
233

Lianhong Sun and Wenying Shou (eds.), Engineering and Analyzing Multicellular Systems: Methods and Protocols,
Methods in Molecular Biology, vol. 1151, DOI 10.1007/978-1-4939-0554-6_16, © Springer Science+Business Media New York 2014

Chapter 16

Simulating Microbial Community Patterning
Using Biocellion

Seunghwa Kang, Simon Kahan, and Babak Momeni

Abstract

Mathematical modeling and computer simulation are important tools for understanding complex interactions
between cells and their biotic and abiotic environment: similarities and differences between modeled
and observed behavior provide the basis for hypothesis formation. Momeni et al. (Elife 2:e00230, 2013)
investigated pattern formation in communities of yeast strains engaging in different types of ecological
interactions, comparing the predictions of mathematical modeling, and simulation to actual patterns
observed in wet-lab experiments. However, simulations of millions of cells in a three-dimensional com-
munity are extremely time consuming. One simulation run in MATLAB may take a week or longer, inhib-
iting exploration of the vast space of parameter combinations and assumptions. Improving the speed, scale,
and accuracy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high-
performance software framework for accelerating discrete agent-based simulation of biological systems
with millions to trillions of cells. Simulations of comparable scale and accuracy to those taking a week of
computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion
further accelerates large scale, high resolution simulations using cluster computers by partitioning the
work to run on multiple compute nodes. Biocellion targets computational biologists who have mathemati-
cal modeling backgrounds and basic C++ programming skills. This chapter describes the necessary steps to
adapt the original Momeni et al.’s model to the Biocellion framework as a case study.

Key words Discrete agent-based modeling, Partial differential equation, Adaptive mesh refinement,
High-performance computing, Cell system simulation

1  �Introduction

Discrete agent-based modeling maps a multicellular biological
system to a collection of discrete agents. Discrete agent-based
modeling has been widely used to model various biological systems
[1, 3–5, 7]. Momeni et al. [5] studied spatial patterning in a com-
munity of yeast strains engaging in metabolic interactions through
a combination of discrete agent-based mathematical modeling and
wet-lab experiments.

Finding solutions using mathematical models often requires
implementation of these models as a computer program.

234

Producing a high-performance implementation that anticipates
and accommodates easy revisions and refinements of a model as it
evolves is a time-consuming task. Computational biologists often
favor low programming effort over efficiency, flexibility, and even
accuracy. Therefore, simulations tend to run much longer than
performance-optimized code. Even incremental model updates
can require significant code revision. For example, Momeni
et al.’s model [5] partitions the simulation domain into fixed size
cubic boxes and maps each cell to a single box. Once a cell divides,
the daughter cell occupies one of the nearest neighboring boxes,
instantly pushing surrounding cells outward to free up the space.
This approximation of cell growth and shoving may be sufficient
for the studied problem, but it may not work well for more com-
plex problems—e.g., this approach cannot model a cell division
that produces two cells differing in size.

Parallel computers ranging from multicore PCs to leadership
class supercomputers provide significantly larger computing capac-
ity than a single compute core. This computing capacity can address
the computational challenges in simulating complex models when
harnessed by simulation software that serves widely varying multi-
cellular biological system modeling requirements and runs efficiently
on parallel computers. However, implementing such software is dif-
ficult and time consuming. Even if computational biologists have
access to cluster computers, without parallel computing, the advan-
tage is limited to running multiple simulations in parallel—one
simulation per compute core—resulting in slow turn-around time.
In contrast, with efficient parallel software, a single simulation run
can be partitioned across multiple computing cores, dramatically
reducing the turn-around time.

Biocellion is a high-performance software framework that
enables computational biologists without parallel computing
expertise to exploit the power of parallel computers with only
moderate programming effort. We briefly describe Momeni et al.’s
model [5] and Biocellion [6] and illustrate the necessary steps to
adapt Momeni et al.’s model to Biocellion as a case study.

Momeni et al. [5] implemented a mathematical model with a
range of parameters corresponding to different yeast strains engag-
ing in various interactions. We consider only one instance in this
article. Modification for other strains and interaction types is
straightforward.

Two strains of yeast grow on top of a 24 mm thick agarose
cylinder. One strain consumes lysine and also secretes adenine at a
constant rate (say the R strain). The other strain consumes adenine
and releases lysine on death (say the G strain). The two strains
grow cooperatively and Momeni et al. demonstrated that strong
cooperation promotes intermixing of the two strains in a

1.1  Yeast Patterning
Model Description

Seunghwa Kang et al.

235

three-dimensional community. We list model specifics necessary to
adapt the model to Biocellion.

	 1.	Yeast cells grow on top of a 24,000 μm thick agarose cylinder.
Partial differential equations (PDE) are commonly used to
model spatio-temporal variation of molecular concentrations
in the extracellular space. We adopt this approach, and PDEs
model adenine and lysine concentration changes in the agarose
cylinder and the yeast cell community. Because the initial spa-
tial distribution of the two yeast strains is uniform, a small frac-
tion of the plate area in wet-lab experiment is already
representative of patterns observed for the entire plate. Thus,
only a fraction of the plate area in wet-lab experiments is con-
sidered in simulation. In Momeni et al.’s work [5], simulation
domain height is set to include the entire agarose cylinder in
the simulation area plus up to 300 μm above the agarose cylin-
der where yeast cells grow.

	 2.	Periodic boundary conditions (both for PDEs and cell move-
ments) are assumed in the x and y directions. A zero-flux
boundary condition is applied at the bottom end of the aga-
rose cylinder and at the top of the simulation domain—mole-
cules and cells cannot cross the top and bottom planes of the
simulation domain.

	 3.	We map a cell to a sphere (instead of a fixed size cubic box in
the original model) using Biocellion. The maximum cell diameter

is 5 μm. The maximum cell volume is
4 2 5

3

3
3× ×π

µ
.

m . Yeast

cells push against other cells when they are packed together.
	 4.	We increase the volume of a sphere to model cell growth. The

volume of an R strain cell after consuming a certain amount

of lysine (say Δlysine) is V0 1× +










∆
α
lysine

L

, where V0 is the

minimum cell volume (the volume of a cell right after cell
division or one half of the maximum cell volume). αL, the
amount of lysine required to produce a daughter cell, is 2 fmol.
Similarly, the volume of a G strain cell after consuming a certain

amount of adenine (say Δadenine) is V0 1× +










∆
α

adenine

A

. αA,

the amount of adenine required to produce a daughter cell, is
1 fmol. When a cell grows above the maximum cell volume,
the cell divides into two equal-volume cells.

	 5.	For an R strain cell, lysine uptake rate is v
T KL

L

L

L

L L

= ×
+

α φ
φ

.

For a G strain cell, adenine uptake rate is v
T KA

A

A

A

A A

= ×
+

α φ
φ

.

Simulating Microbial Community Patterning Using Biocellion

236

The minimal population doubling times for lysine-requiring
and adenine-requiring cells (TL and TA, respectively) are 1.76
and 1.98 h, respectively. The Monod’s constant KL, i.e., the
concentration of lysine at which lysine-requiring cells grow at
their half maximal growth rate is 1 μM. The Monad’s constant
KA for adenine requiring cells is 0.1 μM. ϕL and ϕA are lysine
and adenine concentrations in the extracellular space, respec-
tively. An R strain cell secretes 0.08 fmol of adenine per hour,
and a G strain cell releases 12 fmol of lysine on death.

	 6.	The death rates are 0.054 h−1 and 0.018 h−1 for an R strain cell
and a G strain cell, respectively.

	 7.	Cells are randomly distributed on the agarose cylinder surface
at the beginning of the simulation. Initial cell volume is set to
a random value between one half of the maximum cell volume
and the maximum cell volume to represent the range between
a new-born daughter and a fully grown cell. The initial cell
density is 500 cells per mm2.

	 8.	Initial lysine and adenine concentrations are set to zero.
	 9.	Diffusion coefficients are 300 μm2/s in the agarose cylinder

and 20 μm2/s inside a yeast colony for both lysine and adenine
according to experimental measurements. Diffusion coeffi-
cients for grid boxes containing yeast cells are scaled down
based on the total volume of the cells in a grid box—a grid box
with low cell volume (a box in the colony-air boundary) has
smaller diffusion coefficients than a box with high cell volume
as implemented in the original model.

Biocellion’s design goal is to accelerate a wide range of discrete
agent-based mathematical models of multicellular biological sys-
tems. This is challenging, because mathematical models of biologi-
cal systems vary significantly. Biocellion’s approach is to separate
model specifics from common computational and parallel pro-
gramming challenges. Biocellion asks users to provide model specif-
ics, and Biocellion handles the remaining computational and
programming challenges. Model specifics are expressed by the
developer through modification of a library of C++ functions that
comprise Biocellion’s Application Programming Interface (API).
The model library links to the Biocellion core framework at runtime.
Biocellion output files can be visualized using Paraview (http://
www.paraview.org).

Biocellion has three computational modules to simulate (1)
individual discrete agent behavior, (2) direct physico-mechanical
interactions between discrete agents, and (3) changes in the extra-
cellular environment. Biocellion imposes a grid on the simulation
domain to represent the state of the extracellular environment.
In Momeni et al.’s model [5], cells reside on top of the 24 mm

1.2  Biocellion
Overview

Seunghwa Kang et al.

http://www.paraview.org/
http://www.paraview.org/

237

thick agarose cylinder, and the region where yeast cells grow is a
small fraction of the entire simulation domain. The agarose cylinder
is relevant only in tracking molecular concentrations in the model.
Maintaining data structures for all three computational modules
for the entire agarose cylinder can waste a significant amount of
computing and memory. Biocellion imposes two different types of
grids to different parts of the simulation domain to avoid such
waste. Biocellion imposes an interface grid on a region where all
three computational modules are executed, and computational
modules communicate through this interface grid. Biocellion
imposes a coarser PDE buffer grid on the region relevant only in
solving PDEs—e.g., tracking nutrient concentrations in the aga-
rose cylinder.

Biocellion decomposes the simulation domain into multiple par-
titions—users set the partition size. Users can impose either an inter-
face grid or a PDE buffer grid for each partition. When users wish to
run Biocellion on a cluster computer with multiple compute nodes
(each node has multiple compute cores), Biocellion creates multiple
compute processes, and every compute process works on a different
set of partitions; note that a single process can exploit multiple
compute cores in a single compute node to work on a single parti-
tion. Separate output files are created for different partitions.

Biocellion supports adaptive mesh refinement (AMR) to solve
PDEs. AMR generates multiple levels of grids with different grid
spacings based on the spatial resolution requirements of different
simulation domain subregions. Biocellion asks users to set the num-
ber of AMR levels and the refinement ratio between two consecu-
tive AMR levels—if the refinement ratio is set to 4, the coarser level
grid spacing is four times larger than the finer level grid spacing.
The finest grid spacing coincides with the interface grid spacing—
Biocellion users set the interface grid spacing. The PDE buffer grid
spacing equals the coarsest grid spacing in the AMR hierarchy.
Users tag interface grid boxes with the desired AMR level. PDE
buffer grid boxes are automatically tagged with the coarsest AMR
level. Biocellion generates an AMR hierarchy (which is used to
solve PDEs) based on this information. Note that the generated
AMR hierarchy can have more fine boxes than the user input to
improve efficiency (processing a large number of small boxes is
inefficient) and guarantee correctness (coarsening a fine grid first
and refining the coarsened fine grid should produce the original
fine grid, or see the proper nesting condition in ref. [2]).

Figure 1 depicts the simulation domain (left) and the gener-
ated AMR hierarchy (right) in our experiment assuming 40 μm
grid spacing, two AMR levels, and the refinement ratio of 4—we
simulate with 5, 20, and 40 μm grid spacings.

Multicellular biological system simulation combines multiple
biological processes such as cell movement, diffusion of molecules,
and cell metabolic rate change. Different biological processes have

Simulating Microbial Community Patterning Using Biocellion

238

different time step requirements to simulate the processes with
sufficient accuracy. For example, simulating diffusion of molecules
(by solving PDEs) often requires a significantly smaller time step
size than the time step size required to simulate cell movement.
To accommodate multiple time step size requirements in multicel-
lular biological system simulation, Biocellion uses multiple time
step sizes to simulate different computational modules and to
communicate across the modules. The baseline time step is the larg-
est time step used to simulate direct physico–mechanical interac-
tions and discrete agent birth, death, and movement. The module
computing direct physico–mechanical interactions communicates
with the other two modules once per baseline time step. Discrete
agent states and the state of the extracellular environment affect
each other. For example, cell metabolic rate change affects the

Interface
grid

(40 µm grid
spacing)

PDE buffer
grid

(160 µm grid
spacing)

The cell growth
region (320 µm)

The agarose
cylinder
(24 mm)

Partition
size

The cell growth
region with yeast cells

The top 40 µm of the
agarose cylinder

Fig. 1 Biocellion imposes two different types of grids to the simulation domain (left). An interface grid is
imposed on the partition covering the cell growth region to simulate both cells and the environment.
The remaining partitions in the agarose cylinder region are set as PDE buffer—these partitions are relevant
only in solving PDEs to track lysine and adenine concentrations. Users tag interface gird boxes with the desired
AMR level. We tag the interface grid boxes containing yeast cells (the light blue boxes) and the interface grid
boxes at the top 40 μm of the agarose cylinder (the light red boxes) with the finer AMR level. The remaining
interface grid boxes are tagged with the coarser level. Biocellion generates an AMR hierarchy (right) based on
this information. Note that the generated AMR hierarchy has more fine boxes than the user input to satisfy the
proper nesting condition [7]

Seunghwa Kang et al.

239

production and consumption rates of extracellular molecules, and
this drives molecular concentration changes in the extracellular
space. These two modules can be coupled more tightly by splitting
a single baseline time step into multiple state-and-grid time steps.
Variables associated with the grid imposed on the extracellular
space can be updated either by model specific rules or by solving
PDEs. Users can update the variables by model specific rules at the
beginning and at the end of each state-and-grid time step. A single
state-and-grid time step can be further partitioned to smaller PDE
time steps to advance PDEs.

The original yeast patterning model [5] partitions the simulation
domain on top of the agarose cylinder into a set of fixed size cubic
boxes (a box width is 5 μm), and a cell takes a single box. If a cell
divides, the new cell tries to occupy one of the nearest neighboring
boxes in the same z plane, if there is an empty box within the
confinement neighborhood of 5-cell radius. The existence of con-
finement neighborhood was observed experimentally. If there is no
empty box within the confinement neighborhood in the same z
plane, the new cell occupies the box right on top of the mother cell
box, and all the other cell boxes on top of the mother cell box are
pushed upward.

Using Biocellion, we represent each cell by a sphere (Biocellion
allows users to map a discrete agent to a different shape). A sphere
can be located anywhere in the simulation domain above the agarose
cylinder, and its radius changes to model cell growth. When a cell
grows just enough to overlap with another, the model immediately
introduces a force to push all spheres apart, thus modeling cell
shoving in packed regions.

Figure 2 shows that the concentration of adenine changes
smoothly in the simulation domain except for the cell growth
region and the top 40 μm part of the agarose cylinder—adenine
concentration changes smoothly even just 40 μm below the agarose
cylinder top surface. We set the partitions at the agarose cylinder
region (except for the top 40 μm part) as PDE buffer. Biocellion
supports AMR which applies different grid resolutions to different
parts of the simulation domain. In generating an AMR hierarchy,
the region occupied by yeast cells and the top 40 μm of the agarose
cylinder are tagged with the finest grid spacing, which is equal to
the interface grid spacing. A coarser grid is imposed on the air
region and the bottom part of the agarose cylinder.

We set the baseline time step size to 30 s and split a single base-
line time step to 30 state-and-grid time steps to tightly couple cell
metabolic rate change and nutrient concentration change in the
extracellular space. PDE time step sizes to advance PDEs updating
lysine and adenine concentrations are set identical to the state-and-
grid time step size.

1.3  �Porting Overview

Simulating Microbial Community Patterning Using Biocellion

240

We define four model specific variables (say rhslysine, rhsadenine,
Uscale,lysine, and Uscale,adenine) for each grid box in the interface grid.
rhslysine, rhsadenine store the sum of the production and consumption
rates of lysine and adenine, respectively. Lysine and adenine
consumption rates are proportional to φ

φ + K
, where ϕ is lysine or

adenine concentration in the extracellular space and K (the con-
centration of metabolite at which half maximal consumption rate
is achieved) is 1.0 and 0.1 μM for lysine and adeneine, respec-
tively. Uscale,lysine, and Uscale,adenine store the φ

φ + K
 values for lysine and

adenine, respectively. We want to limit the total amount of lysine
or adenine consumed by cells in a grid box to be lower than
the amount of lysine or adenine in the box plus an estimation of
the amount of lysine or adenine diffuse into the box within a single
state-and-grid time step. This prevents ϕ from becoming negative

Fig. 2 Adenine concentrations in the simulation domain (unit: μmol/μm3, 1 μM = 10−15μmol/μm3). The top figure
depicts the adenine concentration along the z-axis (passing the center of the simulation domain), with 0 and
24,000 being the bottom and the top of the agarose cylinder, respectively. The bottom figures show the ade-
nine concentration at the z normal planes right on top of the agarose cylinder (right), right below the agarose
cylinder top surface (center), and 40 μm below the agarose cylinder top surface (right), respectively. The
adenine concentration has higher spatial variation near the agarose cylinder top surface. The spatial variation
of the adenine concentration is significantly lower even just 40 μm below the top surface

Seunghwa Kang et al.

241

(especially when ϕ is small) without using a tiny time step size. This
approach is accurate as long as our estimation of the diffusion rate
is accurate. We use the explicit Euler method to estimate the
amount of diffusion, which gives a reasonably accurate estimation
for our choice of the state-and-grid time step size (1 s)—the molec-
ular concentration gradient does not change significantly within
1 s. We scale φ

φ + K
 to limit nutrient consumption. If the sum of

rhslysine (or rhsadenine) and the estimated diffusion rate multiplied by
the state-and-grid time step size exceeds the lysine (or adenine)
concentration of the box, we reduce the consumption rate and
scale down Uscale,lysine (or Uscale,adenine), so the net decrease of the lysine
(or adenine) concentration based on the production, consump-
tion, and estimated diffusion rates does not exceed the lysine con-
centration of the grid box. Model routines setting PDE parameters
and model routines updating individual cell states can access these
values to set nutrient uptake rates—this is necessary to assure that
the total amount of nutrients consumed in solving PDEs coincide
with the amount consumed by cells in updating individual cell
states. We save rhslysine and rhsadenine to avoid computing the rates
again when setting PDE parameters.

A G strain cell releases lysine on death. A relatively large amount
of lysine is released in a short amount of time, and this forms a steep
concentration gradient followed by a rapid gradient change due to
diffusion. Accurately computing this transient gradient change
requires a small time step size. However, cells react to concentration
changes only gradually, so accurately computing the transient gradi-
ent change has little impact on simulation output. We have decided
to spread released lysine to six neighboring boxes in the ± x, y, and z
directions to lower the initial concentration gradient. We implement
this by updating the rhslysine variable of a neighboring grid boxes.

Figure 3 shows a simulation output. Simulation time is highly
dependent on grid resolution and with 40 μm interface grid spac-
ing (comparable to 50 mum grid spacing used in the Momeni
et al.’s work [5]) to simulate 500 h of cell growth, a single simula-
tion run takes 6.5 h on a workstation with a single 6 core micro-
processor (Intel X5650 2.67 GHz). Biocellion also accelerates
larger higher resolution simulations using multiple compute nodes.

2  �Materials

Biocellion runs on multicore PCs, workstations, cluster computers,
cloud computers, and supercomputers. This article pertains to mul-
ticore PCs. Running on different systems does not require model
code changes. The current version of Biocellion runs only on ×86
compatible systems (PCs with Intel or AMD microprocessors are
×86 compatible). A 64-bit Linux operating system needs to be

Simulating Microbial Community Patterning Using Biocellion

242

installed on the target system. Compiling Biocellion model code
requires the GNU gcc compiler (pre-installed in most Linux sys-
tems), Intel icc compiler, or some other C++ compiler (we have
tested only with gcc and icc). When compiling model code, users
may set the check flag to verify their code or disable the check for

Fig. 3 Yeast cell growth (the top six figures) viewed from an oblique angle from the top, a 2D vertical cross-
section of the yeast colony (the next figure), and a 2D vertical cross-section from the wet-lab experiment
(the bottom most figure, reproduced from Momeni et al.’s paper [5]). Red cells are R strain cells, green cells
are G strain cells, and black cells are dead cells

Seunghwa Kang et al.

243

higher performance (See Note 1). Biocellion requires the Intel
Thread Building Blocks library, freely available from the thread
building blocks homepage (http://threadingbuildingblocks.org).

	 1.	Download the most recent stable version of Intel Thread
Building Blocks library (version 4.2 or later is required) to the
target system.

	 2.	Unzip the downloaded tarball.
	 3.	Update the LD_LIBRARY_PATH Linux environment variable

to include the TBB library directory (in TBB 4.2, this is $TBB_
ROOT/lib/intel64/gcc4.1).

	 1.	Unzip the Biocellion tarball.
	 2.	Open Makefile.common under the Biocellion root directory.
	 3.	Update BIOCELLION_ROOT to point to the Biocellion root

directory.
	 4.	Try “make” under the libmodel directory. This should compile

the model library ($BIOCELLION_ROOT/libmodel/
interface/libmodel.so).

3  �Methods

Biocellion users provide model specifics by filling-in a set of C++
functions defined in five files under the $BIOCELLION_ROOT/
libmodel/model directory: model_routine_config.cpp,
model_routine_agent.cpp, model_routine_mech_
intrct.cpp, model_routine_grid.cpp, and model_
routine_output.cpp. These files include model routines to
initialize the model, update discrete agent states, simulate direct
physico–mechanical interactions, update the state of the extracel-
lular space, and set simulation output, respectively. The entire
model code for the Momeni et al.’s model [5] is available under
$BIOCELLION_ROOT/libmodel/model-yeast-
patterning for interested readers. Below, we present examples
of how a model is specified.

Model routines related to model configuration are defined in
model_routine_-config.cpp.

	 1.	updateIfGridSpacing: Set the interface grid spacing by filling
the updateIfGridSpacing function body surrounded by/*
MODEL START */and/* MODEL END */(Code 1). The
interface grid spacing should be equal to or larger than the
maximum direct physico-mechanical interaction distance. We
map a cell to a sphere-shaped discrete agent and only consider
cell shoving in evaluating short-range mechanical interactions.

2.1  Installing
Intel Thread
Building Blocks

2.2  Installing
Biocellion

3.1  Model
Configuration

Simulating Microbial Community Patterning Using Biocellion

http://threadingbuildingblocks.org/

244

Two overlaping spheres are pushed apart to remove the overlap,
and the maximum mechanical interaction distance cannot
exceed the maximum cell diameter (5 μm). We start with the
smallest interface grid spacing (5 μm) to minimize simulation
artifacts (see Fig. 4 for an example). Larger values reduce
execution time at potential loss of accuracy. Assuming fast dif-
fusion, we may be able to adopt a larger grid spacing without
significant loss of simulation accuracy. We also try 20 and
40 μm. Interested readers may experiment with different grid
spacings to find the optimal grid spacing.
void ModelRoutine::updateIfGridSpacing

(REAL& ifGridSpacing) {
  /* MODEL START */
  ifGridSpacing = 5.0; /* 5.0, 20.0, or 40.0,

to set the interface grid
   spacing to 5.0, 20.0, or 40.0 um */
  /* MODEL END */
  return;
 }
Code 1: Model routine to set the interface grid spacing.

	 2.	updateOptModelRoutineCallInfo: Set the number of rounds to
update variables associated with the interface grid at the begin-
ning and at the end of a state-and-grid time step.

To set the model specific interface grid state variables properly
(Subheading 1.3), Biocellion should be configured to invoke model
routines updating interface grid state variables based on model
specific rules once at the beginning of a state-and-grid time step
and once at the end of the step (in order to reset the sum of lysine
consumption and production rates, see Note 2).

A B A B

5 µm

20 µm

Agarose Gel Agarose Gel

Fig. 4 Comparing 5 μm grid spacing and 20 μm grid spacing. Grid boxes outside the agarose cylinder with no
cells have 0 diffusion coefficient. If cell A secretes a metabolite consumed by cell B, the secreted metabolite
is delivered to cell B via diffusion through the agarose cylinder. However, if cell A and cell B are located in the
same box (with 20 μm grid spacing), cell B can directly consume the molecules secreted by cell A

Seunghwa Kang et al.

245

	 3.	updateDomainBdryType: Set domain boundary types. Periodic
boundary conditions are applied in the x and y directions.
A nonperiodic boundary condition is applied in the z direction,
and cells are not allowed to pass the upper and lower end of the
simulation domain in the z direction.

	 4.	updatePDEBufferBdryType: Set the boundary type between
an interface grid partition and a PDE buffer grid partition.
The current version of Biocellion provides only one option
(PDE_BUFFER_BDRY_TYPE_HARD_WALL), and discrete
agents are not allowed to pass the boundary. This function is
irrelevant to PDE boundary conditions.

	 5.	updateTimeStepInfo: Update time step sizes. Set the baseline
time step size to 30 s and split a single baseline time step to 30
state-and-grid time steps. Interested readers can experiment
with different time step sizes.

	 6.	updateSyncMethod: Update synchronization methods when a
single variable is updated by multiple model routine calls
(see Note 2). The only kind of short range cell–cell direct
mechanical interaction we consider is cell–cell shoving, so the
synchronization method for extra mechanical interactions is
irrelevant. Set the synchronization method for grid variable
updates to SYNC_METHOD_DELTA (see Note 2).

	 7.	updateSpAgentInfo: Set discrete agent types. We consider three
cell types (R and G strain cells and dead cells; dead cells do not
grow and divide). A dead cell has one model specific variable
storing the amount of lysine in the cell. This variable is used to
calculate the amount of lysine to be released into the extracel-
lular space.

	 8.	updatePDEInfo: Set the grid state variables for lysine and adenine
concentrations that are updated by solving PDEs. An AMR
scheme is used with three levels (5 μm grid spacing) or two
levels (20 μm grid spacing or 40 μm grid spacing). The finest
level has the grid spacing equal to the interface grid. The size
of a single PDE time step is set identical to the size of a single
state-and-grid time step. A zero-flux boundary condition is
applied in the z direction. Boundary conditions in the x and y
directions are irrelevant, because periodic boundary conditions
are imposed in updateDomainBdryType.

	 9.	updateIfGridModelVarInfo: Set extra model specific variables
associated with the interface grid. We add four variables per
grid box (see Subheading 1.3).

	10.	updateRNGInfo: Set one random number generator to get
random numbers with the uniform distribution.

	11.	 setPDEBuffer: Set a partition as a PDE buffer partition if the
top surface (in the z direction) of the partition is lower than
the agarose cylinder height minus a small buffer region to

Simulating Microbial Community Patterning Using Biocellion

246

exclude the top part of the agarose cylinder (where molecular
concentrations are highly localized). setPDEBuffer is called
once per partition.

	12.	 setHabitable: Set a grid box in the interface grid as a habitable
box or an uninhabitable box. We set the boxes in the agarose
cylinder to be uninhabitable, and cells are not allowed to move
into an uninhabitable box.

Model routines related to simulating individual agent behavior are
defined in model_routine_agent.cpp.

	 1.	addSpAgents: Randomly spread cells on top of the agarose
cylinder to initialize the simulation. addSpAgents is called once
per interface grid partition.

	 2.	updateSpAgentState: Increase cell size based on the nutrient
consumption rates. We use the scaled φ

φ + K
 values

(Subheading 1.3) to compute the nutrient consumption rates.
This function is called once for every discrete agent in every
state-and-grid time step.

	 3.	updateSpAgentBirthDeath, divideSpAgent, and adjustSpAgent:
Set whether a discrete agent will divide or disappear (updateSpA-
gentBirthDeath, see Code 2). updateSpAgentBirthDeath is
called once for every discrete agent in every baseline time step.
A cell divides if its size exceeds the maximum cell size. If a cell
is set to divide, divideSpAgent is called. A cell divides into two
cells in a random direction and the two resulting cells’ volume
is one half of the original cell’s volume in the ported model.
Dead cells remain in the simulation domain, so no discrete
agent is set to disappear. If neither divide nor disappear is set,
adjustSpAgent is called and this model routine updates the cell
displacement based on the sum of the forces on the cell.

Model routines related to simulating physico–mechanical interac-
tions between discrete agents are defined in model_routine_
mech_intrct.cpp.

	 1.	computeForceSpAgent: Compute forces between pairs of dis-
crete agents (see Code 3). This model routine is called once per
cell pair that is within the maximum direct mechanical interac-
tion distance, at every baseline time step. Force on two interacting
cells is set based on the overlap between the two cells to remove
the overlap by pushing the two cells apart.

void ModelRoutine::updateSpAgentBirthDeath(c
onst VIdx& vIdx, const SpAgent&

spAgent, const AgentMechIntrctData& mechIn-
trctData, const Vector<NbrBox<

3.2  Individual Agent
Behavior

3.3  Physico–
Mechanical
Interaction Between
Agents

Seunghwa Kang et al.

247

REAL> >& v_gridPhiNbrBox/* [elemIdx]
*/, const Vector<NbrBox<REAL> >&

v_gridModelRealNbrBox/* [elemIdx]
*/, const Vector<NbrBox<S32> >&

v_gridModelIntNbrBox/* [elemIdx]
*/, BOOL& divide, BOOL& disappear) {

/* MODEL START */
divide = false;
disappear = false;
if((spAgent.state.getType() == AGENT_TYPE_R_

CELL) || (spAgent.state.
getType() == AGENT_TYPE_G_CELL)) 

{/* R or G strain cells */
if (spAgent.state.getRadius 

() >= MAX_CELL_RADIUS) {
divide = true;

 }
 }
else {/* dead cell */
CHECK(spAgent.state.getType () == AGENT_

TYPE_D_CELL);
 }
/* MODEL END */
return;

 }

Code 2: Model routine to set whether a cell will divide, disappear,
or neither divide nor disappear.

Model routines related to simulating state changes in the extracel-
lular space are defined in model_routine_grid.cpp.

	 1.	 initIfGridVar and initPDEBufferPhi: Initialize grid state vari-
ables for the interface grid (initIfGridVar) and the PDE buffer
grid (initPDEBufferPhi). initIfGridVar is called once per grid
box in the interface grid, and initPDEBufferPhi is called once
per grid box in the PDE buffer grid.

	 2.	updateIfGridVar: Update interface grid state variables based
on model specific rules (see Subheading 1.3). This function is
called once per grid box in the interface grid.

void ModelRoutine:: computeForceSpAgent(const
VIdx& vIdx0, const SpAgent&

spAgent0, const VIdx& vIdx1, const SpAgent&
spAgent1, const VReal& dir/*

unit direction vector from spAgent1 to spA-
gent0 */, const REAL& dist,

VReal& force/* force on spAgent0 due to inter-
action with spAgent1 (force

3.4  State
Changes in the
Extracellular Space

Simulating Microbial Community Patterning Using Biocellion

248

on spAgent1 due to interaction with spAgent0
has the same magnitude but

the opposite direction), if force has the
same direction with dir, two

cells push each other, if has the opposite
direction, two cells pull each

other. */) {
/* MODEL START */
REAL R = spAgent0.state.getRadius () + spA-

gent1.state.getRadius ();
REAL mag;/* + for repulsive force, - for

adhesive force */
if (dist < = R) {/* shoving to remove the

overlap */
 mag = 0.5 * (R - dist);
 }
else {/* adhesion */
 mag = 0.0;/* no adhesion */
 }
for(S32 dim = 0; dim < DIMENSION; dim++) {
 force[dim] = mag * dir[dim];
 }
/* MODEL END */
return;

 }

Code 3: Model routine to compute force between two interacting
discrete agents.

	 3.	updateIfGridKappa and updatePDEBufferKappa: Set PDE
parameter κ for the interface grid and the PDE buffer grid for
each grid box. κ represents the cell volume exclusion in diffu-
sion. As we are not considering cell volume exclusion, κ is set
to 1.0 (0 % volume exclusion).

	 4.	updateIfGridAlpha and updatePDEBufferAlpha: Set PDE
parameter α. α sets the decay rate. We ignore lysine and ade-
nine decay and set α to 0.0.

	 5.	updateIfGridBetaInIfRegion, updateIfGridBetaPDE-
BufferBdry, updateIfGridBetaDomainBdry, updatePDE-
BufferBetaInPDEBufferRegion, and
updatePDEBufferBetaDomainBdry: Set PDE parameter β. β
sets the diffusion coefficient. β is set between two grid boxes
sharing a face (updateIfGridBetaInIfRegion and updatePDE-
BufferBetaInPDEBufferRegion). Different model routines are
called at the boundary between the interface grid and the PDE
buffer grid (updateIfGridBetaPDEBufferBdry) and the simula-
tion domain boundary (updateIfGridBetaDomainBdry and
updatePDEBufferBetaDomainBdry). Code 4 sets the diffusion
coefficient between two adjacent grid boxes in the interface

Seunghwa Kang et al.

249

grid based on the yeast patterning model specifics by filling the
function body of the predefined Biocellion model routine
(updateIfGridBetaInIfRegion).

	 6.	updateIfGridRHSLinear and updatePDEBufferRHSLinear:
Set the PDE reaction term. updateIfGridRHSLinear sets the
reaction term based on the lysine and adenine production and
consumption rates for a grid box in the interface grid. No cells
reside in the PDE buffer region and updatePDEBufferRHSLin-
ear sets the reaction term to 0.0.

	 7.	updateIfGridAMRTags: In solving PDEs, Biocellion users can
apply different grid spacings for different regions; the finest
grid spacing is the interface grid spacing. Users tag each box in
the interface region with a desired AMR level. Boxes in the
PDE buffer region are assumed to be tagged with the coarsest
level. Biocellion (using CHOMBO [7]) generates an AMR
hierarchy based on this information. We tag the boxes contain-
ing cells and the top 40 μm (in the z direction) in the agarose
cylinder with the finest level. We tag the remaining boxes with
the coarsest level.

Model routines controlling simulation outputs are defined in
model_routine_output.cpp.

	 1.	updateSpAgentOutput: Color discrete agents. We color each
discrete agent based on the cell type. We do not need to update
extra output variables as we are mapping a discrete agent to a
sphere. See Code 5 for our implementation for the Biocellion
framework.

void ModelRoutine::updateIfGridBetaInIfRegion
(const S32 elemIdx, const S32

dim, const VIdx& vIdx0, const VIdx& vIdx1,
const UBAgentData&

ubAgentData0, const UBAgentData& ubAgent-
Data1, const Vector<REAL>&

v_gridPhi0, const Vector<REAL>& v_gridPhi1,
const Vector<REAL>&

v_gridModelReal0, const Vector<REAL>& v_
gridModelReal1, const Vector<S32

>& v_gridModelInt0, const Vector<S32>& v_
gridModelInt1, REAL& gridBeta)

 {
/* MODEL START */
REAL z0 = ((REAL)vIdx0[2] + 0.5) *

IF_GRID_SPACING;
REAL z1 = ((REAL)vIdx1[2] + 0.5) *

IF_GRID_SPACING;
REAL gridBeta0;

3.5  Simulation
Output

Simulating Microbial Community Patterning Using Biocellion

250

REAL gridBeta1;
if(z0 < AGAR_HEIGHT) {
gridBeta0 = A_DIFFUSION_COEFF_AGAR[elemIdx];
 }
else {
REAL scale = (REAL)ubAgentData0.v_spAgent.

size ()/(REAL)
 UB_FULL_CELL_CNT;
if(scale > 1.0) {
 scale = 1.0;
 }
 gridBeta0 = A_DIFFUSION_COEFF_COLONY[elemIdx]

* scale;
 }
if(z1 < AGAR_HEIGHT) {
gridBeta1 = A_DIFFUSION_COEFF_AGAR[elemIdx];

 }
else {
REAL scale = (REAL) ubAgentData1.v_spAgent.

size ()/(REAL)
 UB_FULL_CELL_CNT;
if(scale > 1.0) {
scale = 1.0;
 }
gridBeta1 = A_DIFFUSION_COEFF_COLONY[elemIdx]

* scale;
 }
if((gridBeta0 > 0.0) && (gridBeta1 > 0.0)) {
gridBeta = 1.0/((1.0/gridBeta0 + 1.0/grid-

Beta1) * 0.5);/*
 harmonic mean */
 }
else {
 gridBeta = 0.0;
 }
/* MODEL END */
return;
 }

Code 4: Model routine to set diffusion coefficient between two
adjacent grid boxes in the interface grid.

void ModelRoutine::updateSpAgentOutput(const
VIdx& vIdx, const SpAgent&

spAgent, REAL& color, Vector<REAL>&
v_extra) {

/* MODEL START */
color = spAgent.state.getType ();
CHECK (v_extra.size () == 0);

Seunghwa Kang et al.

251

/* MODEL END */
return;

 }

Code 5: Model routine to set the discrete agent color variable (for
visualization).

Biocellion asks users to provide specifics of a simulation
instance (e.g., simulation domain size, output directory) in
an xml file. See $BIOCELLION_ROOT/framework/main/
yeast-patterning-5um.xml, $BIOCELLION_ROOT/
framework/main/yeast-patterning-20um.xml, or
 $BIOCELLION_ROOT/framework/main/yeast-pat-
terning-40um.xml for examples (for 5, 20, or 40 μm grid
spacing, respectively).

We set the required parameters first.

	 1.	Set the number of base line steps to execute. We set this number
to 60,000 (500 h, <time_step num_baseline = “60000”/>).

	 2.	Set the simulation domain size (<domain x = “128” y = “128” z
= “4864”/> in case we adopt 5 μm interface grid spacing). As
we are using three AMR levels with the refinement ratio of 4
(with 5 μm interface grid spacing, refinement ratio is also set in
this xml file), simulation domain size should be a multiple of
64. We set the domain size in the x and y directions slightly
smaller than the size in [5], while setting the size in the z direc-
tion slightly larger than the size used in [5].

	 3.	Set the simulation initialization method and the partition size.
We set the initialization method to initialize within the code,
and set the partition size to 64 (<init_data partition_size =
“64” src = “code”/>). Alternatively, users can start from check-
point data.

	 4.	Set the output directory path, interval, file formats, and the
number of extra output variables for each discrete agent (<out-
put path = “output_directory_path” interval = “120” particle =
“pvtu” num_extra = “0” grid = “vtm”/>).

We also set several optional parameters relevant to executing
the yeast patterning model on multicore PCs.

	 1.	Set standard output verbosity (from 0 to 5) to 1 (<stdout ver-
bosity = “1”/>).

	 2.	Set the number of threads to 12 for a multicore PC with 12
hardware threads (<system num_node_groups = “1” num_nodes_
per_group = “1” num_sockets_per_node = “1” max_load_imbal-
ance = “1.2‘ num_thre ads = “12”>). num_node_groups,
num_nodes_per_group, num_sockets_per_node and max_load_
imbalance are irrelevant for multicore PCs and are ignored.

3.6  Setup for a
Simulation Instance

Simulating Microbial Community Patterning Using Biocellion

252

	 3.	Set the summary report (Biocellion allows users to print the
summary of the interface grid variables, see the Biocellion user
manual [6] for additional details), AMR regridding, and check-
point intervals (<interval summary = “10” load_balance =
“120” regridding = “120” checkpoint = “600”/>). load_balance
is irrelevant to multicore PCs and is ignored.

	 4.	Set the refinement ratio in applying AMR and other parame-
ters controlling AMR hierarchy generation (<amr refine_ratio
= “4”fill_ratio = “0.5”/>). See the Biocellion user manual [6]
for additional details.

	 5.	Set the optional parameters affecting the accuracy of the mul-
tigrid method used in solving PDEs (<mg_parabolic_solve mg_
num_pre = “3” mg_num_post = “3” mg_num_bottom = “3”
mg_v_or_w = “v” mg_max_ite rations = “50” mg_epsilon =
“-12”mg_hang = “-8” mg_norm_threshold = “-20”/>). See the
Biocellion user manual [6] for additional details.

4  �Notes

	 1.	Biocellion users can set the framework to perform checks on
model routine outputs or input arguments of Biocellion utility
functions called inside model routines by enabling CHECK_
FLAG = -DENABLE_-CHECK = 1 in $BIOCELLION_ROOT/
Makefile.model. This often allows users to easily identify
model program bugs such as using a random number genera-
tor without initialization or accessing a C++ STL vector array
variable outside the array length. We recommend Biocellion
users enable this option to verify their model routines prior to
running full simulations. Once the model routines are verified,
users should disable this check to expedite simulation.

	 2.	Lysine released by a dying G strain cell is spread to seven grid
boxes. The sum of lysine uptake and secretion rates for a grid
box can be updated by seven different model routine calls
(a model routine to update grid state variables is invoked once
for every grid box in the interface grid in a single round).
Biocellion asks users to set the synchronization method to
properly update grid variables when a single variable is updated
by multiple model routine calls. We set the synchronization
method to SYNC_METHOD_DELTA to set the value by summing
the differences from the initial value when updated by multiple
model routine calls—e.g., if three different model routines set the
value of variable rhslysine to 3, 5, and 9, respectively, then rhslysine is set
to 3 + 5 + 9 (assuming that the initial value is 0). We need to reset
the sum of lysine uptake and secretion rates (rhslysine) to 0.0 to
ensure that this scheme properly works. We configure Biocellion
to invoke model routines to edit grid variables at the end of a
state-and-grid time step to reset the variable to 0.0.

Seunghwa Kang et al.

253

Acknowledgements

Support for this research was provided by the Extreme Scale
Computing Initiative and the Fundamental and Computational
Sciences Directorate, as part of the Laboratory Directed Research
and Development Program at Pacific Northwest National
Laboratory (PNNL). Portions of this work were conducted using
PNNL Institutional Computing at PNNL. PNNL is operated by
Battelle for DOE under contract DE-ACO5-76RLO 1830. B.M.
is a Gordon and Betty Moore Foundation fellow of the Life
Sciences Research Foundation.

References

	1.	Byrne H, Drasdo D (2009) Individual-based and
continuum models of growing cell populations: a
comparison. J Math Biol 58(4–5):657–687

	2.	Colella P, Graves DT, Johnson JN, Johansen HS,
Keen ND, Ligocki TJ, Martin DF, McCorquodale
PW, Modiano D, Schwartz PO, Sternberg TD,
Van Straalen B (2012) Chombo software package
for AMR applications design document. Lawrence
Berkeley National Laboratory, Berkeley, CA

	3.	Ferrer J, Prats C, López D (2008) Individual-
based modelling: an essential tool for microbiol-
ogy. J Biol Phys 34(1–2):19–37

	4.	Galle J, Loeffler M, Drasdo D (2005) Modeling
the effect of deregulated proliferation and

apoptosis on the growth dynamics of epithelial
cell populations in vitro. Biophys J 88:62–75

	5.	Momeni B, Brileya KA, Fields MW, Shou W
(2013) Strong inter-population cooperation
leads to partner intermixing in microbial com-
munities. Elife 2:e00230

	6.	Pacific Northwest National Laboratory (2013)
Biocellion 1.0 User Manual, 1.0 edition,
Accessed Jul 2013

	7.	Xavier JB, Picioreanu C, van Loosdrecht MCM
(2005) A framework for multidimensional
modelling of activity and structure of multispe-
cies biofilms. Environ Microbiol 7(8):
1085–1103

Simulating Microbial Community Patterning Using Biocellion

	Chapter 16: Simulating Microbial Community Patterning Using Biocellion
	1 Introduction
	1.1 Yeast Patterning Model Description
	1.2 Biocellion Overview
	1.3 Porting Overview

	2 Materials
	2.1 Installing Intel Thread Building Blocks
	2.2 Installing Biocellion

	3 Methods
	3.1 Model Configuration
	3.2 Individual Agent Behavior
	3.3 Physico–Mechanical Interaction Between Agents
	3.4 State Changes in the Extracellular Space
	3.5 Simulation Output
	3.6 Setup for a Simulation Instance

	4 Notes
	References

