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Abstract Patterns of spatial positioning of individuals within microbial communities are often 
critical to community function. However, understanding patterning in natural communities is 
hampered by the multitude of cell–cell and cell–environment interactions as well as environmental 
variability. Here, through simulations and experiments on communities in defined environments, we 
examined how ecological interactions between two distinct partners impacted community 
patterning. We found that in strong cooperation with spatially localized large fitness benefits to 
both partners, a unique pattern is generated: partners spatially intermixed by appearing 
successively on top of each other, insensitive to initial conditions and interaction dynamics. 
Intermixing was experimentally observed in two obligatory cooperative systems: an engineered 
yeast community cooperating through metabolite-exchanges and a methane-producing community 
cooperating through redox-coupling. Even in simulated communities consisting of several species, 
most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are 
the major patterning force, strong cooperation leads to partner intermixing.
DOI: 10.7554/eLife.00230.001

Introduction
Biological interactions drive pattern formation at different levels of organization (Murray, 2003), rang-
ing from developmental patterning within multicellular organisms and biofilms (Shapiro, 1998; Lewis, 
2008; Vlamakis et al., 2008; Chuong and Richardson, 2009), to ecological patterning within multi-
species communities (Levin, 1992; Rietkerk and van de Koppel, 2008; Momeni et al., 2011). 
Patterning, reflecting the relative spatial positioning of individuals with respect to each other, can be 
critical for the proper functioning of a community. Consider microbial communities: in a synthetic com-
munity, three bacterial species, each contributing an essential benefit while simultaneously competing 
for these benefits, can only grow when they are separated by an intermediate distance (Kim et al., 
2008); different types of patterning are correlated with different levels of biofilm growth (Christensen 
et al., 2002; Brenner and Arnold, 2011); branching colony morphology allows more effective spread-
ing across a nutrient-poor surface (Levine and Ben-Jacob, 2004); and in waste treatment granules, the 
layered pattern of bacteria and archaea is thought to facilitate the sequential degradation of sub-
strates (Satoh et al., 2007).

Despite the wide-ranging importance of microbial communities in, for example, human health and 
the biogeochemical cycling of elements, it is still unclear how cell–cell and cell–environment interac-
tions govern the patterning of communities (Elias and Banin, 2012). Understanding the mechanistic 
basis of pattern formation from observations of natural communities is stymied by the multitude of 
cell–cell and cell–environment interactions, as well as environmental variations within and across com-
munities. Thus, it is not uncommon to observe qualitatively different patterns in samples of essentially 
the same type of community (Christensen et al., 2002; Wilmes et al., 2008; Dekas et al., 2009).

*For correspondence: 
bmomeni@fhcrc.org (BM); 
wenying.shou@gmail.com (WS)

Competing interests: The 
authors have declared that no 
competing interests exist

Funding: See page 21

Received: 10 September 2012
Accepted: 27 November 2012
Published: 22 January 2013

Reviewing editor: Diethard Tautz, 
Max Planck Institute for 
Evolutionary Biology, Germany

 Copyright Momeni et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

RESEARCH ARTICLE

http://elife.elifesciences.org/
http://www.elifesciences.org/the-journal/open-access/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.7554/eLife.00230
http://dx.doi.org/10.7554/eLife.00230.001
mailto:bmomeni@fhcrc.org
mailto:wenying.shou@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Biophysics and structural biology | Microbiology and infectious disease

Momeni et al. eLife 2013;2:e00230. DOI: 10.7554/eLife.00230	 2 of 23

Research article

To circumvent the lack of control in natural communities, we employed mathematical and 
experimental systems to systematically investigate how different types of ecological interactions 
might lead to distinct community patterning. Interactions can be classified into different ecologi-
cal types based on their fitness effects on the interacting partners. We focused on the fitness 
effects rather than the molecular mechanisms of interactions, because diverse molecular mecha-
nisms, ranging from physical associations in cell coaggregates and biofilms (Kolenbrander et al., 
2010) to chemical interactions such as quorum sensing (Parsek and Greenberg, 2005), toxin 
warfare (Vetsigian et al., 2011), and metabolite supply (Christensen et al., 2002), all have fitness 
consequences which can be positive, neutral, or negative. Among different ecological interac-
tions, we have placed a special emphasis on strong cooperation, interactions with large positive 
fitness effects on both partners including obligatory cooperation. This is because 1) it is important 
in a wide variety of microbial communities ranging from syntrophic systems critical for nutrient 
cycling (Schink, 2002; Falkowski et al., 2008; McInerney et al., 2009) to pathogenic biofilms 
(Kelly, 1980; Kolenbrander et al., 2010; Elias and Banin, 2012); and 2) the codependence 

eLife digest Microorganisms such as bacteria, archaea and tiny eukaryotes are found 
throughout the biosphere. Some of these microorganisms are pathogens that cause diseases in 
animals, while others provide nutrients, including essential amino acids and vitamins; there are also 
microorganisms that have critical roles in recycling elements such as carbon, nitrogen and oxygen in 
the biosphere. In the natural world, microorganisms interact with their environment and with each 
other, often competing for space, light and nutrients, but sometimes they act cooperatively, which 
benefits all parties involved.

Microbial communities exhibit spatial patterns that reflect the relative positioning of different 
microbes in a community. These patterns can be critical for the proper functioning of a microbial 
community. For example, in the microbial granules that digest organic compounds in waste water, 
the stratified pattern of different microbial species can be thought of as a sequence of catalysts 
needed to perform a series of biochemical processing steps. Thus, it is important to understand the 
mechanisms that drive pattern formation in multispecies communities.

Now, through a combination of simulations and experiments, Momeni et al. have identified two 
features of spatial patterns in two-population microbial communities when pattern formation is 
driven by fitness effects related to the ecological interactions between cells. First, interactions that 
confer significant advantages to at least one of the populations can potentially result in the 
generation of a stable community; the community is stable in the sense that if it is disturbed, it will 
return to its stable population composition following the disturbance. Indeed, in engineered 
Saccharomyces cerevisiae communities, very different initial population ratios converged to the 
same value over time when one strain depended on the other strain, or when the two strains 
depended on each other, but not when the two strains competed.

The second feature applies to microbial communities composed of two cooperating populations: 
whereas two populations that compete with each other tend to segregate, cooperation results in 
the members of the two populations mixing together. Momeni et al. observe the formation of such 
an “intermixed” community in simulations, and also in two experimental systems that involve 
cooperation—a community containing two different strains of yeast cooperating through 
metabolite exchange, and a biofilm in which Methanococcus maripaludis, an archaeon that produces 
methane, cooperates with the bacterium Desulfovibrio vulgaris.

These two features of spatial patterning are conceptually similar to the competitive exclusion 
principle, which states that two species competing for the same resources cannot stably coexist if 
competition is the sole force at work. This principle has, therefore, encouraged scientists to search 
for the other forces that must be responsible for the coexistence of different species. Similarly, by 
predicting the sorts of patterns that will form when the fitness effects of ecological interactions 
between cells are the only forces at work, Momeni et al lay the groundwork for investigations into 
other mechanisms, such as cell–environment interactions and active cell motility, that can govern 
pattern formation in microbial communities.
DOI: 10.7554/eLife.00230.002
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between cooperative partners poses special challenges for isolating and culturing cells (Schink, 
2002; McInerney et al., 2009).

We investigated patterning in three-dimensional communities grown from two fluorescently-
marked populations of cells initially randomly distributed on top of a surface (Figure 1A). Starting 
with a generalized model based on fitness effects of ecological interactions between two popula-
tions (A and B) occurring at a local scale (‘fitness model’), we predicted: 1) interactions benefiting  
at least one partner could potentially allow initially disparate partner ratios to converge over time, 
and 2) unlike other types of ecological interactions that caused partner segregation or layering of 
one population over the other (A over B or B over A), strongly cooperating partners intermixed by 
forming patches that successively accumulated on top of each other (A over B over A over B, etc). 
We tested these predictions experimentally in obligatory cooperative systems including engineered 
yeast communities and syntrophic methanogenic biofilms. Finally, we used the fitness model to show 
‘strongly cooperating partners intermix’ could be generalized to communities consisting of multiple 
species.

Results
All microbial communities exhibit intra- and inter-population competition as cells compete for shared 
resources, including space. Therefore, for simplicity, we use [∼ ∼] to denote the ‘baseline’ competition. 
The fitness effect of baseline competition can start at zero if shared resources are in excess, but will 
eventually become negative as shared resources become limited. In ‘addition’ to competition, interac-
tions between two partners can exert positive, negative, or no fitness effects on one or both partners. 
The ‘net’ fitness effects of all interactions between two partners, including competition, on the two 
partners can be represented as two symbols in a square bracket. There are six possibilities:[∼ ∼] (no 
fitness effects other than those from baseline competition), [∼ ↑] (commensalism, in which one partner 
experiences nothing more than competition whereas the other enjoys an overall fitness benefit even 
when competition has been taken into consideration), [∼ ↓] (amensalism), [↓ ↓] (mutual antagonism), 
[↓ ↑] (victim-exploiter), and [↑ ↑] (cooperation). The identities of partners may be added to the nota-
tion such that A[↓ ↑]B would mean that the overall interaction (including competition) inhibits A and 
promotes B. Under this notation, inter-population toxin-warfare (Vetsigian et al., 2011) would be [↓ 
↓] while inter-population cooperation based on the exchange of distinct net benefits would be [↑ ↑]. 
Some interactions may at the first sight seem cooperative, but the net interaction may turn out not to 
be cooperative after considering the negative effects of competition (Kim et al., 2008). In the game 
theory definition, cooperative acts incur fitness costs to the performers. Here we have taken a more 
liberal definition of cooperation to include mutually-beneficial interactions that may or may not involve 
fitness costs.

Predicting ecological patterning in simple communities using a 
generalized fitness model
To search for ecological patterning rules in microbial communities, we built a three-dimensional fitness 
model that ignored molecular details and instead focused on the fitness effects of interactions (‘The 
fitness model’ in ‘Materials and methods’). Specifically, two populations of cells, marked as red 
and green, were initially randomly distributed on a surface (Figure 1A). Cells grew horizontally 
until sufficiently confined, at which point they grew upward to accommodate the birth of new cells 
(Figure 1—figure supplement 1, Video 1). Thus, no active cell motility was present during community 
growth. The growth rate of a focal cell was determined by its basal fitness as a single cell and by its 
interactions with other cells in a defined interaction neighborhood. To reflect the negative fitness 
effects of intra- and inter-population competition for shared resources ([∼ ∼]), the fitness of the focal 
cell was decreased as the total population size in the interaction neighborhood increased. In addition, 
the focal and partner cells affected each other’s fitness positively (↑), negatively (↓), or neutrally (∼). 
The magnitude of fitness effect is quantitative. Thus, to obtain qualitative ecological patterning rules, 
we focused on strong interactions in which ↑ and ↓ exert fitness effects large enough to be compara-
ble to the recipient’s basal fitness. In most simulations using the fitness model, the basal fitnesses of 
both partners were non-zero, and therefore ↑ represented strong facultative interactions: a participant 
could survive on its own at its basal fitness but fared much better in the presence of its partner.

We first analyzed the population composition of communities formed in the fitness model. 
Simulations (Figure 1—figure supplement 2 and Figure 1—source data 1) and analytical calculations 

http://dx.doi.org/10.7554/eLife.00230
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Figure 1. The fitness model generates two ecological patterning predictions. (A) In all simulated and experimental 
communities (see ‘Materials and methods’), two populations of cells, marked in red and green, were initially 
randomly distributed on a surface unless otherwise stated. The two populations engaged in one of the six 
ecological interactions. Population ratios for the entire community and patterns of vertical cross sections were 
examined. (B) The fitness model predicts that strong interactions beneficial to at least one partner can potentially 
lead to the convergence of initially disparate population ratios (Figure 1—figure supplement 2). (C)–(H) 
Representative vertical cross-sections of simulated communities, each engaging in one of the six types of 
Figure 1. Continued on next page
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(‘Requirements for steady-state ratios in the six 
types of communities’ in ‘Materials and methods’) 
show that for interactions benefiting at least one 
partner, including cooperation ([↑ ↑]), commen-
salism ([∼ ↑]), and exploitation ([↓ ↑]), different 
initial partner ratios can potentially converge over 
time (Figure 1B). Ratio convergence requires 
‘balanced’ fitness. For example, for A[∼ ↑]B to 
achieve ratio convergence, the basal fitness of 
A must be higher than that of B and after gaining 
the fitness benefit from commensalism, B must be 
able to grow at least as fast as A. This way, a 
situation incompatible to ratio convergence, that 
is, one partner always fitter than the other, does 
not occur. Using engineered competitive, oblig-
atory commensal, and obligatory cooperative 
yeast communities (see below), we confirmed 
that population ratios converged in the com-
mensal and cooperative but not competitive 
communities (Figure 2—figure supplement 1). 
This convergence of population ratios reflects a 
balance between supply and consumption when 
growth is limited by supply (Shou et al., 2007): if, 
for instance, the supplier population suddenly 
increased in relative abundance, then each indi-
vidual in the consumer population would receive 
more benefit and grow faster, which would return 
the ratio to its original value.

We next examined patterns in vertical cross-
sections of communities simulated by the fitness 
model (Figure 1A, parameters in Figure 1—
source data 1), because patterning along the 

x and y directions can depend on the initial spatial distribution of cells whereas patterning along the 
vertical z direction results from growth under the fitness influences of ecological interactions. In [∼ ∼], 
[∼ ↓], and [↓ ↓], red and green populations primarily formed columns that are spatially segregated 
from each other (Figure 1C–E). In [↑ ↓] and [∼ ↑], frequently one of the populations (green) either 

ecological interactions, are presented. The fitness effects of ↑and ↓are large compared to the non-zero basal 
fitness of the recipient (Figure 1—source data 1), and therefore [↑↑] is strong facultative cooperation. 
(I) Vertical cross-sections of single-cell thickness from cooperative communities show significantly more intermixing than 
those from other communities (n = 28 sections; p<0.01, Mann–Whitney U test). An intermixing index of 6 (red dotted 
line) or above separates cooperative from non-cooperative communities in our simulations. To reduce the correlation 
of sections sampled from the same community, nearest sections were separated by at least seven sections.
DOI: 10.7554/eLife.00230.003
The following source data and figure supplements are available for figure 1:

Source data 1. Parameter values used in the fitness model.

DOI: 10.7554/eLife.00230.004
Figure supplement 1. Cell rearrangement in simulations follows experimental observations on cells that are not 
actively motile. 
DOI: 10.7554/eLife.00230.005

Figure supplement 2. The fitness model predicts that convergence of population ratios is possible when an 
interaction benefits at least one partner. 
DOI: 10.7554/eLife.00230.006

Figure supplement 3. Strong mutual antagonism can lead to rapid divergence of population ratios. 
DOI: 10.7554/eLife.00230.007

Figure 1. Continued

Video 1. Yeast cells bud to the sides when there is 
available space and bud upward when sufficiently 
confined (corresponding to Figure 1—figure 
supplement 1A). To infer the process of cell 
rearrangement in three-dimensional communities, we 
monitored how single YFP-fluorescent yeast cells grew 
into microcolonies on top of solid agarose. Initially, 
dividing cells pushed other cells to the side such that all 
cells remained in the same plane. When a cell was 
sufficiently confined from the sides by other cells 
(approximately within a 5-cell radius), it could no longer 
bud to the side and instead budded upward, as indicated 
by higher intensities in the fluorescence images. 
Continued growth of microcolony forced more cells in 
the middle to send their progeny to upper layers, while 
cells close to the edge could still push other cells to the 
side and remain on the agarose surface. All images are 
taken with the same exposure time. Scale bar is 20 μm.
DOI: 10.7554/eLife.00230.008
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formed a column or became covered by the partner population (red) (Figure 1F–G). Only in coop-
eration ([↑ ↑]) conferring large fitness benefits to both partners, the two partner populations appeared 
to be extensively ‘intermixed’, manifested as the two different cell types successively piling on top of 
each other (Figure 1H).

To compare levels of intermixing in different communities, we defined an ‘intermixing index’ as 
the average number of cell type transitions spanning community height (‘Spatial analysis’ in ‘Materials 
and methods’). Since the intermixing index can be a function of community height, we compared 
intermixing indexes of simulated communities at equivalent heights. Statistically significant differ-
ences were observed between strong cooperation versus other types of interactions (Figure 1I). 
Thus, we predicted that partner intermixing would distinguish strong cooperation from other eco-
logical interactions.

Partner intermixing in engineered obligatory cooperative yeast 
communities and a corresponding diffusion model
To test the prediction that strong cooperation is the only ecological interaction capable of driving 
partner intermixing, we engineered yeast communities engaged in competitive ([∼ ∼]), obligatory com-
mensal ([∼ ↑]), and obligatory cooperative ([↑ ↑]) metabolic interactions. Competitive communities 
represented the baseline intra- and inter-population competition common to ‘all’ communities, while 
commensalism served as the most stringent control to be discriminated against.

All engineered yeast communities consisted of two non-mating S. cerevisiae strains, a G strain 
expressing GFP or YFP and an R strain expressing DsRed (see ‘Materials and methods’). In competi-
tive communities, prototrophic R and G competed for shared nutrients in agarose and for space 
(Figure 2—figure supplement 1A). Depending on their genetic backgrounds, the two strains 
engaged in either equal-fitness or unequal-fitness competition. In obligatory commensal communi-
ties, L

AR←
→  took in lysine from the media and overproduced adenine to feed the adenine-requiring AG←  

(Figure 2—figure supplement 1B). In obligatory cooperative communities (previously described 
as Cooperation that is Synthetic and Mutually Obligatory, or “CoSMO”), L

AR←
→  overproduced ade-

nine and required lysine while A
LG←

→  overproduced lysine and required adenine (Shou et al., 2007) 
(Figure 2—figure supplement 1C). When mixed, the two cooperative strains could form a viable 
community, growing from low to high densities in synthetic minimal medium (SD) lacking adenine 
and lysine (Shou et al., 2007).

To predict and extrapolate experimental results of yeast communities, we developed a three-
dimensional model based on the consumption, release, and diffusion of metabolites in the yeast com-
munities (‘the diffusion model’ in ‘Materials and methods’). Specifically, the diffusion model assumed 
that metabolites diffused in the community and agarose (Figure 2—figure supplement 2) and that 
cell growth depended on the local concentration of its limiting metabolite according to Monod’s 
equation (Monod, 1949). Most parameters in the diffusion model were measured experimentally 
(Figure 2—source data 1). We reasoned that if predictions from the diffusion model were consistent 
with experimental observations, we could use this model to simulate experiments that would be tech-
nically difficult to perform.

To examine vertical patterning in yeast communities, we first used top-view time-lapse images to 
infer patterns which were subsequently verified by cryosectioning. This is because confocal and two-
photon microscopy cannot penetrate deep into yeast communities (Váchová et al., 2009). In competi-
tive communities, whether in the diffusion model or experiments, time-lapse top-views suggested 
population segregation. For equal-fitness competitive communities (Figure 2A, left; Video 2), indi-
vidual cells (i) grew into microcolonies (ii) which continued to grow and expand until they reached 
neighboring microcolonies (iii). After this stage, cells were unable to push other cells to the side, and 
further cell divisions mainly occurred in the vertical z direction (Figure 1—figure supplement 1). 
Consequently, columns of primarily a single cell type formed, and top-views of the community remained 
static (compare iv and v). Competitive communities composed of populations with different fitnesses 
developed similarly (Figure 2A, right; Video 3), except that the fitter population expanded in the top 
view during growth (compare the green population in iv and v).

In obligatory commensal communities, time-lapse top-views suggested a ‘layered’ pattern with one 
population covering the other (Figure 2B; Video 4). We found that in both the diffusion model and 
experiments, L

AR←
→  initially grew rapidly by consuming lysine in the agarose (compare i, ii, and iii). In 

contrast, AG←  initially grew slowly, presumably limited by the low level of adenine released by L
AR←

→  

http://dx.doi.org/10.7554/eLife.00230


Biophysics and structural biology | Microbiology and infectious disease

Momeni et al. eLife 2013;2:e00230. DOI: 10.7554/eLife.00230	 7 of 23

Research article

Figure 2. Obligatory cooperation, but not competition or obligatory commensalism, results in substantial partner intermixing in engineered yeast 
communities and in communities simulated using the diffusion model. Competitive communities of strains with equal fitness (equal-fitness competition, 
abbreviated as ‘Eq-fitness Comp.’) showed population segregation as suggested by static late-stage top-views (A, left) and columnar cross-section 
Figure 2. Continued on next page

http://dx.doi.org/10.7554/eLife.00230
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before L
AR←

→  became abundant (compare i, ii, and iii). During the growth of L
AR←

→ , some AG←  cells had 
been pushed to the top layer of the community (iii). As the L

AR←
→  population continued to expand and 

release adenine, AG←  started to grow rapidly (compare iii and iv). Eventually, L
AR←

→  stopped growing 
after lysine in the agarose had been depleted. Since the amount of adenine released during the life-
time of every L

AR←
→  cell could support the birth of multiple AG←  cells (Shou et al., 2007), AG←  population 

outnumbered and covered L
AR←

→  (v).
In contrast, time-lapse top-views of obligatory cooperative communities suggested population 

intermixing (Figure 2C; Video 5). After plating on agarose lacking adenine and lysine (i), cells in 
both populations divided once or twice by utilizing metabolites stored in their vacuoles (Shou et al., 
2007). L

AR←
→  released adenine and entered the death phase while A

LG←
→  continued to grow by utilizing 

the released adenine (ii) (Shou et al., 2007). A
LG←

→  entered the death phase and released lysine after 
a significant delay due to their better starvation tolerance compared to L

AR←
→  (Shou et al., 2007). 

Released lysine supported the growth of surviving L
AR←

→  cells into microcolonies (iii). L
AR←

→  in turn 
released adenine which promoted growth of nearby A

LG←
→  cells and led to partial covering up of L

AR←
→  

microcolonies by rapidly growing A
LG←

→  (iv and v, insets). Abundant A
LG←

→  cells provided enough lysine 
for rapid growth of local L

AR←
→  cells, which gave rise to patches of L

AR←
→  cells on top of the community 

(vi, inset). These community growth kinetics were consistent with previous measurements in liquid 
cultures (Shou et al., 2007).

To confirm that partners intermixed in cooperative but not non-cooperative communities, we 
obtained vertical cross-sections of competitive, commensal, and cooperative communities at their 
maximal community heights (‘Cryosectioning’ for experimental communities in ‘Materials and meth-
ods’). We found that in both the diffusion model and experiments, equal-fitness competitive com-
munities formed segregated columns (Figure 2D, left). Unequal-fitness (Figure 2D, right) and 
obligatory commensal communities (Figure 2E) displayed a layered pattern in which the top 

patterns (D, left). When competing strains had different fitnesses (unequal-fitness competition, abbreviated as ‘Uneq-fitness Comp.’), the fitter 
population G expanded during growth, as evident in top views (A, right) and vertical cross-sections (D, right). In obligatory commensal communities, 
since one supplier could support the birth of multiple consumers, consumers eventually overgrew and covered suppliers (top-views in B and vertical 
cross-sections in E). Obligatory cooperative communities showed substantial population intermixing as suggested by alternating cell types in top-views 
(C, 6× magnification insets in experiments) and patchy cross-section patterns (F). Top views of communities from the diffusion model integrate intensity 
and color over height such that brighter colors represent higher cell numbers and yellowness indicates the simultaneous presence of green and red. 
Scale bar: 100 μm. All communities started from total 500 cells/mm2 and R:G = 1:1. (G) Quantification of intermixing in experimental (symbols) and 
diffusion-model (lines) communities showed that while the intermixing index remained low for commensal (brown) and competitive (grey and black) 
communities, it increased linearly with community height in obligatory cooperative (magenta) communities. Results from the diffusion model underesti-
mated intermixing indexes because a confined cell was modeled to divide strictly vertically upward (Figure 1—figure supplement 1) without allowing 
cell movements in horizontal directions (Figure 3—figure supplement 1F). (H) A conceptual model illustrates the development of intermixing over time 
in a strongly cooperative community with 1:1 steady-state population ratio. Local deviations from the steady-state ratio result from asymmetric partner 
properties and/or stochastic fluctuations in cell numbers (i). The under-abundant population (red) grows faster than its neighboring over-abundant 
partner (green). Due to the spatial localization of large cooperative benefits, cells near population borders grow faster than those farther away. 
Consequently, cells from the initially under-abundant red population at the border divide the fastest. Progeny that pile on the green partner have 
more access to cooperative benefits than those who do not (ii), which favors intermixing. When the previously over-abundant partner becomes under-
abundant (iii), piling-up in the opposite direction occurs (iv, green on red).
DOI: 10.7554/eLife.00230.009
The following source data and figure supplements are available for figure 2:

Source data 1. Definitions and values of parameters used in the diffusion model.

DOI: 10.7554/eLife.00230.010
Figure supplement 1. In engineered yeast communities, obligatory cooperation and obligatory commensalism allow initially different partner ratios to 
converge over time. 
DOI: 10.7554/eLife.00230.011

Figure supplement 2. Basic assumptions in the diffusion model. 
DOI: 10.7554/eLife.00230.012

Figure supplement 3. Cooperative communities exhibit a characteristic patch size associated with the spatial localization of benefits. 
DOI: 10.7554/eLife.00230.013

Figure supplement 4. Obligatory cooperative yeast partners intermix. 
DOI: 10.7554/eLife.00230.014

Figure 2. Continued

http://dx.doi.org/10.7554/eLife.00230
http://dx.doi.org/10.7554/eLife.00230.009
http://dx.doi.org/10.7554/eLife.00230.010
http://dx.doi.org/10.7554/eLife.00230.011
http://dx.doi.org/10.7554/eLife.00230.012
http://dx.doi.org/10.7554/eLife.00230.013
http://dx.doi.org/10.7554/eLife.00230.014
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portion of a community was dominated by one 
partner. In contrast to competitive and obligatory 
commensal communities, obligatory coopera-
tive communities appeared to show population 
intermixing with patches of red and green cells 
emerging on top of each other (Figure 2F and 
Figure 2—figure supplement 4A and B). 
Cooperative intermixing appeared to be less in the 
diffusion model than in yeast communities. This is 
presumably because the diffusion model assumed 
that a confined cell would bud strictly upward 
whereas in yeast communities, cell divisions could 
stray to the side (Figure 3—figure supplement 1F).

To compare levels of intermixing in different 
communities, we quantified the intermixing index 
of each community (Figure 2G, symbols for 
experiments and lines for results from the diffu-
sion model). As expected, equal-fitness compe-
tition resulted in small intermixing indexes at all 
community heights (Figure 2G, grey). In unequal-
fitness competition (Figure 2G, black) and oblig
atory commensalism (Figure 2G, brown), the 
formation of a layered pattern caused a small 
increase in the intermixing index that subse-
quently leveled off. In contrast, the intermixing 
index in obligatory cooperative communities 
increased proportionally to community height 
in both experiments and the diffusion model 
(Figure 2G, magenta). This proportionality sug-
gested the existence of a characteristic patch size 
(‘Spatial analysis’ in ‘Materials and methods’), 
denoted z

*λ , of 10–20 µm. The characteristic 
patch size was independent of initial conditions 
(Figure 2—figure supplement 3A). Indeed, a cal-
culation of the patch size based on experimentally-
determined release, diffusion, and consumption 
of exchanged metabolites yielded comparable 
results (‘Calculating the characteristic patch size 
in cooperative yeast communities’ in ‘Materials 
and methods’).

What caused partner intermixing during coop-
eration? Using the diffusion model, we found that 
if cooperative benefits were not spatially local-
ized because of instant distribution of benefits 
throughout the community or because of exces-
sive supply levels, intermixing was diminished 
(Figure 2—figure supplement 3B). Based on this 
result and based on patterns observed in top-
views and vertical cross-sections of cooperative 
communities, we propose that local deviations 
from the steady-state ratio coupled with localized 

large cooperative benefits cause partners to ‘take turns’ to grow, which leads to population intermix-
ing (Figure 2H). In summary, in communities engaging in strong cooperation, but not in communities 
governed by other types of ecological interactions, the intermixing index increases proportionally as a 
function of community height. This proportionality is due to a fixed patch size determined by localized 
nutrient supply and consumption.

Video 3. In unequal-fitness competition, the fitter 
population gradually covers the less fit population 
(corresponding to Figure 2A, right). Here, G is fitter 
than R. The community started from a uniform 
distribution of total 500 cells/mm2 and R:G = 1:1. 
Intensities of both fluorescent channels in images at 
different times were normalized to the same maximum 
value for better representation of patterns throughout 
growth. Scale bar is 100 μm.
DOI: 10.7554/eLife.00230.016

Video 2. Top views of an equal-fitness competitive 
community suggest population segregation 
(corresponding to Figure 2A, left). Competitive 
communities of strains with equal fitness showed 
population segregation as suggested by static 
late-stage top-views. The community started from a 
uniform distribution of total 500 cells/mm2 and R:G = 1:1. 
Intensities of both fluorescent channels in images at 
different times were normalized to the same maximum 
value for better representation of patterns throughout 
growth. Blanks in the video were due to removal of the 
dish to sample other replicate communities for 
flow-cytometry or sectioning. Scale bar is 100 μm.
DOI: 10.7554/eLife.00230.015

http://dx.doi.org/10.7554/eLife.00230
http://dx.doi.org/10.7554/eLife.00230.016
http://dx.doi.org/10.7554/eLife.00230.015
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Video 5. Top views of an obligatory cooperative 
community suggest populations intermixing 
(corresponding to Figure 2C). For a detailed 
explanation of the growth kinetics of the community 
( L

AR←
→  [↑↑] A

LG←
→ ), please refer to the main text. The 

community started from a uniform distribution of total 
500 cells/mm2 and L

AR←
→ : A

LG←
→  = 1:1. Intensities of both 

fluorescent channels in images at different times were 
normalized to the same maximum value for better 
representation of patterns throughout growth. Blanks 
in the video were due to removal of the dish to sample 
other replicate communities for flow-cytometry or 
sectioning. The video started at ∼300 hr, after the 
formation of L

AR←
→  microcolonies. Scale bar is 100 μm.

DOI: 10.7554/eLife.00230.018

Strongly cooperative partners 
intermix under a wide range of 
conditions
Under what conditions can we observe partner 
intermixing in cooperation? First, we experimen-
tally tested partner intermixing in obligatory yeast 
cooperative communities initiated under differ-
ent population ratios and densities. Next, we 
used the diffusion model to examine communities 
in which obligatory cooperative partners inter-
acted with different dynamics. Finally, using the 
fitness model, we tested intermixing in facultative 
cooperation by varying the relative magnitude of 
cooperative benefits compared to the basal fit-
ness of the two interacting populations. We uti-
lized yeast communities when experimentally 
possible and otherwise took advantage of the dif-
fusion and the fitness models.

We found that intermixing was insensitive to 
initial conditions in the yeast obligatory cooper-
ative communities. The initial partner ratio did 
not significantly affect the level of intermixing 
(Figure 3—figure supplement 1D). At very high 
initial cell densities, we observed significant inter-
mixing in communities directly above the inocula-
tion area even in the absence of cooperation 
(Figure 3—figure supplement 1E, yellow shad-
ing). This is because high cell densities put differ-
ent cell types in close proximity to one another, 
and cell divisions that were not perfectly straight 
upward (Figure 3—figure supplement 1F) caused 
intermixing. However, we reasoned that commu-
nities beyond the inoculation area might reveal 
patterns indicative of the underlying interactions, 
because these regions are formed by cell growth 
under the fitness influences of interactions. To test 
this possibility, we spotted cell mixtures at high 
densities on agarose and allowed the community 
to expand to new territories beyond the inocu-
lation area. Even though communities directly 
above the inoculum always appeared highly 
intermixed (Figure 3A, ‘Center’ and Figure 2—
figure supplement 4C), in edge sections, signifi-
cant intermixing was only observed in cooperative 
communities (Figure 3A, ‘Edge’ and Figure 2—
figure supplement 4D).

Intermixing is insensitive to interaction dynam-
ics, so long as large cooperative benefits remain 
sufficiently localized for both partners. As 
described above, in the diffusion model, exces-
sive supply amounts or instant distribution of 
benefits throughout the community diminished 
intermixing (Figure 2—figure supplement 3B). 
The former can occur if the local availability of 

cooperative benefits is not growth-limiting. However, cooperative benefits are unlikely to be available 
in large excess because of the potential fitness cost of generating benefits and because of competition 

Video 4. Top views of an obligatory commensal 
community suggest population layering (corresponding 
to Figure 2B). For a detailed explanation of the growth 
kinetics of the community ( L

AR←
→  [∼↑] AG← ), please refer 

to the main text. The community started from a uniform 
distribution of total 500 cells/mm2 and L

AR←
→ : AG←  = 1:1. 

Intensities of both fluorescent channels in images at 
different times were normalized to the same maximum 
value for better representation of patterns throughout 
growth. Blanks in the video were due to removal of the 
dish to sample other replicate communities for 
flow-cytometry or sectioning. Scale bar is 100 μm.
DOI: 10.7554/eLife.00230.017

http://dx.doi.org/10.7554/eLife.00230
http://dx.doi.org/10.7554/eLife.00230.018
http://dx.doi.org/10.7554/eLife.00230.017
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A B

Figure 3. Strongly cooperating populations intermix under a wide range of conditions. (A) In engineered yeast 
communities, even though both obligatory cooperative and non-cooperative communities directly above the 
high-density inoculation spot showed high population intermixing (‘Center’), edge sections (‘Edge’) of obligatory 
cooperative communities showed significantly more intermixing than those from non-cooperative communities 
(Mann–Whitney U test, p<5 × 10−5). A total of 106 R and G cells at a 1:1 ratio were deposited in an inoculation spot 
of ∼2 mm2, corresponding to 10 cell layers. Communities were allowed to grow and expand beyond the inoculation 
spot on a 4-mm-tall agarose pad of 500 mm2 area. Vertical sections from the edges were taken at a height approxi-
mately half of the maximum community height at the center. Box plots show the 25th to 75th percentile range, with 
the median marked with a line and whiskers extending to the 95% confidence interval. (B) In simulations using the 
fitness model, facultative cooperation conferring smaller fitness benefits required greater community heights to 
exhibit a significant level of intermixing. The strength of facultative cooperation is shown as the ratio of fitness benefit 
received from each cooperative partner cell in the interaction neighborhood to the basal fitness of the focal cell. 
Simulation parameters can be found in Figure 3—source data 1. Error bars indicate 95% confidence interval.
DOI: 10.7554/eLife.00230.019
The following source data and figure supplements are available for figure 3:

Source data 1. Parameter values used in the fitness model in Figure 3B.

DOI: 10.7554/eLife.00230.020
Figure supplement 1. Intermixing is observed in obligatory cooperative communities over a wide range of 
conditions.
DOI: 10.7554/eLife.00230.021

for these benefits in the partner population. As far as diffusion is considered, the diffusion model 
showed significant population intermixing in obligatory cooperative communities with diffusion con-
stants varying more than 10-fold (Figure 3—figure supplement 1A). Additional calculations showed 
that intermixing was largely insensitive to diffusion kinetics, because the characteristic patch size 
was related to the diffusion constant by 1/5 power (‘Calculating the characteristic patch size in coop-
erative yeast communities’ in ‘Materials and methods’). The diffusion model also showed that 
intermixing was present with or without a delay in A

LG←
→  supplying lysine benefits to the partner 

(Figure 3—figure supplement 1B). Furthermore, even though asymmetry between properties of 
partners (Figure 2C) would seem to facilitate intermixing (Figure 2H), asymmetry in partner proper-
ties was not required to generate intermixed patterns: partners that grew, died, and released and 
consumed metabolites at identical rates intermixed (Figure 3—figure supplement 1C).

Using the fitness model, we found that in facultative cooperation, small fitness benefits generated 
less intermixing than large fitness benefits (Figure 3B). This result is intuitive: facultative cooperation 
should resemble obligatory cooperation if fitness benefits are large for both partners. When only one 
partner receives a large fitness benefit, facultative cooperation should resemble obligatory commen-
salism. Finally, small fitness benefits for both partners will make facultative cooperation resemble com-
petition. In facultative cooperation with smaller fitness benefits, intermixing would be apparent if 
communities could grow to greater heights. Further experiments are required to test these predic-
tions. Together, these results suggest that intermixing relies on spatial localization of cooperative 
benefits that are sufficiently large to both partners, and is otherwise insensitive to initial conditions or 
the detailed kinetics of interactions.

http://dx.doi.org/10.7554/eLife.00230
http://dx.doi.org/10.7554/eLife.00230.019
http://dx.doi.org/10.7554/eLife.00230.020
http://dx.doi.org/10.7554/eLife.00230.021
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Communities of naturally mutualistic microbes exhibit intermixing
To test whether cooperative patterning applies to other biological systems, we examined redox-
coupling in a two-species methane-producing biofilm consisting of the bacterium Desulfovibrio vul-
garis and the archaeon Methanococcus maripaludis. In the absence of sulfate and hydrogen, the 
two species engage in obligatory mutualism: D. vulgaris ferments lactate and promotes the growth 
of M. maripaludis by supplying the electron donor H2, while M. maripaludis promotes the growth of 
D. vulgaris by consuming the H2 gas which can be inhibitory to D. vulgaris under these conditions 
(Figure 4A). Similar types of syntrophic interactions leading to methane production typically occur 
in microbial consortia that digest organic compounds in freshwater sediments, sewage treatment 
plants, and the guts of ruminants (Conrad et al., 1985; Schink, 1997).

Vertical cross-sections of independent D. vulgaris–M. maripaludis biofilms indeed exhibited increas-
ing intermixing as a function of community height (Figure 4B). Thus, naturally mutualistic microbes 
cooperating through a coupling mechanism different from metabolite exchange also exhibited a sig-
nificant level of intermixing. Other known cooperative communities, including those degrading herbi-
cide pollutants (Breugelmans et al., 2008) and those colonizing teeth (Palmer et al., 2001) also 
seemed to display intermixed patterns, although we do not know whether the intermixing indexes of 
these communities increased linearly with height.

Most of the strongly-cooperative pairs intermix in simulated multi-
species communities
In communities with more than two species, indirect interactions can obscure direct interactions 
(Wootton, 2002). For example, if A promotes B which inhibits C, it will appear that A inhibits C. This 
is akin to indirect interactions between gene products in a cell. To test whether intermixing between 

cooperators was affected by other members 
of a community, we used the fitness model 
to simulate communities composed of five 
interacting species (Figure 5 and Figure 5—
figure supplement 1). We randomly assigned 
one of the six possible ecological interac-
tions between each pair of populations, and 
consequently, each network had 10 pair-
wise interactions. The fitness effects of ↑ 
and ↓ were sufficiently large to be compara-
ble to the recipient’s basal fitness. A total 
of 240 pair-wise interactions in 24 inde-
pendent communities were examined in the 
fitness model. In most cases (26 out of 31), 
cooperative pairs intermixed (Figure 5A,D). 
Occasionally, commensal pairs (Figure 5B, 
② [∼ ↑] ③) showed substantial intermixing 
(3 out of 58 commensal pairs, Figure 5D), 
or cooperative pairs (e.g., Figure 5C, ① [↑ 
↑] ③) showed little intermixing (5 out of 
31, Figure 5D), presumably due to interac-
tions through other community members 
(Figure 5B, ③ indirectly promoted ② through 
④; Figure 5C, ③ promoted ⑤ which inhib-
ited ①). These deviations are consistent with 
the notion that the intermixing index reflects 
the ‘overall’ interaction between two partners, 
integrating any additional fitness effects of 
indirect interactions through other commu-
nity members. Thus, strongly cooperating 
partners intermix while deviations from this 
expectation reflect the presence of strong 
indirect interactions.

Figure 4. Obligatory cooperation through redox-coupling 
leads to partner intermixing. (A) In the absence of sulfate and 
hydrogen, the bacterium Desulfovibrio vulgaris (Dv) and the 
archaeon Methanococcus maripaludis (Mm) cooperate 
through redox coupling. Dv ferments lactate and produces 
mainly acetate, CO2, and H2. However, this reaction is not 
thermodynamically favorable unless H2 is kept at very low 
concentrations. H2 is used by Mm to reduce CO2 to 
methane. (B) In cooperative biofilms of Dv (green) and 
Mm (red), the intermixing index increased with height. Cell 
identification relied on FISH (see ‘Materials and methods’). 
Scale bar: 20 µm.
DOI: 10.7554/eLife.00230.022

http://dx.doi.org/10.7554/eLife.00230
http://dx.doi.org/10.7554/eLife.00230.022
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A

B

C

D

Figure 5. Most of the strongly-cooperative pairs intermixed in simulated five-species communities. (A-C) Examples of 
networks in which cooperative pairs intermixed (A), non-cooperative pairs intermixed (B), or cooperative pairs did not 
intermix (C) are shown. In the schematic network diagrams, line termini of →, ⊣, and — represent ↑, ↓, and ~, respec-
tively; cooperative pairs are highlighted in magenta. Simulations were performed using the fitness model. The basal 
fitness for each population was chosen randomly from a range spanning 0.03–0.05/hr. The fitness effect from each 
partner cell in the interaction neighborhood was either 0 for ∼, or otherwise randomly chosen to be approximately 2–3% 
of basal fitness to achieve strong interaction. Initial population ratios were randomly assigned such that no population 
was initially lower than 5% of the total population. Simulations were run for 10 generations, and vertical cross-sections of 
the final communities were examined for intermixing. We considered intermixing index exceeding a threshold of 6 
(Figure 1I) as significant (red dotted lines). The remaining nine panels in Figure 5B and C are provided in Figure 5–
figure supplement 1. (D) Quantifying intermixing in a total of 240 interactions from 24 independent communities 
showed that most of the cooperative pairs intermixed (magenta). Indirect interactions through other community 
members could make cooperative pairs not intermixed (grey) or non-cooperative (commensal) pairs intermixed (brown).
DOI: 10.7554/eLife.00230.023
The following figure supplements are available for figure 5:

Figure supplement 1. The complete results of Figure 5B and C (panel A and B, respectively).
DOI: 10.7554/eLife.00230.024

Discussion
Using controlled systems to identify patterns driven by ecological 
interactions
Patterning is driven by cell–cell and cell–environment interactions. Here, we examined how the net 
fitness effects of cell–cell interactions could influence patterning. Using defined mathematical and 

http://dx.doi.org/10.7554/eLife.00230
http://dx.doi.org/10.7554/eLife.00230.023
http://dx.doi.org/10.7554/eLife.00230.024
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biological systems under controlled spatial environments, we have established two expectations for 
ecological patterning between two interacting partners.

The first expectation is that interactions conferring large fitness benefits to at least one partner 
([↑ ↑], [∼ ↑], and [↓ ↑]) can potentially result in ratio convergence (Figure 1—figure supplement 2 
and Figure 2—figure supplement 1). Ratio convergence confers stability to community composi-
tion. The composition of a community is defined to be locally (or globally) stable if after small (or 
any-size) deviations from it, either due to initial conditions different from it or perturbations, the 
community eventually returns to this composition. An analytical calculation based on the fitness 
model showed that in [↑ ↑] and [∼ ↑], global stability can be achieved whereas in [↓ ↑], local stability 
can be achieved (Figure 1—figure supplement 2; ‘Requirements for steady-state ratios in the six 
types of communities’ in ‘Materials and methods’). Experimentally, obligatory cooperation and 
obligatory commensalism led disparate initial ratios to converge (Figure 2—figure supplement 1). 
In contrast, in competition between two populations of equal fitness, population ratio is determined 
by the initial value until a perturbation resets the value which will remain unchanged until the next 
perturbation. In competition between two populations of unequal fitness, the fitter population 
should increase in frequency and therefore, population ratio is unstable. In amensalism and mutual 
antagonism, population ratios at best have an unstable fixed point (Figure 1—figure supplement 
2B). This means that even if the population ratio may seem ‘fixed’, slight deviations will send it far-
ther and farther away from the original fixed value. The reason for this instability, using mutual 
antagonism as an example, is because if A inhibits B and B inhibits A (A[↓ ↓]B), then an increase in 
population A will facilitate inhibition of B and therefore make B less able to inhibit A, further increas-
ing the relative abundance of A.

The second expectation is that strong cooperation results in partner intermixing in the direc-
tion vertical to the surface of initial colonization. Cooperative intermixing requires spatially local-
ized benefits that are sufficiently large to both partners (Figure 2—figure supplement 3 and 
Figure 3B), and otherwise appears to be robust against variations in initial conditions (Figure 2—
figure supplement 3A, Figure 3A, and Figure 3—figure supplement 1D) or reaction dynamics 
(Figure 3—figure supplement 1A–C). We have observed cooperative intermixing in the fitness 
model simulating strong facultative cooperation (Figure 1) and in obligatory experimental sys-
tems including engineered yeast communities (Figure 2) and syntrophic biofilms (Figure 4). The 
intermixing indexes in these communities increased linearly as a function of community height, 
because these communities exhibited fixed-size patches associated with the spatial localization  
of benefits (Figure 2—figure supplement 3; ‘Calculating the characteristic patch size in coopera-
tive yeast communities’ in ‘Materials and methods’). This is in stark contrast with other ecological 
interactions which lead to segregated or layered patterns (Figures 1 and 2) in which the intermix-
ing index remained low or increased transiently before leveling off. In simulated multi-species 
communities, strongly cooperative pairs intermixed in most cases; cases where cooperative pairs 
did not intermix or non-cooperative pairs intermixed were likely caused by strong indirect interac-
tions through other partners. In a theoretical study using a one-dimensional stepping-stone model, 
strongly cooperating partners also appeared much more mixed than competing partners (Korolev 
and Nelson, 2011).

Our work defines the expected pattern created by pair-wise interactions if the fitness effects of 
interactions are the main driving force of patterning. The generality of these ecological patterning 
conclusions awaits further experimental validations. Many simple communities grown in laboratory 
environments conform to these findings. For instance, competing bacterial species form a columnar 
or layered pattern (Palmer et al., 2001; Kreth et al., 2005; An et al., 2006; Hallatschek et al., 
2007; Bernstein et al., 2012). Burkholderia sp. LB400 and Pseudomonas sp. B13(FR1) show spatial 
segregation as competitors when grown on citrate, but when grown on chlorobiphenyl they engage 
in metabolic commensalism and exhibit a layered pattern (Nielsen et al., 2000). Similarly, when 
grown on a non-selective carbon source, Comamonas testosteroni WDL7 outcompeted and covered 
Variovorax sp. WDL1, but when fed with an aromatic compound as the sole carbon source, competi-
tion switched to cooperation and the two populations intermixed (Breugelmans et al., 2008). 
Cooperative oral bacteria species intermixed when grown on saliva (Palmer et al., 2001; Periasamy 
and Kolenbrander, 2009). If cooperative intermixing is suspected, then examining whether the 
intermixing index increases linearly as a function of community height will be informative to exclude 
transient increases.

http://dx.doi.org/10.7554/eLife.00230
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Deviations from the expected ecological patterns suggest other major 
patterning forces
We have described the expected patterning between two cell populations if the fitness effects of 
interactions are the major driving force. These expectations are abstract in the sense that in reality, no 
interactions can exist in the absence of molecular mechanisms or an abiotic environment. Assigning 
expected patterns to different types of ecological interactions will allow us to identify deviations from 
expectations. Determining the causes of such deviations will help us better understand the biology of 
a community.

Fitness effects of ecological interactions rely on molecular mechanisms to manifest themselves. 
Different types of molecular mechanisms can conceivably alter patterning. For instance, in the fit-
ness and the diffusion models and in the S. cerevisiae communities, cells divide upward when 
sufficiently confined horizontally. This type of cell rearrangement has also been observed in bacte-
rial colonies (Kreft et al., 1998) and was adopted to model biofilm growth (Xavier and Foster, 
2007). However, it is conceivable that if at least one population actively moves (Houry et al., 
2012) or grows hyphae to penetrate the entire community, two populations might appear inter-
mixed even if they do not cooperate. In biofilms of Pseudomonas aeruginosa, two populations 
differing only in fluorescent colors (Klausen et al., 2003) showed modest intermixing even though 
the expectation for equal-fitness competition is a columnar pattern with an intermixing index close 
to zero (Figure 2D, left). This modest intermixing was caused by P. aeruginosa differentiating into 
non-motile ‘stalk’ cells that anchored to the surface and motile cells that climbed up to form the 
mushroom-like caps (Klausen et al., 2003).

Environmental influences can also alter ecological patterning. For instance, if two cooperating pop-
ulations have very different preferences for oxygen, then the two populations are likely not to intermix 
and instead form layers in which the aerobic population is exposed to oxygen while the anaerobic 
population is protected from oxygen.

What can cause variability in patterning?
Variability in patterning has been observed within and between communities (Christensen et al., 2002; 
Wilmes et al., 2008; Dekas et al., 2009), even if they were grown in laboratory-controlled environ-
ments (Christensen et al., 2002). Stochastic events such as environmental variability, mutations, or 
fluctuations in initial conditions can all lead to variable patterns. For instance, if the straight-columnar 
pattern expected for equal-fitness competition is observed for the majority of community but a lay-
ered pattern is observed in occasional locations, then fitter mutants may have arisen in these locations, 
initiating unequal-fitness competition (Hallatschek et al., 2007; Korolev et al., 2012). For mutually 
antagonistic interactions, the fitness model showed that population ratios can quickly diverge. Thus, which 
population eventually dominates depends on the initial population ratio (Figure 1—figure supplement 3). 
In this case, stochastic variations in initial conditions can result in dramatically different patterns, giving 
rise to a phenomenon equivalent to ‘survival of the first’. Indeed, different patterns have been observed 
for communities formed by two antagonistic bacteria species (Kuramitsu et al., 2007).

In summary, our work is conceptually analogous to that of the competitive exclusion principle 
(Gause, 1934). The competitive exclusion principle, also known as Gause’s law, states that two species 
competing for the exact same resources cannot stably coexist. Analogous to how the competitive 
exclusion principle has created a framework to examine forces that cause species coexistence, our 
work on ecological patterning will hopefully lay the ground for examining mechanisms that shape pat-
terning in microbial communities. We encourage comments, especially those pertaining to the gener-
ality of our conclusions, to be posted to the eLife website.

Materials and methods
Engineering yeast strains
In competitive communities, equal-fitness G and R strains were respectively WS931 (MATa ste3::kanMX4 
trp1-289::pRS404(TRP)-ADHp-venus-YFP) and WS937 (MATa ste3::kanMX4 trp1-289::pRS404(TRP)-
ADHp-DsRed.T4), both from the S288C background. For unequal-fitness competitive communities, G 
was replaced by WS1246 (MATa ho::loxP AMN1-BY Supercontig17(27163-27164)::TDH3p-yEGFP-
loxP-kanMX-loxP) from the RM11 background with a 20% fitness advantage over the S288C back-
ground. In commensal communities, L

AR←
→  and AG←  strains were respectively WS950 (MATa ste3::kanMX4 

http://dx.doi.org/10.7554/eLife.00230
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lys2Δ0 ade4::ADE4(PUR6) trp1-289::pRS404(TRP)-ADHp-DsRed.T4) and WS932 (MATa ste3::kanMX4 
ade8Δ0 trp1-289::pRS404(TRP)-ADHp-venus-YFP), both from the S288C background. In cooperative 
communities, L

AR←
→  and A

LG←
→ strains were respectively WS950 and WS954 (MATa ste3::kanMX4 ade8Δ0 

lys21::LYS21(fbr) trp1-289::pRS404(TRP)-ADHp-venus-YFP) from the S288C background.

Culturing communities
For yeast communities, agarose columns were prepared by pouring SD minimal medium (Sherman, 
2002) with 2% low melting temperature agarose in 1.3-ml deep-well plates (U96 DeepWell from 
Nunc, Penfield, NY), and after agarose had solidified, adding drops of melted SD agarose to make the 
surface flat. For commensal yeast communities, SD was supplemented with lysine (80 μM final concen-
tration). Batch cultures of yeast strains were grown to exponential phase at 30°C in SD with supple-
ments when necessary. Cells were washed free of supplements if any, mixed, and filtered on top of 
MF membrane (HAWP04700 from Millipore, Billerica, MA). Disks were cut from the membrane using 
a 6-mm-diameter Harris Uni-Core puncher and transferred to the top of agarose columns, unless 
otherwise stated.

For the coculture of D. vulgaris and M. maripaludis, a CDC reactor (BioSurface Technologies Corp., 
Bozeman, MT) was used for anaerobic biofilm growth. Biofilm coupon holders were modified to hold 
glass microscope slides (Fisher Scientific #12-544-1, Fisher Scientific, Pittsburgh, PA) cut to 7.6 × 1.8 cm. 
Cocultures were grown in CCM (Walker et al., 2009), a modified basal salt medium without choline 
chloride. Headspace was sparged with anoxic 80% N2:20% CO2, and the reactor was maintained at 
30°C with stirring (150 rpm). The reactors were inoculated with planktonic coculture, and after cell 
attachment to the glass slides (48 hr), biofilms were allowed to develop and grow over time in the 
presence of planktonic cells, or initially drained of planktonic cells. Patterns in the two experimental 
regimes were similar.

Flow cytometry
Flow cytometry was performed in a modified 4-laser FACS Calibur machine (DxP; CyTek Development, 
Fremont, CA). Cells in communities were diluted to ∼106 cells/ml in H2O. Each sample (90 µl) was 
supplemented with 10 µl of fluorescent bead stock (Thermo Scientific Fluoro-Max Cat# R0300 at 
∼8 × 106/ml, counted using a Z2 Coulter counter and a hemacytometer) as a reference to determine 
total cell density and 3 µl of 1 µM ToPro3 (Invitrogen, Grand Island, NY) to mark dead cells. The laser 
and filter configurations for different fluorophores were 50 mW 488 nm laser with 530/30 filter for 
YFP, 75 mW 561 nm laser with 575/26 filter for DsRed, and 25 mW 639 nm laser with 660/20 filter 
for ToPro3. Using an automatic micro-sampling system (DxP; CyTek Development, Fremont, CA) sam-
ples in 96-well plates were processed for 60 s at a flow rate of 0.5–1 µl/s, recording 104–105 events. 
FlowJo software (Tree Star, Ashland, OR) was used to measure the ratio of different populations of 
fluorescent cell against the bead standard in order to calculate cell densities.

Fluorescence imaging
A Nikon TE2000 inverted microscope equipped with a Prior stage controller, a Sutter Lambda XL fluo-
rescent lamp, and a Photometric SnapHQ CCD camera was controlled by custom LabVIEW software 
to auto-focus and acquire images. All images were taken at 10× magnification using a Nikon long 
working distance CFI Plan Fl objective (NA 0.30, WD 16). For imaging YFP- and DsRed-tagged strains, 
ET500/20×-ET535/30m-T515LP and ET545/30×-ET620/60m-T570LP filter cubes were used, respec-
tively. Timelapse imaging took place in a 30°C chamber (In Vivo Scientific microscope incubator).

Cryosectioning
To obtain vertical cross-sections of communities through cryosectioning, we froze communities in 
liquid nitrogen for 15 s and fixed them in methanol at −20°C. After 20 min, the communities were 
transferred to a pre-cooled empty plate at −20°C to allow methanol to evaporate, which typically 
took 4 hr. The communities were embedded in optimal cutting temperature (OCT) compound for 
10 min at room temperature and subsequently frozen over dry ice and kept at −20°C for sectioning. 
We also froze down communities without fixing by directly embedding them in OCT (Piccirillo et al., 
2010) and immediately freezing them on dry ice. Results obtained from the two procedures yielded 
similar conclusions.

For sectioning, communities embedded in OCT blocks were mounted on a cryotome. The blade 
was adjusted to ensure cross-sections of the community were vertical. For each community, typically 
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thirty to fifty 14-μm (3-cell-thick) sections were cut and transferred to glass slides. Cross-sections were 
imaged using the fluorescence microscope as described above. Only images of cross-sections that 
were minimally perturbed by the fixing and sectioning processes were included in the analysis. More 
details of the cryosectioning method can be found in (Momeni and Shou, 2012).

Fluorescence in situ hybridization (FISH)
Biofilms of D. vulgaris and M. maripaludis were fixed in 4% paraformaldehyde for 4 hr, and then 
embedded in polyacrylamide (Daims et al., 2006). The embedded biofilms were dehydrated and 
hybridized in 1 ml buffer solution (0.9 M NaCl, 20 mM Tris–HCl (pH 8), 0.01% SDS, and 35% deionized 
formamide) with 3 ng each of probes EUB338 (GCT GCC TCC CGT AGG AGT) 5′ and 3′-labeled with 
Cy3 and ARCH915 (GTG CTC CCC CGC CAA TTC CT) 5′ and 3′-labeled with Cy5 (Stoecker et al., 
2010) for 5 or 8 hr at 46°C in a humid chamber. Next, samples were washed in 50 ml prewarmed washing 
buffer (70 mM NaCl, 20 mM Tris–HCl pH 8, and 5 mM EDTA) at 47°C for 20 min, then dipped in ice cold 
ddH2O and quickly dried with compressed air (Amann et al., 1995). Finally, each sample was mounted 
with Citifluor AF1 antifadent (Citifluor Ltd., Leicester, United Kingdom) and viewed using a Leica TCS 
SP5 II inverted confocal laser scanning microscope with 488, 561 and 633 nm lasers and appropriate 
filter sets for Cy3 and Cy5. Confocal voxel size was typically 0.24 × 0.24 × 0.49 μm.

Spatial analysis
For both simulated and experimental sections, our unit of analysis was the size of one CCD camera 
field of view under a 10× objective which has a width of 0.7 mm. In any unit of analysis, community 
height is the value such that 90% of height values are below it. This choice is made to exclude artifacts 
such as height spikes in simulations. Images of experimental community sections were rotated in 
ImageJ such that the x–z axes of the frame matched those of the community. We further digitized 
these images into f(x,z) with assigned values of +1, −1, and 0 for pixels identified as population 1, 
population 2, and no-signal, respectively. No-signal pixels were defined as having a fluorescence inten-
sity per unit exposure time less than 10–20% above the background in fluorescence channels. For the 
remaining pixels, the intensity values of 90th percentiles were found in each fluorescence channel. 
These values were used to normalize the corresponding green- or red-fluorescence intensity for each 
pixel whose identity was then assigned to be the color with the higher normalized value. In simulated 
communities with more than two populations, analysis was performed on two focal colors at a time, 
and in each analysis, pixels identified as other colors were treated as no-signal.

To compare levels of intermixing in different communities, we estimated the number of cell 
type transitions spanning community height. We define the intermixing index as the average 
number of color changes along community height: let h(xi) and c(xi) respectively be the local 
height and the number of color changes along z at the lateral position xi. The intermixing index IM 
can be calculated as

= ( ) ( ) ( ) .
i ix x

IM c x h x h x
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑i i i

	 (1)

Intermixing is small for segregated patterns with few color changes along height, and increases 
when patches of different cell types successively appear on top of each other. Note that this choice 
of intermixing index yields small values when one population is very rare compared to the other. 
We weighted c(xi) by the local community height h(xi), thus giving more emphasis to taller regions. 
This is because taller regions have gone through more growth regulated by the fitness effects of 
interactions.

To estimate the vertical patch size z
*λ , the ratio of height h(xi) to number of cell-type layers, 1 + c(xi), 

was averaged across the community cross-section

2
z [ ( )] /[1 ( )] ( ) .

i i

i i i
x x

h x c x h x
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑*λ 	 (2)

For engineered yeast communities, typically 10–20 frames from different locations of each com-
munity were included in the analysis to ensure an unbiased representation of community patterns. For 
biofilms of D. vulgaris and M. maripaludis, vertical cross-sections ∼2.4 μm apart were sampled from 
confocal z-stack images of biofilms.
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Calculating the characteristic patch size in cooperative yeast 
communities
The characteristic patch size can also be calculated as the effective length of interaction between two 
partners. We calculate how far inside the community released lysine can diffuse before being con-
sumed; similar discussion applies to adenine. Assume one cell has released βL fmole of lysine that dif-
fuses at most a distance l before being consumed. We define the sphere of radius l as the diffusion 
domain of the release event. The number of consuming cells within the diffusion domain can be esti-
mated as Nu = (2l/c)3, where c is the diameter of a cell. The average time nutrient can diffuse in the 
diffusion domain before being consumed is tc = l2/2D1, where D1 = 360 μm2/s is the diffusion constant 
within the community. Assuming that each consuming cell takes up lysine with a rate v ≤ αL/T, with 
αL being the amount of lysine required for a cell division and T being the minimum doubling time, 
we have

3 2

1

2
= ;

2
L

L u c

l l
N vt

c T D
⎛ ⎞
⎜ ⎟
⎝ ⎠

αβ ≤

thus,

1 53
1 50 m.
4

L

L

D Tc
l

⎡ ⎤
⎢ ⎥
⎣ ⎦
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α

≥ ≈ μ

Within radius l, the average number of release events within time tc is 3(2 ) 0.2c Gl c t d ≈ . Thus, the 
probability of a second release event occurring in the same diffusion domain before nutrient from the 
first release event has been consumed is low. Therefore, l defines the interaction length scale. Note 
that diffusion constant contributes by fifth root to l, and therefore, different diffusion constants in 
the community should not considerably alter patterns, as observed in simulations (Figure 3—figure 
supplement 1A). The calculated l of 50 μm is larger than the experimental patch size z

*λ  of ∼10 to 20 μm. 
What could account for this discrepancy? Experimentally measured diffusion constant of Sulforhodamine 
101 in community (20 µm2/s) reduces l to ∼30 µm. In addition, cells may take up more nutrients than 
what is required for producing one daughter and may store extra nutrients in vacuoles (Shou et al., 
2007), further reducing the estimated interaction length scale.

The fitness model
The individual-based fitness model followed cell growth in a three-dimensional simulation grid of 
100 × 100 × 300 cells with periodic boundary conditions along the x and y directions. Consider popu-
lation i (i = R or G) interacting with population j (j = G or R). Without loss of generality, consider a focal 
cell from population i. The growth of the focal cell is influenced by cells in its cubic three-axial interac-
tion neighborhood (Deutsch and Dormann, 2004) defined by l-cell-width to the left, right, front, back, 
above, and below. Let iφ  and jφ  be the fraction occupancy of i and j in the interaction neighborhood, 
respectively. The growth rate of the focal cell is 0= [ + (1– )][1– ( + )]i i ij j i i jr r rφ φ χ φ φ . 0ir  is the basal fitness 
(growth rate of i without any interactions); (1– )ij j irφ φ  represents the fitness effect on i by j, which 
increases with partner abundance and decreases with recipient abundance due to intra-population 
competition for partner; [1– ( + )]i jχ φ φ  reflects intra- and inter-population competition for shared 
resources with fitness decreasing as the neighborhood becomes more occupied. Cells were inoculated 
in the bottom surface of the simulation grid. In each simulation time step Δt, the probability of cell 
division is ri Δt. A cell would divide either to the side if there was space within its (x, y) planar confine-
ment neighborhood of n-cell radius or upward otherwise (Figure 1—figure supplement 1). Parameters 
used are listed in Figure 1—source data 1. χ = 0.8, l = 3, and n = 2 in all cases. See Source code 1 
for an example (and Source code 4 for the MATLAB function).

The diffusion model
The individual-based diffusion model followed actions of cells (nutrient uptake, cell division, cell death, 
and possibly release of nutrients) and the distribution of nutrients in a three-dimensional simulation 
grid. Since cell division and death occur at a time-scale much longer than diffusion and nutrient uptake, 
we used a multi-grid scheme in both space and time. In this model, a three-dimensional simulation 
domain consisted of cell grids representing individual cells and nutrient grids representing nutrient 
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concentrations (Figure 2—figure supplement 2). Cell actions and nutrient distributions were updated 
at discrete time steps over the simulation domain. Simulations were typically performed over an aga-
rose domain of 0.75-mm length × 0.75-mm width × 24-mm depth and a community domain of 
0.75-mm length × 0.75-mm width × 0.3-mm height with parameters listed in Figure 2—source data 1.

Nutrient concentrations as a function of space and time are based on the diffusion equation

= ×( ) – + ,
S

D S U Q
t

∂ ∇ ∇
∂

	 (3)

with

=
+m u

MM

S
U v n

S K
	 (4)

= .qQ nρ 	 (5)

Equation (3) states that S, the amount of limiting nutrient in a diffusion grid, depends on three proc-
esses: i) diffusion of nutrient with diffusion constant D, ii) uptake of nutrients (Walther et al., 2005) by cells 
(U), and iii) in cooperative communities, release of nutrients by the partner population (Q). In equations (4) 
and (5), nu and nq are the number of consuming and releasing cells within the diffusion grid, respectively, 
KMM is the Michaelis-Menten constant for uptake, vm is the maximum uptake rate per cell, and ρ is the 
release rate per cell. To solve this diffusion equation, we used a finite difference time–domain method 
(Crank, 1980) with no-flow ( / = 0S z∂ ∂ ) boundary conditions applied to the top and bottom surfaces 
of the simulation domain and periodic boundary conditions applied to the four vertical sides of the domain.

Cell growth rate r in the model is dictated by Monod’s equation

( ) = ,
+m

M

S
r S r

S K
	 (6)

in which rm is the maximum growth rate when nutrients are abundant, S is the concentration of the 
limiting nutrient, and KM is the S at which half maximal growth rate is achieved. We assume that indi-
vidual cells take up nutrients with KMM = KM, and once they have accumulated the required amount of 
the limiting nutrient, cell division occurs.

To incorporate realistic assumptions about cell rearrangement upon division in the community, we 
monitored single yeast cells growing into microcolonies on solid media (Figure 1—figure supplement 
1A). Initially, each cell budded in the same plane and pushed others in its immediate neighborhood to 
the side. Once a cell was completely surrounded on each side by roughly five cells, it budded upward. 
The same process was implemented in the diffusion model (Figure 2—figure supplement 2). It should 
be noted that by forcing the confined cells to bud strictly upward, the model underestimates intermix-
ing. As a result, communities show more vertical features in simulations than experiments (Figure 2F).

Temporally, the update time-step for nutrient diffusion and uptake (∼1 s) was smaller than that for 
cell division and death (∼360 s). Spatially, cell actions took place on a cell grid with single-cell resolu-
tion (5 μm), while nutrient distributions were followed on a diffusion grid at lower spatial resolution 
(∼15 to 60 μm). These values were selected considering the trade-off between simulation time and 
accuracy, while ensuring the stability of simulations. For instance, at each time-step within a diffusion 
grid, the total amount of nutrients consumed should be considerably smaller than available nutrients. 
In other words, assuming that the length of a diffusion grid is nc where c is the length of a cell grid 
which is equivalent to the size of a cell, there are at most n3 cells in each diffusion grid and

3 3( ) ,
+m u

MM

S
S nc n v dt

S K
> 	 (7)

where S is the concentration of the limiting nutrient in the spatial grid, KMM is the Michaelis-Menten 
coefficient for nutrient uptake, vm is the maximum uptake rate, and dtu is the uptake time-step. After 
simplifying equation (7), we obtain

3+
.

MM

u

m

S K
dt c

v
	 (8)
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In the worst case scenario of S being much smaller than KMM, using parameters of our engineered 
yeast strains, we find dtu ∼ 0.5 s. Thus, we chose dtu = 0.5–1 s as the time-step for updating the nutri-
ent uptake and diffusion equations. To ensure stability of the finite-difference equations for diffu-
sion, the diffusion grid-size (nc) and the time-step (dtu) for the diffusion equation have to satisfy 
(Iserles, 2009)

21 ( )
,

2u

nc
dt

D
< 	 (9)

where D is the diffusion constant in the region of interest. From this relation, we chose diffusion 
grid size nc = 50 μm, and consequently, each diffusion grid contains 10 × 10 × 10 cells 
(Figure 2—figure supplement 2A). Since diffusion is fast within each grid (∼1 s), this choice of 
grid size is unlikely to introduce a notable error in our calculations. See Source codes 2 and 3 
for examples (and Source code 4 for the MATLAB function).

Requirements for steady-state ratios in the six types of communities
Let Rφ  and Gφ  be the fraction occupancy of R and G in an interaction neighborhood, respectively. Gφ *

is the fraction occupancy of G that leads to equal fitness of the two populations and thereby result in 
a steady state ratio within the interaction neighborhood. Following the assumptions of the fitness 
model, the growth rate of each population is 0= [ + (1– )][1– ( + )]i i ij j i i jr r rφ φ χ φ φ  where i = R or G and 
j = G or R. For simplicity, we assume that + = 1R Gφ φ , which leads to 2

0ˆ = (1– ) = +i i i ij jr r r rχ φ .
In two-population cooperative communities, using the simplifying assumption of int= =RG GRr r r >0, 

we have 0 0 int intˆ ˆ– = ( – + ) – 2G R G R Gr r r r r r φ  (Figure 1—figure supplement 2B). Setting ˆ ˆ–G Rr r  to 0, the com-
munity can achieve a steady-state value of 0 0 int int= ( – + ) 2G G Rr r r rφ * . To satisfy 0 1Gφ *< < , int 0 0| – |G Rr r r>  
which means that the interaction term has to be strong enough to overcome the difference in the basal 
fitness of the two populations. Here, Gφ * is stable, since ˆ ˆ–G Rr r  is positive (favoring G) when G Gφ φ *<  and 
negative (favoring R) when G Gφ φ *> . At Gφ *, two populations grow at the same rate and population 
ratio is fixed at R:G = (1 − Gφ *): Gφ *.

Similar analysis shows the existence of a stable partner ratio under commensalism G[∼↑]R. A steady-
state ratio Gφ * can exist under exploitation. However, initial ratios below the critical value ,G cφ  (Figure 1—
figure supplement 2B) will not converge to Gφ *. Other interactions ([∼ ∼], [∼ ↓], and [↓ ↓]) do not 
converge to a stable ratio. Similar conclusions on ratio convergence hold if we assume 0ˆ = + ( )i i ij jr r r f φ  
for any continuous function f that monotonically increases with jφ  (proof not shown). Results are sum-
marized in Table 1.

Table 1. Summary of steady-state occupancy, conditions to achieve steady-state, and the stability of 
steady-state for six types of ecological interactions.

Interaction Steady-state occupancy Steady-state condition Stability

G[∼∼]R Any Gφ Only when 0 0=G Rr r Unstable

G[↑↑]R 0 0 int

int

– +
=

2
G R

G

r r r
r

φ * int 0 0>| – |G Rr r r Globally stable

G[∼↓]R 0 0

int

–
= R G

G

r r
r

φ * int 0 0> – > 0R Gr r r Unstable

G[∼↑]R 0 0

int

–
= G R

G

r r
r

φ * int 0 0> – > 0G Rr r r Globally stable

G[↓↓]R 0 0 int

int

– +
=

2
R G

G

r r r
r

φ * int 0 0>| – |G Rr r r Unstable

G[↓↑]R 0 0

int

–1 1
= + –

2 2 4
G R

G

r r
r

φ * int 0 0

int 0 0

> – > 0

< 2( – )
G R

G R

r r r

r r r
Locally stable (when ,>G G cφ φ ; 
see Figure 1—figure supplement 2)
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