell growth into open space is required for self-organization
If the cell densities in the initial inoculum were so high that all cell types were forced to be each 
other’s immediate neighbor, then the degree of self-organization might be limited. To test whether 
access to open space is required for self-organization, we initiated communities at high initial cell 
densities such that two cell layers covered the inoculation spot. We then allowed communities to 
grow unperturbed in a spatial environment (Figure 1—figure supplement 1B). Compared to the 
center, the expanding front where open space offered opportunities for self-organization showed 
a significantly higher partner association index (Figure 7, Figure 7—figure supplement 1). In the 
community center, cooperators were not favored over cheaters. In contrast, R←L→A:C←L increased pro-
gressively above the initial value of 1 as the community grew into open space away from the inoculum 
(Figure 7). Thus, similar to what has been observed for homotypic cooperation (Datta et al., 2013; 
Van Dyken et al., 2013), growth into open space during range expansion also favors heterotypic 
cooperation over cheating.

Discussion
Using an engineered yeast community and a mathematical model devoid of partner recognition, 
we examined how partner-fidelity feedback unfolds in a spatial environment at the individual cell 
level. In our system, partner cells released essential metabolites for cooperators and cheaters, and 
cooperators reciprocated with a different essential metabolite while cheaters did not. We found 
that despite an initially random or periodic spatial distribution, cells ‘self-organized’ into a non-random 
and non-symmetric pattern: cooperators had more partner neighbors than cheaters did. The level 
of differential partner association, as quantified by the partner association index, is correlated with 
how much cooperators outperform cheaters despite the intrinsic fitness advantage of cheaters 
over cooperators.

What is required for self-organization? Self-organization is driven by the asymmetry between 
cooperators and cheaters in the amount of spatially localized benefits they supply to the heterotypic 
partner during cell growth into open space. Our previous work has shown that if two distinct popu-
lations receive spatially localized large fitness benefits from each other, then the two populations are 
expected to intermix (Momeni et al., 2013). In contrast, when the fitness benefit to at least one 
population is small, then cell types are not expected to intermix (Momeni et al., 2013). Consequently, 
partners intermix with cooperators but not cheaters (Figures 3–7). This difference in the tendency 
to intermix causes differential partner association, which facilitates the growth of cooperators and 
isolates and disfavors cheaters. Indeed in simulations, if intermixing was prevented through delo-
calizing benefits (Momeni et al., 2013; Allen et al., 2013), or if intermixing was imposed on all 
cells through high initial cell densities, self-organization and cooperator advantage over cheaters 
diminished (Figure 6—figure supplement 1, Figure 7). Similar trends are observed in recent 
works which mathematically examined diffusion of public good in homotypic cooperation (Allen 
et al., 2013; Borenstein et al., 2013).

Simulations showed that spatial self-organization could discriminate among cooperators that 
supply different levels of benefits (Figure 4). When cooperative benefits were limiting, the most 
‘helpful’ cooperator ended up with the highest number of partners and was most favored. In our 
mathematical model, we could be sure that this was not due to partner recognition. Thus, in theory, 
self-organization through partner fidelity feedback is capable of achieving finer levels of discrimination 
without requiring sophisticated cognition and memory. Without knowing the molecular mechanisms 
of interactions, one could easily confuse partner fidelity feedback with partner recognition, because 
both are capable of discriminating partners of varying cooperative qualities. Our work suggests 
that any argument on partner recognition in a system that is intrinsically spatial (such as legume 
and rhizobia and fig and colonizing fig wasp) will require identifying variants that fail to distinguish 
cooperators from cheaters. Otherwise, interpreting cheater discrimination as ‘partner choice’ can 
be misleading.

Spatial self-organization can fend off cheaters with large fitness advantages over cooperators 
(Figure 4D). However, if (non-isogenic) cheaters are much better than cooperators at taking up low 
concentrations of benefits, then cheaters will destroy heterotypic cooperation even in a spatial environment 
(experimental results in Figure 4—figure supplement 2). In byproduct mutualism (benefit produc-
tion incurs no cost and thus non-producers have no fitness advantage over producers), non-producers 
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are excluded and disfavored in a spatial envi-
ronment (Figure 4—figure supplement 3).  
Furthermore, high levels of non-producers can 
still destroy byproduct mutualism in a spatial 
environment (simulation results in Figure 4—
figure supplement 3). This is because non-
producers compete with producers for benefits 
from the partner. If the initial level of non-producers 
is too high, producers receive few benefits and 
suffer, which in turn negatively impacts the partner.

Conceptually, spatial self-organization favoring 
heterotypic cooperation can be considered as 
an example of niche construction or environ-
mental feedback (Lehmann, 2007; Pepper, 2007). 
Cooperators construct favorable niches and 
cheaters construct unfavorable niches for partners. 
Through differential partner association, partners 
construct better niches for cooperators than for 
cheaters. Niche construction not only affects the 
growth of current cells, but also that of the future 
progeny. This reciprocal niche construction favors 
heterotypic cooperation over cheating.

In summary, spatial self-organization is the 
mechanism for partner fidelity feedback. Not 
requiring the evolution of partner recognition 
(Travisano and Velicer, 2004; Foster and 
Wenseleers, 2006), spatial self-organization 
offers a simple and fundamental mechanism 
solely driven by acts of strong cooperation and 
cheating during cell growth into open space. 
Even in natural heterotypic cooperative systems 
with long evolutionary histories, self-organization 
may act either alone or in synergy with potential 
recognition mechanisms (Weyl et al., 2010) to 
exclude cheaters.

Materials and methods
Engineered yeast strains
R←L→A, G←A→L , and C←L were respectively WS950 
(MATa ste3::kanMX4 lys2Δ0 ade4::ADE4(PUR6) 
ADHp-DsRed.T4), WS954 (MATa ste3::kanMX4 
ade8Δ0 lys21::LYS21(fbr) ADHp-venus-YFP), and 
WS962 (MATa ste3::kanMX4 lys2Δ0 ADHp-CFP).

Community growth and 
measurements
To grow yeast communities, agarose columns 

were prepared by pouring 2× concentrated SD minimal medium (Guthrie and Fink, 1991) with 2% 
low melting temperature agarose either into flat-bottom 96-well plates (Figure 1—figure supple-
ment 1A) or into rectangular petri dishes (Figure 1—figure supplement 1B). Agarose in the rec-
tangular petri dishes was subsequently cut into 24 mm × 24 mm × 4 mm pads. For competition 
experiments, 2× SD was supplemented with lysine and adenine (650 μM and 430 μM final concentra-
tions, respectively). The communities on agarose were inoculated either from a uniform distribution of 
all cells (Figure 1—figure supplement 1A at 3000 or 10,000 total cells/mm2) or a high-density inoculum 
of ∼2 mm diameter (Figure 1—figure supplement 1B at ∼8 × 104 total cells/mm2), as specified. 

Figure 7. Cell growth into open space is required for 
self-organization and cheater isolation. In an unper-
turbed spatial environment, a community starting from 
a high-density (∼105 total cells/mm2) confluent inoculum 
expanded to new territories (purple). Compared to 
‘Center’, self-organization was significantly more in 
‘Expanding front’. Consequently, the initially  
1:1 R←L→A :C←L  ratio changed in favor of cooperators as 
the community expanded outward but not in ‘Center’. 
Sections were collected from three independent 
communities. Using the Mann–Whitney U-test, the 
association indexes of the ‘Center’ and of the ‘Expanding 
front’ were significantly different (p = 4 × 10−4). Exp: 
experiment.
DOI: 10.7554/eLife.00960.020
The following figure supplements are available for 
figure 7:

Figure supplement 1. Vertical cross-sections of 
communities started from a high-density inoculum. 
DOI: 10.7554/eLife.00960.021
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We grew well-mixed liquid cocultures in 3 ml of 1× SD without supplementing adenine or lysine, 
with initially 5 × 105 total cells/ml. In all cases, cultures were initiated from equal proportions of R←L→A, 
G←A→L , and C←L populations. Flow cytometry was used to measure population sizes of different types in 
a community (Momeni et al., 2013). Fluorescent imaging equipment and procedures are described in 
Momeni et al. (2013). Cryosectioning to obtain vertical cross-sections of yeast communities followed 
Momeni and Shou (2012).

Quantification of partner association
We quantified the relative association of cooperators and cheaters with the heterotypic partner by 
dividing the average number of immediate G←A→L  neighbors per focal R←L→A cell by the average number 
of immediate G←A→L  neighbors per focal C←L cell when a focal cell neighbored at least one different 
population (ARG/CG , partner association index). We chose to count the immediate G←A→L  neighbors 
because nearest neighbors presumably had the greatest impact on the growth of the focal cell due to 
spatially localized benefits. We chose to analyze focal cells neighboring at least one different population 
because cells surrounded by their own types do not contribute as much to population growth as cells 
surrounded by partners.

In simulations, a three-dimensional neighborhood around each cell was used to quantify the association 
index (A3D

RG/CG), whereas in experiments, a two-dimensional neighborhood was used in two-dimensional 
top-views or cross-sections of the community. Based on fluorescence intensities in the DsRed, YFP, and CFP 
channels, cell types were assigned to each pixel in fluorescent images. Pixels having fluorescence intensi-
ties less than 30% above the background in all fluorescence channels were defined as ‘no signal’. Otherwise, 
fluorescence intensities in each channel were normalized to their respective image-wide 90th percentile 
values and pixel identity was assigned to be the same as the fluorescence channel with the highest normal-
ized intensity. For cross-sections taken from the center of communities in Figure 7, the top crown of cross-
sections appeared very bright, whereas the middle and lower regions appeared dim (Figure 7—figure 
supplement 1). This large dynamic range caused artifacts in cell identification. The intensity thresholds in 
these sections were therefore manually adjusted to increase the accuracy of cell identification. Eliminating 
manual adjustments did not alter the conclusions.

The diffusion model
To simulate the growth of three-dimensional yeast communities, we used the agent-based diffusion 
model (Momeni et al., 2013). In this model, metabolites are released by cooperators and partners, 
diffuse throughout the community and agarose, and are consumed by cells that need the metabolite. 
Most parameters were measured experimentally (Figure 2—source data 1). We provide a summary 
of the most relevant features of the model below, without repeating the implementation details 
that can be found in Momeni et al. (2013).

Cells take up their required metabolites depending on the local concentration of the metabolite ac-
cording to the Michaelis–Menten equation:

vi(Si)= vm,i
Si

Si+Ki
,

where, i = R←L→A, G←A→L , or C←L corresponding to each cell type, Si is the concentration of the required 
metabolite for each cell type (Si = SL, lysine concentration for R←L→A and C←L, and Si = SA, adenine 
concentration for G←A→L ), vm,i is the maximum uptake rate when metabolites are abundant, and Ki is 
assumed to be equal to the Monod constant (the concentration of limiting nutrient at which half maximal 
growth rate is achieved) for each cell type. R←L→A and C←L cells require αL fmole of lysine and G←A→L  cells 
require αA  fmole of adenine to produce a new daughter cell.

The distribution of metabolites is modeled using the diffusion equation, with uptake and release as 
sinks and sources. Using simplified notations of SA = SA(t) and SL = SL(t) at time t, the metabolite 
distributions after a time step tu are calculated as

SA(t+tu)=SA+tu[∇ ⋅(D∇SA)−vm,G
SA

SA+KA
nG+γAnR], and
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Here, nR, nC, and nG are, respectively, the densities of live R←L→A, C←L, and G←A→L  cells in a focal com-

munity grid. ˆ ˆ ˆx y z
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

 is the vector differential operator. ′
G

n  is the density of G←A→L  cells that 

die (which is distributed as binomial (nG, p) where p = tu·dG, with dG being the death rate of G←A→L  ) and 
release lysine in the time step tu. D is a spatially varying function representing the diffusion coefficient 
in the environment (the value of D was 360 μm2/s inside agarose, 20 μm2/s inside yeast communities, 
and 0 μm2/s in the surrounding air, according to experimental measurements). Considering D as a 
spatially varying function simplifies the numerical calculations by automatically incorporating the 
boundary conditions at the community–air interface. vm,i , the maximum uptake rate of the limiting 
nutrient per cell, relates to the maximum growth rate rm,i  through , ,= ln2

m i i m i
v rα , where αi is the 

amount of limiting nutrient required to produce a new cell (αR = αC =αL and αG =αA). C←L has a fixed 
intrinsic fitness advantage over R

←L
→A at all lysine concentrations. This advantage was modeled as a 

higher uptake rate for the limiting nutrient. For example, a 2% fitness advantage of cheaters means 
vm,C = 1.02 vm,R or equivalently rm,C = 1.02 rm,R. βL is the amount of lysine released upon the death of a 
G←A→L  cell, and γA is the release rate of adenine per R←L→A cell. C←L cheaters do not release any adenine. 
For other types of cheaters that release adenine with a lower rate compared to cooperators (e.g., in 
Figure 4), a corresponding release term is included in the equation.

To solve this diffusion equation, we follow the above finite difference time-domain equations over 
time. The diffusion equation is solved over two separate spatial domains (Momeni et al., 2013), one 
containing the agarose (with a 60 μm grid size), and the other containing the community and the air 
above it (with a 15 μm grid size). These grid sizes accommodated different diffusion coefficients in 
agarose and in community and represented the average distance nutrient molecules diffuse in 3.5 s. 
When we used the same diffusion coefficient (360 μm2/s and one grid size of 50 μm) for agarose and 
community, similar results were obtained. No-flow (∂Si/∂z= 0) boundary conditions are applied to the 
top and bottom surfaces of the simulation domain and periodic boundary conditions are applied to 
the four vertical sides of the domain.

To incorporate the effects of competition for other shared resources, the growth of all cells also 
depended on, in addition to adenine or lysine, a shared resource (for instance, glucose) that was 
initially supplied in the medium (Figure 2—source data 1). In such simulations, diffusion and uptake 
of glucose were also simulated in a way similar to the above equations. Each cell divided only after 
acquiring enough glucose, in addition to adenine or lysine. Once a cell had accumulated one metabolite 
sufficient for one cell division, it stopped consuming that metabolite and continued to acquire the 
second metabolite until a sufficient amount had been acquired to trigger the birth of a daughter 
cell.

In simulations, R←L→A, C←L, and G←A→L  cells are initially randomly distributed on the surface of solid 
medium. The cells start from random initial storage of their required metabolites. In each tu time 
step, each live cell takes up its required metabolites according to the Michaelis–Menten equation 
shown above. Each cell type is assumed to require its limiting metabolite and a shared metabolite 
(αL  lysine for R←L→A and C←L, αA  adenine for G←A→L , and αG  for the shared glucose for all cell types, all 
listed in Figure 2—source data 1) to divide. The state of cells is examined at every τ time interval 
(τ = 6 min, which contains several diffusion tu time steps, but is still much shorter than the minimum 
cell doubling time of ∼2 hr). The cells that have acquired the required amount of limiting metabo-
lites divide.

Cell divisions in a three-dimensional community often required cell rearrangement. Assumptions 
concerning cell rearrangement were derived from experimental observations (Momeni et al., 2013). 
Time-lapse images of the growth of a single fluorescent cell into a microcolony showed that the center 
of the microcolony became brighter due to multiple cell layers when the microcolony grew to larger 
than a five-cell radius (Momeni et al., 2013). Thus, we assumed that each cell initially budded in the 
horizontal plane and pushed others in its immediate neighborhood to the side along the shortest path 
to empty space. Once a cell was completely surrounded on each side by roughly five cells, it either 
budded directly upward with a probability of 70% or randomly budded to one of the sides at the 
same level, pushing up the displaced cell and all the cells above. The probability of 0.7 (instead of 
1) of dividing directly upward is estimated from experimental observations: when individual green-
fluorescent cells were surrounded by many equally fit competing red-fluorescent cells, vertical 
cross-sections showed that as z increased, the progeny of the green-fluorescent cell ‘diffused’ 
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laterally (instead of remaining a vertical line) (Figure 3—figure supplement 1F in Momeni et al., 
2013). Since we cannot experimentally track all possible outcomes of cell rearrangement, this 
assumption is a simplification of reality. This simplification could have contributed to the discrepancy 
between experimental and simulation patterns, although our conclusions from experiments and 
simulations are similar.

The cells also die stochastically corresponding to their fixed death rates (dR, dG, or dC as listed in 
Figure 2—source data 1). After each cell state update (τ), the diffusion coefficient is updated: the 
diffusion coefficient in each community diffusion grid (15 μm × 15 μm × 15 μm, maximally containing 
3 × 3 × 3 = 27 cells of size 5 μm × 5 μm × 5 μm) is assumed to be proportional to the occupancy of 
that grid, changing from 0 to 20 μm2/s. In this three-dimensional agent-based model of community 
growth, the initial conditions of cells, cell death, random direction of growth, and cell rearrangement 
are the only sources of stochasticity; metabolite uptake and diffusion of metabolites in the environ-
ment are modeled as deterministic phenomena.

Most of the parameters used for the simulations (Figure 2—source data 1) are measured experi-
mentally. More details of the implementation and assumptions can be found in Momeni et al. (2013). 
An example of the implementation of this model as a MATLAB code is included in additional files 
(Source code 1).

Yeast strains adapted to low-nutrient conditions
When the ancestral R←L→A, G←A→L , and C←L were periodically mixed on an agarose pad lacking adenine 
and lysine, the final R←L→A:C←L ratios were stochastic, either in favor of cheaters or cooperators 
(Figure 2—figure supplement 1). This is consistent with previous experiments in liquid cocultures 
(Waite and Shou, 2012) that also yielded stochastic cheater outcomes due to an adaptive race 
between R←L→A and C←L. During the adaptive race, both R←L→A and C←L sampled from the same set of 
mutations that enhanced cell fitness in the lysine-limited cooperative environment. The population 
with the fittest mutant rapidly dominated the coculture (Figure 2—figure supplement 1; Waite 
and Shou, 2012).

To mitigate the confounding effect of adaptive race, we used R←L→A and C←L populations preadapted 
to the cooperative environment. First, R←L→A containing a mutation in RSP5 (CT8, see Table 1 in Waite 
and Shou, 2012), known to significantly improve the fitness of lysine-requiring cells under lysine-limitation 
(Waite and Shou, 2012), was crossed to the ancestral C←L to produce a diploid (WS1421). Sporulation 
of the diploid yielded a cyan-fluorescent cooperator (WS1447) and a red-fluorescent cheater (WS1448), 
both harboring the rsp5 mutation. The temperature sensitivity of this rsp5 allele allowed its easy selection 
at 37°C. To avoid confusion, we indicate these cooperators and cheaters as rsp5 R←L→A and rsp5 C←L, 
respectively. Several well-mixed cocultures consisting of rsp5 R←L→A, rsp5 C←L, and the ancestral partner 
G←A→L  (WS954) were initiated at a ratio of 1:1:1. The initial stochastic phase in population dynamics was 
indicative of additional rounds of adaptive races (Waite and Shou, 2012) between rsp5 R←L→A and rsp5 
C←L (Figure 2—figure supplement 2A). After 250 hr, the R←L→A:C←L ratios showed steady trends, suggesting 
the absence of further rapid adaptive races (Figure 2—figure supplement 2A). After ∼500 hr, two of 
the lines (brown) that displayed a steady change of the rsp5 R←L→A:rsp5 C←L ratio in favor of cheaters and 
a final ratio close to 1:1 were frozen down. After reviving these preadapted cocultures (hereafter 
marked as “ ’ ”), R ′←L

→A :C ′←L  continued to decline steadily (Figure 2—figure supplement 2B). 

Propagating well-mixed liquid cocultures from these lines for an additional 400 hr, we observed that 

the R ′←L
→A:C ′←L ratio exhibited a steady decline (Figure 2—figure supplement 2C, ‘In liquid, well-mixed’), 

suggesting a cheater C ′←L  fitness advantage of around 8% (7.5 ± 0.8% SD) over R ′←L
→A . It should be 

noted that since R ′←L
→A and C ′←L  are not isogenic, the fitness advantage of C ′←L  over R ′←L

→A is likely not 
solely due to the lack of adenine overproduction by C ′←L . Nevertheless, this case models an advantage 
for the cheating type over the cooperating type, similar to what might be observed in nature if cheat-
ers and cooperators are of different species (Côté and Cheney, 2005; Jandér and Herre, 2010).
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