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Chapter 16

Simulating Microbial Community Patterning  
Using Biocellion

Seunghwa Kang, Simon Kahan, and Babak Momeni

Abstract

Mathematical modeling and computer simulation are important tools for understanding complex interactions 
between cells and their biotic and abiotic environment: similarities and differences between modeled 
and observed behavior provide the basis for hypothesis formation. Momeni et al. (Elife 2:e00230, 2013) 
investigated pattern formation in communities of yeast strains engaging in different types of ecological 
interactions, comparing the predictions of mathematical modeling, and simulation to actual patterns 
observed in wet-lab experiments. However, simulations of millions of cells in a three-dimensional com-
munity are extremely time consuming. One simulation run in MATLAB may take a week or longer, inhib-
iting exploration of the vast space of parameter combinations and assumptions. Improving the speed, scale, 
and accuracy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high-
performance software framework for accelerating discrete agent-based simulation of biological systems 
with millions to trillions of cells. Simulations of comparable scale and accuracy to those taking a week of 
computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion 
further accelerates large scale, high resolution simulations using cluster computers by partitioning the 
work to run on multiple compute nodes. Biocellion targets computational biologists who have mathemati-
cal modeling backgrounds and basic C++ programming skills. This chapter describes the necessary steps to 
adapt the original Momeni et al.’s model to the Biocellion framework as a case study.

Key words Discrete agent-based modeling, Partial differential equation, Adaptive mesh refinement, 
High-performance computing, Cell system simulation

1  �Introduction

Discrete agent-based modeling maps a multicellular biological 
system to a collection of discrete agents. Discrete agent-based 
modeling has been widely used to model various biological systems 
[1, 3–5, 7]. Momeni et al. [5] studied spatial patterning in a com-
munity of yeast strains engaging in metabolic interactions through 
a combination of discrete agent-based mathematical modeling and 
wet-lab experiments.

Finding solutions using mathematical models often requires 
implementation of these models as a computer program. 
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Producing a high-performance implementation that anticipates 
and accommodates easy revisions and refinements of a model as it 
evolves is a time-consuming task. Computational biologists often 
favor low programming effort over efficiency, flexibility, and even 
accuracy. Therefore, simulations tend to run much longer than 
performance-optimized code. Even incremental model updates 
can require significant code revision. For example, Momeni 
et al.’s model [5] partitions the simulation domain into fixed size 
cubic boxes and maps each cell to a single box. Once a cell divides, 
the daughter cell occupies one of the nearest neighboring boxes, 
instantly pushing surrounding cells outward to free up the space. 
This approximation of cell growth and shoving may be sufficient 
for the studied problem, but it may not work well for more com-
plex problems—e.g., this approach cannot model a cell division 
that produces two cells differing in size.

Parallel computers ranging from multicore PCs to leadership 
class supercomputers provide significantly larger computing capac-
ity than a single compute core. This computing capacity can address 
the computational challenges in simulating complex models when 
harnessed by simulation software that serves widely varying multi-
cellular biological system modeling requirements and runs efficiently 
on parallel computers. However, implementing such software is dif-
ficult and time consuming. Even if computational biologists have 
access to cluster computers, without parallel computing, the advan-
tage is limited to running multiple simulations in parallel—one 
simulation per compute core—resulting in slow turn-around time. 
In contrast, with efficient parallel software, a single simulation run 
can be partitioned across multiple computing cores, dramatically 
reducing the turn-around time.

Biocellion is a high-performance software framework that 
enables computational biologists without parallel computing 
expertise to exploit the power of parallel computers with only 
moderate programming effort. We briefly describe Momeni et al.’s 
model [5] and Biocellion [6] and illustrate the necessary steps to 
adapt Momeni et al.’s model to Biocellion as a case study.

Momeni et  al. [5] implemented a mathematical model with a 
range of parameters corresponding to different yeast strains engag-
ing in various interactions. We consider only one instance in this 
article. Modification for other strains and interaction types is 
straightforward.

Two strains of yeast grow on top of a 24 mm thick agarose 
cylinder. One strain consumes lysine and also secretes adenine at a 
constant rate (say the R strain). The other strain consumes adenine 
and releases lysine on death (say the G strain). The two strains 
grow cooperatively and Momeni et al. demonstrated that strong 
cooperation promotes intermixing of the two strains in a 

1.1  Yeast Patterning 
Model Description
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three-dimensional community. We list model specifics necessary to 
adapt the model to Biocellion.

	 1.	Yeast cells grow on top of a 24,000 μm thick agarose cylinder. 
Partial differential equations (PDE) are commonly used to 
model spatio-temporal variation of molecular concentrations 
in the extracellular space. We adopt this approach, and PDEs 
model adenine and lysine concentration changes in the agarose 
cylinder and the yeast cell community. Because the initial spa-
tial distribution of the two yeast strains is uniform, a small frac-
tion of the plate area in wet-lab experiment is already 
representative of patterns observed for the entire plate. Thus, 
only a fraction of the plate area in wet-lab experiments is con-
sidered in simulation. In Momeni et al.’s work [5], simulation 
domain height is set to include the entire agarose cylinder in 
the simulation area plus up to 300 μm above the agarose cylin-
der where yeast cells grow.

	 2.	Periodic boundary conditions (both for PDEs and cell move-
ments) are assumed in the x and y directions. A zero-flux 
boundary condition is applied at the bottom end of the aga-
rose cylinder and at the top of the simulation domain—mole-
cules and cells cannot cross the top and bottom planes of the 
simulation domain.

	 3.	We map a cell to a sphere (instead of a fixed size cubic box in 
the original model) using Biocellion. The maximum cell diameter 

is 5 μm. The maximum cell volume is 
4 2 5

3

3
3× ×π

µ
.

m . Yeast

cells push against other cells when they are packed together.
	 4.	We increase the volume of a sphere to model cell growth. The 

volume of an R strain cell after consuming a certain amount

of lysine (say Δlysine) is V0 1× +










∆
α
lysine

L

, where V0 is the 

minimum cell volume (the volume of a cell right after cell 
division or one half of the maximum cell volume). αL, the 
amount of lysine required to produce a daughter cell, is 2 fmol. 
Similarly, the volume of a G strain cell after consuming a certain 

amount of adenine (say Δadenine) is V0 1× +










∆
α

adenine

A

. αA,

the amount of adenine required to produce a daughter cell, is 
1 fmol. When a cell grows above the maximum cell volume, 
the cell divides into two equal-volume cells.

	 5.	For an R strain cell, lysine uptake rate is v
T KL

L

L

L

L L

= ×
+

α φ
φ

. 

For a G strain cell, adenine uptake rate is v
T KA

A

A

A

A A

= ×
+

α φ
φ

.

Simulating Microbial Community Patterning Using Biocellion



236

The minimal population doubling times for lysine-requiring 
and adenine-requiring cells (TL and TA, respectively) are 1.76 
and 1.98  h, respectively. The Monod’s constant KL, i.e., the 
concentration of lysine at which lysine-requiring cells grow at 
their half maximal growth rate is 1 μM. The Monad’s constant 
KA for adenine requiring cells is 0.1 μM. ϕL and ϕA are lysine 
and adenine concentrations in the extracellular space, respec-
tively. An R strain cell secretes 0.08 fmol of adenine per hour, 
and a G strain cell releases 12 fmol of lysine on death.

	 6.	The death rates are 0.054 h−1 and 0.018 h−1 for an R strain cell 
and a G strain cell, respectively.

	 7.	Cells are randomly distributed on the agarose cylinder surface 
at the beginning of the simulation. Initial cell volume is set to 
a random value between one half of the maximum cell volume 
and the maximum cell volume to represent the range between 
a new-born daughter and a fully grown cell. The initial cell 
density is 500 cells per mm2.

	 8.	Initial lysine and adenine concentrations are set to zero.
	 9.	Diffusion coefficients are 300 μm2/s in the agarose cylinder 

and 20 μm2/s inside a yeast colony for both lysine and adenine 
according to experimental measurements. Diffusion coeffi-
cients for grid boxes containing yeast cells are scaled down 
based on the total volume of the cells in a grid box—a grid box 
with low cell volume (a box in the colony-air boundary) has 
smaller diffusion coefficients than a box with high cell volume 
as implemented in the original model.

Biocellion’s design goal is to accelerate a wide range of discrete 
agent-based mathematical models of multicellular biological sys-
tems. This is challenging, because mathematical models of biologi-
cal systems vary significantly. Biocellion’s approach is to separate 
model specifics from common computational and parallel pro-
gramming challenges. Biocellion asks users to provide model specif-
ics, and Biocellion handles the remaining computational and 
programming challenges. Model specifics are expressed by the 
developer through modification of a library of C++ functions that 
comprise Biocellion’s Application Programming Interface (API). 
The model library links to the Biocellion core framework at runtime. 
Biocellion output files can be visualized using Paraview (http://
www.paraview.org).

Biocellion has three computational modules to simulate (1) 
individual discrete agent behavior, (2) direct physico-mechanical 
interactions between discrete agents, and (3) changes in the extra-
cellular environment. Biocellion imposes a grid on the simulation 
domain to represent the state of the extracellular environment. 
In Momeni et al.’s model [5], cells reside on top of the 24 mm 

1.2  Biocellion 
Overview
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thick agarose cylinder, and the region where yeast cells grow is a 
small fraction of the entire simulation domain. The agarose cylinder 
is relevant only in tracking molecular concentrations in the model. 
Maintaining data structures for all three computational modules 
for the entire agarose cylinder can waste a significant amount of 
computing and memory. Biocellion imposes two different types of 
grids to different parts of the simulation domain to avoid such 
waste. Biocellion imposes an interface grid on a region where all 
three computational modules are executed, and computational 
modules communicate through this interface grid. Biocellion 
imposes a coarser PDE buffer grid on the region relevant only in 
solving PDEs—e.g., tracking nutrient concentrations in the aga-
rose cylinder.

Biocellion decomposes the simulation domain into multiple par-
titions—users set the partition size. Users can impose either an inter-
face grid or a PDE buffer grid for each partition. When users wish to 
run Biocellion on a cluster computer with multiple compute nodes 
(each node has multiple compute cores), Biocellion creates multiple 
compute processes, and every compute process works on a different 
set of partitions; note that a single process can exploit multiple 
compute cores in a single compute node to work on a single parti-
tion. Separate output files are created for different partitions.

Biocellion supports adaptive mesh refinement (AMR) to solve 
PDEs. AMR generates multiple levels of grids with different grid 
spacings based on the spatial resolution requirements of different 
simulation domain subregions. Biocellion asks users to set the num-
ber of AMR levels and the refinement ratio between two consecu-
tive AMR levels—if the refinement ratio is set to 4, the coarser level 
grid spacing is four times larger than the finer level grid spacing. 
The finest grid spacing coincides with the interface grid spacing—
Biocellion users set the interface grid spacing. The PDE buffer grid 
spacing equals the coarsest grid spacing in the AMR hierarchy. 
Users tag interface grid boxes with the desired AMR level. PDE 
buffer grid boxes are automatically tagged with the coarsest AMR 
level. Biocellion generates an AMR hierarchy (which is used to 
solve PDEs) based on this information. Note that the generated 
AMR hierarchy can have more fine boxes than the user input to 
improve efficiency (processing a large number of small boxes is 
inefficient) and guarantee correctness (coarsening a fine grid first 
and refining the coarsened fine grid should produce the original 
fine grid, or see the proper nesting condition in ref. [2]).

Figure 1 depicts the simulation domain (left) and the gener-
ated AMR hierarchy (right) in our experiment assuming 40 μm 
grid spacing, two AMR levels, and the refinement ratio of 4—we 
simulate with 5, 20, and 40 μm grid spacings.

Multicellular biological system simulation combines multiple 
biological processes such as cell movement, diffusion of molecules, 
and cell metabolic rate change. Different biological processes have 
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different time step requirements to simulate the processes with 
sufficient accuracy. For example, simulating diffusion of molecules 
(by solving PDEs) often requires a significantly smaller time step 
size than the time step size required to simulate cell movement. 
To accommodate multiple time step size requirements in multicel-
lular biological system simulation, Biocellion uses multiple time 
step sizes to simulate different computational modules and to 
communicate across the modules. The baseline time step is the larg-
est time step used to simulate direct physico–mechanical interac-
tions and discrete agent birth, death, and movement. The module 
computing direct physico–mechanical interactions communicates 
with the other two modules once per baseline time step. Discrete 
agent states and the state of the extracellular environment affect 
each other. For example, cell metabolic rate change affects the 

Interface
grid

(40 µm grid
spacing)

PDE buffer
grid

(160 µm grid
spacing)

The cell growth
region (320 µm)

The agarose
cylinder
(24 mm)

Partition
size

The cell growth
region with yeast cells

The top 40 µm of the
agarose cylinder

Fig. 1 Biocellion imposes two different types of grids to the simulation domain (left). An interface grid is 
imposed on the partition covering the cell growth region to simulate both cells and the environment. 
The remaining partitions in the agarose cylinder region are set as PDE buffer—these partitions are relevant 
only in solving PDEs to track lysine and adenine concentrations. Users tag interface gird boxes with the desired 
AMR level. We tag the interface grid boxes containing yeast cells (the light blue boxes) and the interface grid 
boxes at the top 40 μm of the agarose cylinder (the light red boxes) with the finer AMR level. The remaining 
interface grid boxes are tagged with the coarser level. Biocellion generates an AMR hierarchy (right) based on 
this information. Note that the generated AMR hierarchy has more fine boxes than the user input to satisfy the 
proper nesting condition [7]
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production and consumption rates of extracellular molecules, and 
this drives molecular concentration changes in the extracellular 
space. These two modules can be coupled more tightly by splitting 
a single baseline time step into multiple state-and-grid time steps. 
Variables associated with the grid imposed on the extracellular 
space can be updated either by model specific rules or by solving 
PDEs. Users can update the variables by model specific rules at the 
beginning and at the end of each state-and-grid time step. A single 
state-and-grid time step can be further partitioned to smaller PDE 
time steps to advance PDEs.

The original yeast patterning model [5] partitions the simulation 
domain on top of the agarose cylinder into a set of fixed size cubic 
boxes (a box width is 5 μm), and a cell takes a single box. If a cell 
divides, the new cell tries to occupy one of the nearest neighboring 
boxes in the same z plane, if there is an empty box within the 
confinement neighborhood of 5-cell radius. The existence of con-
finement neighborhood was observed experimentally. If there is no 
empty box within the confinement neighborhood in the same z 
plane, the new cell occupies the box right on top of the mother cell 
box, and all the other cell boxes on top of the mother cell box are 
pushed upward.

Using Biocellion, we represent each cell by a sphere (Biocellion 
allows users to map a discrete agent to a different shape). A sphere 
can be located anywhere in the simulation domain above the agarose 
cylinder, and its radius changes to model cell growth. When a cell 
grows just enough to overlap with another, the model immediately 
introduces a force to push all spheres apart, thus modeling cell 
shoving in packed regions.

Figure  2 shows that the concentration of adenine changes 
smoothly in the simulation domain except for the cell growth 
region and the top 40 μm part of the agarose cylinder—adenine 
concentration changes smoothly even just 40 μm below the agarose 
cylinder top surface. We set the partitions at the agarose cylinder 
region (except for the top 40 μm part) as PDE buffer. Biocellion 
supports AMR which applies different grid resolutions to different 
parts of the simulation domain. In generating an AMR hierarchy, 
the region occupied by yeast cells and the top 40 μm of the agarose 
cylinder are tagged with the finest grid spacing, which is equal to 
the interface grid spacing. A coarser grid is imposed on the air 
region and the bottom part of the agarose cylinder.

We set the baseline time step size to 30 s and split a single base-
line time step to 30 state-and-grid time steps to tightly couple cell 
metabolic rate change and nutrient concentration change in the 
extracellular space. PDE time step sizes to advance PDEs updating 
lysine and adenine concentrations are set identical to the state-and-
grid time step size.

1.3  �Porting Overview

Simulating Microbial Community Patterning Using Biocellion
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We define four model specific variables (say rhslysine, rhsadenine, 
Uscale,lysine, and Uscale,adenine) for each grid box in the interface grid. 
rhslysine, rhsadenine store the sum of the production and consumption 
rates of lysine and adenine, respectively. Lysine and adenine 
consumption rates are proportional to φ

φ + K
, where ϕ is lysine or 

adenine concentration in the extracellular space and K (the con-
centration of metabolite at which half maximal consumption rate 
is achieved) is 1.0 and 0.1 μM for lysine and adeneine, respec-
tively. Uscale,lysine, and Uscale,adenine store the φ

φ + K
 values for lysine and 

adenine, respectively. We want to limit the total amount of lysine 
or adenine consumed by cells in a grid box to be lower than 
the amount of lysine or adenine in the box plus an estimation of 
the amount of lysine or adenine diffuse into the box within a single 
state-and-grid time step. This prevents ϕ from becoming negative 

Fig. 2 Adenine concentrations in the simulation domain (unit: μmol/μm3, 1 μM = 10−15μmol/μm3). The top figure 
depicts the adenine concentration along the z-axis (passing the center of the simulation domain), with 0 and 
24,000 being the bottom and the top of the agarose cylinder, respectively. The bottom figures show the ade-
nine concentration at the z normal planes right on top of the agarose cylinder (right), right below the agarose 
cylinder top surface (center), and 40 μm below the agarose cylinder top surface (right), respectively. The 
adenine concentration has higher spatial variation near the agarose cylinder top surface. The spatial variation 
of the adenine concentration is significantly lower even just 40 μm below the top surface

Seunghwa Kang et al.



241

(especially when ϕ is small) without using a tiny time step size. This 
approach is accurate as long as our estimation of the diffusion rate 
is accurate. We use the explicit Euler method to estimate the 
amount of diffusion, which gives a reasonably accurate estimation 
for our choice of the state-and-grid time step size (1 s)—the molec-
ular concentration gradient does not change significantly within 
1 s. We scale φ

φ + K
 to limit nutrient consumption. If the sum of 

rhslysine (or rhsadenine) and the estimated diffusion rate multiplied by 
the state-and-grid time step size exceeds the lysine (or adenine) 
concentration of the box, we reduce the consumption rate and 
scale down Uscale,lysine (or Uscale,adenine), so the net decrease of the lysine 
(or adenine) concentration based on the production, consump-
tion, and estimated diffusion rates does not exceed the lysine con-
centration of the grid box. Model routines setting PDE parameters 
and model routines updating individual cell states can access these 
values to set nutrient uptake rates—this is necessary to assure that 
the total amount of nutrients consumed in solving PDEs coincide 
with the amount consumed by cells in updating individual cell 
states. We save rhslysine and rhsadenine to avoid computing the rates 
again when setting PDE parameters.

A G strain cell releases lysine on death. A relatively large amount 
of lysine is released in a short amount of time, and this forms a steep 
concentration gradient followed by a rapid gradient change due to 
diffusion. Accurately computing this transient gradient change 
requires a small time step size. However, cells react to concentration 
changes only gradually, so accurately computing the transient gradi-
ent change has little impact on simulation output. We have decided 
to spread released lysine to six neighboring boxes in the ± x, y, and z 
directions to lower the initial concentration gradient. We implement 
this by updating the rhslysine variable of a neighboring grid boxes.

Figure 3 shows a simulation output. Simulation time is highly 
dependent on grid resolution and with 40 μm interface grid spac-
ing (comparable to 50 mum grid spacing used in the Momeni 
et al.’s work [5]) to simulate 500 h of cell growth, a single simula-
tion run takes 6.5 h on a workstation with a single 6 core micro-
processor (Intel X5650 2.67  GHz). Biocellion also accelerates 
larger higher resolution simulations using multiple compute nodes.

2  �Materials

Biocellion runs on multicore PCs, workstations, cluster computers, 
cloud computers, and supercomputers. This article pertains to mul-
ticore PCs. Running on different systems does not require model 
code changes. The current version of Biocellion runs only on ×86 
compatible systems (PCs with Intel or AMD microprocessors are 
×86 compatible). A 64-bit Linux operating system needs to be 
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installed on the target system. Compiling Biocellion model code 
requires the GNU gcc compiler (pre-installed in most Linux sys-
tems), Intel icc compiler, or some other C++ compiler (we have 
tested only with gcc and icc). When compiling model code, users 
may set the check flag to verify their code or disable the check for 

Fig. 3 Yeast cell growth (the top six figures) viewed from an oblique angle from the top, a 2D vertical cross-
section of the yeast colony (the next figure), and a 2D vertical cross-section from the wet-lab experiment 
(the bottom most figure, reproduced from Momeni et al.’s paper [5]). Red cells are R strain cells, green cells 
are G strain cells, and black cells are dead cells

Seunghwa Kang et al.
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higher performance (See Note 1). Biocellion requires the Intel 
Thread Building Blocks library, freely available from the thread 
building blocks homepage (http://threadingbuildingblocks.org).

	 1.	Download the most recent stable version of Intel Thread 
Building Blocks library (version 4.2 or later is required) to the 
target system.

	 2.	Unzip the downloaded tarball.
	 3.	Update the LD_LIBRARY_PATH Linux environment variable 

to include the TBB library directory (in TBB 4.2, this is $TBB_
ROOT/lib/intel64/gcc4.1).

	 1.	Unzip the Biocellion tarball.
	 2.	Open Makefile.common under the Biocellion root directory.
	 3.	Update BIOCELLION_ROOT to point to the Biocellion root 

directory.
	 4.	Try “make” under the libmodel directory. This should compile 

the model library ($BIOCELLION_ROOT/libmodel/
interface/libmodel.so).

3  �Methods

Biocellion users provide model specifics by filling-in a set of C++ 
functions defined in five files under the $BIOCELLION_ROOT/
libmodel/model directory: model_routine_config.cpp, 
model_routine_agent.cpp, model_routine_mech_
intrct.cpp, model_routine_grid.cpp, and model_
routine_output.cpp. These files include model routines to 
initialize the model, update discrete agent states, simulate direct 
physico–mechanical interactions, update the state of the extracel-
lular space, and set simulation output, respectively. The entire 
model code for the Momeni et al.’s model [5] is available under 
$BIOCELLION_ROOT/libmodel/model-yeast-
patterning for interested readers. Below, we present examples 
of how a model is specified.

Model routines related to model configuration are defined in 
model_routine_-config.cpp.

	 1.	updateIfGridSpacing: Set the interface grid spacing by filling 
the updateIfGridSpacing function body surrounded by/* 
MODEL START */and/* MODEL END */(Code 1). The 
interface grid spacing should be equal to or larger than the 
maximum direct physico-mechanical interaction distance. We 
map a cell to a sphere-shaped discrete agent and only consider 
cell shoving in evaluating short-range mechanical interactions. 

2.1  Installing  
Intel Thread 
Building Blocks

2.2  Installing 
Biocellion

3.1  Model 
Configuration

Simulating Microbial Community Patterning Using Biocellion
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Two overlaping spheres are pushed apart to remove the overlap, 
and the maximum mechanical interaction distance cannot 
exceed the maximum cell diameter (5 μm). We start with the 
smallest interface grid spacing (5 μm) to minimize simulation 
artifacts (see Fig.  4 for an example). Larger values reduce 
execution time at potential loss of accuracy. Assuming fast dif-
fusion, we may be able to adopt a larger grid spacing without 
significant loss of simulation accuracy. We also try 20 and 
40 μm. Interested readers may experiment with different grid 
spacings to find the optimal grid spacing.
void ModelRoutine::updateIfGridSpacing 

(REAL& ifGridSpacing ) {
  /* MODEL START */
  ifGridSpacing = 5.0; /* 5.0, 20.0, or 40.0, 

to set the interface grid
    spacing to 5.0, 20.0, or 40.0 um */
  /* MODEL END */
  return;
 }
Code 1: Model routine to set the interface grid spacing.

	 2.	updateOptModelRoutineCallInfo: Set the number of rounds to 
update variables associated with the interface grid at the begin-
ning and at the end of a state-and-grid time step.

To set the model specific interface grid state variables properly 
(Subheading 1.3), Biocellion should be configured to invoke model 
routines updating interface grid state variables based on model 
specific rules once at the beginning of a state-and-grid time step 
and once at the end of the step (in order to reset the sum of lysine 
consumption and production rates, see Note 2).

A B A B

5 µm

20 µm

Agarose Gel Agarose Gel

Fig. 4 Comparing 5 μm grid spacing and 20 μm grid spacing. Grid boxes outside the agarose cylinder with no 
cells have 0 diffusion coefficient. If cell A secretes a metabolite consumed by cell B, the secreted metabolite 
is delivered to cell B via diffusion through the agarose cylinder. However, if cell A and cell B are located in the 
same box (with 20 μm grid spacing), cell B can directly consume the molecules secreted by cell A

Seunghwa Kang et al.
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	 3.	updateDomainBdryType: Set domain boundary types. Periodic 
boundary conditions are applied in the x and y directions. 
A nonperiodic boundary condition is applied in the z direction, 
and cells are not allowed to pass the upper and lower end of the 
simulation domain in the z direction.

	 4.	updatePDEBufferBdryType: Set the boundary type between 
an interface grid partition and a PDE buffer grid partition. 
The current version of Biocellion provides only one option 
(PDE_BUFFER_BDRY_TYPE_HARD_WALL), and discrete 
agents are not allowed to pass the boundary. This function is 
irrelevant to PDE boundary conditions.

	 5.	updateTimeStepInfo: Update time step sizes. Set the baseline 
time step size to 30 s and split a single baseline time step to 30 
state-and-grid time steps. Interested readers can experiment 
with different time step sizes.

	 6.	updateSyncMethod: Update synchronization methods when a 
single variable is updated by multiple model routine calls 
(see Note 2). The only kind of short range cell–cell direct 
mechanical interaction we consider is cell–cell shoving, so the 
synchronization method for extra mechanical interactions is 
irrelevant. Set the synchronization method for grid variable 
updates to SYNC_METHOD_DELTA (see Note 2).

	 7.	updateSpAgentInfo: Set discrete agent types. We consider three 
cell types (R and G strain cells and dead cells; dead cells do not 
grow and divide). A dead cell has one model specific variable 
storing the amount of lysine in the cell. This variable is used to 
calculate the amount of lysine to be released into the extracel-
lular space.

	 8.	updatePDEInfo: Set the grid state variables for lysine and adenine 
concentrations that are updated by solving PDEs. An AMR 
scheme is used with three levels (5 μm grid spacing) or two 
levels (20 μm grid spacing or 40 μm grid spacing). The finest 
level has the grid spacing equal to the interface grid. The size 
of a single PDE time step is set identical to the size of a single 
state-and-grid time step. A zero-flux boundary condition is 
applied in the z direction. Boundary conditions in the x and y 
directions are irrelevant, because periodic boundary conditions 
are imposed in updateDomainBdryType.

	 9.	updateIfGridModelVarInfo: Set extra model specific variables 
associated with the interface grid. We add four variables per 
grid box (see Subheading 1.3).

	10.	updateRNGInfo: Set one random number generator to get 
random numbers with the uniform distribution.

	11.	 setPDEBuffer: Set a partition as a PDE buffer partition if the 
top surface (in the z direction) of the partition is lower than 
the agarose cylinder height minus a small buffer region to 
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exclude the top part of the agarose cylinder (where molecular 
concentrations are highly localized). setPDEBuffer is called 
once per partition.

	12.	 setHabitable: Set a grid box in the interface grid as a habitable 
box or an uninhabitable box. We set the boxes in the agarose 
cylinder to be uninhabitable, and cells are not allowed to move 
into an uninhabitable box.

Model routines related to simulating individual agent behavior are 
defined in model_routine_agent.cpp.

	 1.	addSpAgents: Randomly spread cells on top of the agarose 
cylinder to initialize the simulation. addSpAgents is called once 
per interface grid partition.

	 2.	updateSpAgentState: Increase cell size based on the nutrient 
consumption rates. We use the scaled φ

φ + K
 values 

(Subheading 1.3) to compute the nutrient consumption rates. 
This function is called once for every discrete agent in every 
state-and-grid time step.

	 3.	updateSpAgentBirthDeath, divideSpAgent, and adjustSpAgent: 
Set whether a discrete agent will divide or disappear (updateSpA-
gentBirthDeath, see Code 2). updateSpAgentBirthDeath is 
called once for every discrete agent in every baseline time step. 
A cell divides if its size exceeds the maximum cell size. If a cell 
is set to divide, divideSpAgent is called. A cell divides into two 
cells in a random direction and the two resulting cells’ volume 
is one half of the original cell’s volume in the ported model. 
Dead cells remain in the simulation domain, so no discrete 
agent is set to disappear. If neither divide nor disappear is set, 
adjustSpAgent is called and this model routine updates the cell 
displacement based on the sum of the forces on the cell.

Model routines related to simulating physico–mechanical interac-
tions between discrete agents are defined in model_routine_
mech_intrct.cpp.

	 1.	computeForceSpAgent: Compute forces between pairs of dis-
crete agents (see Code 3). This model routine is called once per 
cell pair that is within the maximum direct mechanical interac-
tion distance, at every baseline time step. Force on two interacting 
cells is set based on the overlap between the two cells to remove 
the overlap by pushing the two cells apart.

void ModelRoutine::updateSpAgentBirthDeath(c
onst VIdx& vIdx, const SpAgent&

spAgent, const AgentMechIntrctData& mechIn-
trctData, const Vector<NbrBox<

3.2  Individual Agent 
Behavior

3.3  Physico–
Mechanical 
Interaction Between 
Agents
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REAL> >& v_gridPhiNbrBox/* [elemIdx]  
*/, const Vector<NbrBox<REAL> >&

v_gridModelRealNbrBox/* [elemIdx]  
*/, const Vector<NbrBox<S32> >&

v_gridModelIntNbrBox/* [elemIdx]  
*/, BOOL& divide, BOOL& disappear) {

/* MODEL START */
divide = false;
disappear = false;
if((spAgent.state.getType() == AGENT_TYPE_R_

CELL) || (spAgent.state.
getType() == AGENT_TYPE_G_CELL))  

{/* R or G strain cells */
if (spAgent.state.getRadius  

() >= MAX_CELL_RADIUS) {
divide = true;

 }
 }
else {/* dead cell */
CHECK(spAgent.state.getType () == AGENT_ 

TYPE_D_CELL);
 }
/* MODEL END */
return;

 }

Code 2: Model routine to set whether a cell will divide, disappear, 
or neither divide nor disappear.

Model routines related to simulating state changes in the extracel-
lular space are defined in model_routine_grid.cpp.

	 1.	 initIfGridVar and initPDEBufferPhi: Initialize grid state vari-
ables for the interface grid (initIfGridVar) and the PDE buffer 
grid (initPDEBufferPhi). initIfGridVar is called once per grid 
box in the interface grid, and initPDEBufferPhi is called once 
per grid box in the PDE buffer grid.

	 2.	updateIfGridVar: Update interface grid state variables based 
on model specific rules (see Subheading 1.3). This function is 
called once per grid box in the interface grid.

void ModelRoutine:: computeForceSpAgent(const 
VIdx& vIdx0, const SpAgent&

spAgent0, const VIdx& vIdx1, const SpAgent& 
spAgent1, const VReal& dir/*

unit direction vector from spAgent1 to spA-
gent0 */, const REAL& dist,

VReal& force/* force on spAgent0 due to inter-
action with spAgent1 (force

3.4  State  
Changes in the 
Extracellular Space
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on spAgent1 due to interaction with spAgent0 
has the same magnitude but

the opposite direction), if force has the 
same direction with dir, two

cells push each other, if has the opposite 
direction, two cells pull each

other. */) {
/* MODEL START */
REAL R = spAgent0.state.getRadius () + spA-

gent1.state.getRadius ();
REAL mag;/* + for repulsive force, - for 

adhesive force */
if (dist < = R) {/* shoving to remove the 

overlap */
   mag = 0.5 * (R - dist);
 }
else {/* adhesion */
   mag = 0.0;/* no adhesion */
 }
for(S32 dim = 0; dim < DIMENSION; dim++) {
   force[dim] = mag * dir[dim];
 }
/* MODEL END */
return;

 }

Code 3: Model routine to compute force between two interacting 
discrete agents.

	 3.	updateIfGridKappa and updatePDEBufferKappa: Set PDE 
parameter κ for the interface grid and the PDE buffer grid for 
each grid box. κ represents the cell volume exclusion in diffu-
sion. As we are not considering cell volume exclusion, κ is set 
to 1.0 (0 % volume exclusion).

	 4.	updateIfGridAlpha and updatePDEBufferAlpha: Set PDE 
parameter α. α sets the decay rate. We ignore lysine and ade-
nine decay and set α to 0.0.

	 5.	updateIfGridBetaInIfRegion, updateIfGridBetaPDE-
BufferBdry, updateIfGridBetaDomainBdry, updatePDE-
BufferBetaInPDEBufferRegion, and 
updatePDEBufferBetaDomainBdry: Set PDE parameter β. β 
sets the diffusion coefficient. β is set between two grid boxes 
sharing a face (updateIfGridBetaInIfRegion and updatePDE-
BufferBetaInPDEBufferRegion). Different model routines are 
called at the boundary between the interface grid and the PDE 
buffer grid (updateIfGridBetaPDEBufferBdry) and the simula-
tion domain boundary (updateIfGridBetaDomainBdry and 
updatePDEBufferBetaDomainBdry). Code 4 sets the diffusion 
coefficient between two adjacent grid boxes in the interface 
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grid based on the yeast patterning model specifics by filling the 
function body of the predefined Biocellion model routine 
(updateIfGridBetaInIfRegion).

	 6.	updateIfGridRHSLinear and updatePDEBufferRHSLinear: 
Set the PDE reaction term. updateIfGridRHSLinear sets the 
reaction term based on the lysine and adenine production and 
consumption rates for a grid box in the interface grid. No cells 
reside in the PDE buffer region and updatePDEBufferRHSLin-
ear sets the reaction term to 0.0.

	 7.	updateIfGridAMRTags: In solving PDEs, Biocellion users can 
apply different grid spacings for different regions; the finest 
grid spacing is the interface grid spacing. Users tag each box in 
the interface region with a desired AMR level. Boxes in the 
PDE buffer region are assumed to be tagged with the coarsest 
level. Biocellion (using CHOMBO [7]) generates an AMR 
hierarchy based on this information. We tag the boxes contain-
ing cells and the top 40 μm (in the z direction) in the agarose 
cylinder with the finest level. We tag the remaining boxes with 
the coarsest level.

Model routines controlling simulation outputs are defined in 
model_routine_output.cpp.

	 1.	updateSpAgentOutput: Color discrete agents. We color each 
discrete agent based on the cell type. We do not need to update 
extra output variables as we are mapping a discrete agent to a 
sphere. See Code 5 for our implementation for the Biocellion 
framework.

void ModelRoutine::updateIfGridBetaInIfRegion 
(const S32 elemIdx, const S32

dim, const VIdx& vIdx0, const VIdx& vIdx1, 
const UBAgentData&

ubAgentData0, const UBAgentData& ubAgent-
Data1, const Vector<REAL>&

v_gridPhi0, const Vector<REAL>& v_gridPhi1, 
const Vector<REAL>&

v_gridModelReal0, const Vector<REAL>& v_
gridModelReal1, const Vector<S32

>& v_gridModelInt0, const Vector<S32>& v_
gridModelInt1, REAL& gridBeta)

 {
/* MODEL START */
REAL z0 = ((REAL)vIdx0[2] + 0.5) * 

IF_GRID_SPACING;
REAL z1 = ((REAL)vIdx1[2] + 0.5) * 

IF_GRID_SPACING;
REAL gridBeta0;

3.5  Simulation 
Output
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REAL gridBeta1;
if(z0 < AGAR_HEIGHT) {
gridBeta0 = A_DIFFUSION_COEFF_AGAR[elemIdx];
 }
else {
REAL scale = (REAL)ubAgentData0.v_spAgent.

size ()/(REAL)
  UB_FULL_CELL_CNT;
if(scale > 1.0) {
  scale = 1.0;
 }
 gridBeta0 = A_DIFFUSION_COEFF_COLONY[elemIdx] 

* scale;
 }
if(z1 < AGAR_HEIGHT) {
gridBeta1 = A_DIFFUSION_COEFF_AGAR[elemIdx];

 }
else {
REAL scale = (REAL) ubAgentData1.v_spAgent.

size ()/(REAL)
   UB_FULL_CELL_CNT;
if(scale > 1.0) {
scale = 1.0;
 }
gridBeta1 = A_DIFFUSION_COEFF_COLONY[elemIdx] 

* scale;
 }
if((gridBeta0 > 0.0) && (gridBeta1 > 0.0)) {
gridBeta = 1.0/((1.0/gridBeta0 + 1.0/grid-

Beta1) * 0.5);/*
    harmonic mean */
 }
else {
  gridBeta = 0.0;
 }
/* MODEL END */
return;
 }

Code 4: Model routine to set diffusion coefficient between two 
adjacent grid boxes in the interface grid.

void ModelRoutine::updateSpAgentOutput(const 
VIdx& vIdx, const SpAgent&

spAgent, REAL& color, Vector<REAL>& 
v_extra) {

/* MODEL START */
color = spAgent.state.getType ();
CHECK (v_extra.size () == 0);
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/* MODEL END */
return;

 }

Code 5: Model routine to set the discrete agent color variable (for 
visualization).

Biocellion asks users to provide specifics of a simulation 
instance (e.g., simulation domain size, output directory) in 
an xml file. See $BIOCELLION_ROOT/framework/main/ 
yeast-patterning-5um.xml, $BIOCELLION_ROOT/ 
framework/main/yeast-patterning-20um.xml, or 
 $BIOCELLION_ROOT/framework/main/yeast-pat-
terning-40um.xml for examples (for 5, 20, or 40 μm grid 
spacing, respectively).

We set the required parameters first.

	 1.	Set the number of base line steps to execute. We set this number 
to 60,000 (500 h, <time_step num_baseline = “60000”/>).

	 2.	Set the simulation domain size (<domain x = “128” y = “128” z 
= “4864”/> in case we adopt 5 μm interface grid spacing). As 
we are using three AMR levels with the refinement ratio of 4 
(with 5 μm interface grid spacing, refinement ratio is also set in 
this xml file), simulation domain size should be a multiple of 
64. We set the domain size in the x and y directions slightly 
smaller than the size in [5], while setting the size in the z direc-
tion slightly larger than the size used in [5].

	 3.	Set the simulation initialization method and the partition size. 
We set the initialization method to initialize within the code, 
and set the partition size to 64 (<init_data partition_size = 
“64” src = “code”/>). Alternatively, users can start from check-
point data.

	 4.	Set the output directory path, interval, file formats, and the 
number of extra output variables for each discrete agent (<out-
put path = “output_directory_path” interval = “120” particle = 
“pvtu” num_extra = “0” grid = “vtm”/>).

We also set several optional parameters relevant to executing 
the yeast patterning model on multicore PCs.

	 1.	Set standard output verbosity (from 0 to 5) to 1 (<stdout ver-
bosity = “1”/>).

	 2.	Set the number of threads to 12 for a multicore PC with 12 
hardware threads (<system num_node_groups = “1” num_nodes_
per_group = “1” num_sockets_per_node = “1” max_load_imbal-
ance = “1.2‘ num_thre ads = “12”>). num_node_groups, 
num_nodes_per_group, num_sockets_per_node and max_load_
imbalance are irrelevant for multicore PCs and are ignored.

3.6  Setup for a 
Simulation Instance
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	 3.	Set the summary report (Biocellion allows users to print the 
summary of the interface grid variables, see the Biocellion user 
manual [6] for additional details), AMR regridding, and check-
point intervals (<interval summary = “10” load_balance = 
“120” regridding = “120” checkpoint = “600”/>). load_balance 
is irrelevant to multicore PCs and is ignored.

	 4.	Set the refinement ratio in applying AMR and other parame-
ters controlling AMR hierarchy generation (<amr refine_ratio 
= “4”fill_ratio = “0.5”/>). See the Biocellion user manual [6] 
for additional details.

	 5.	Set the optional parameters affecting the accuracy of the mul-
tigrid method used in solving PDEs (<mg_parabolic_solve mg_
num_pre = “3” mg_num_post = “3” mg_num_bottom = “3” 
mg_v_or_w = “v” mg_max_ite rations = “50” mg_epsilon = 
“-12”mg_hang = “-8” mg_norm_threshold = “-20”/>). See the 
Biocellion user manual [6] for additional details.

4  �Notes

	 1.	Biocellion users can set the framework to perform checks on 
model routine outputs or input arguments of Biocellion utility 
functions called inside model routines by enabling CHECK_
FLAG = -DENABLE_-CHECK = 1 in $BIOCELLION_ROOT/
Makefile.model. This often allows users to easily identify 
model program bugs such as using a random number genera-
tor without initialization or accessing a C++ STL vector array 
variable outside the array length. We recommend Biocellion 
users enable this option to verify their model routines prior to 
running full simulations. Once the model routines are verified, 
users should disable this check to expedite simulation.

	 2.	Lysine released by a dying G strain cell is spread to seven grid 
boxes. The sum of lysine uptake and secretion rates for a grid 
box can be updated by seven different model routine calls 
(a model routine to update grid state variables is invoked once 
for every grid box in the interface grid in a single round). 
Biocellion asks users to set the synchronization method to 
properly update grid variables when a single variable is updated 
by multiple model routine calls. We set the synchronization 
method to SYNC_METHOD_DELTA to set the value by summing 
the differences from the initial value when updated by multiple 
model routine calls—e.g., if three different model routines set the 
value of variable rhslysine to 3, 5, and 9, respectively, then rhslysine is set 
to 3 + 5 + 9 (assuming that the initial value is 0). We need to reset 
the sum of lysine uptake and secretion rates (rhslysine) to 0.0 to 
ensure that this scheme properly works. We configure Biocellion 
to invoke model routines to edit grid variables at the end of a 
state-and-grid time step to reset the variable to 0.0.

Seunghwa Kang et al.



253

Acknowledgements

Support for this research was provided by the Extreme Scale 
Computing Initiative and the Fundamental and Computational 
Sciences Directorate, as part of the Laboratory Directed Research 
and Development Program at Pacific Northwest National 
Laboratory (PNNL). Portions of this work were conducted using 
PNNL Institutional Computing at PNNL. PNNL is operated by 
Battelle for DOE under contract DE-ACO5-76RLO 1830. B.M. 
is a Gordon and Betty Moore Foundation fellow of the Life 
Sciences Research Foundation.

References

	1.	Byrne H, Drasdo D (2009) Individual-based and 
continuum models of growing cell populations: a 
comparison. J Math Biol 58(4–5):657–687

	2.	Colella P, Graves DT, Johnson JN, Johansen HS, 
Keen ND, Ligocki TJ, Martin DF, McCorquodale 
PW, Modiano D, Schwartz PO, Sternberg TD, 
Van Straalen B (2012) Chombo software package 
for AMR applications design document. Lawrence 
Berkeley National Laboratory, Berkeley, CA

	3.	Ferrer J, Prats C, López D (2008) Individual-
based modelling: an essential tool for microbiol-
ogy. J Biol Phys 34(1–2):19–37

	4.	Galle J, Loeffler M, Drasdo D (2005) Modeling 
the effect of deregulated proliferation and 

apoptosis on the growth dynamics of epithelial 
cell populations in vitro. Biophys J 88:62–75

	5.	Momeni B, Brileya KA, Fields MW, Shou W 
(2013) Strong inter-population cooperation 
leads to partner intermixing in microbial com-
munities. Elife 2:e00230

	6.	Pacific Northwest National Laboratory (2013) 
Biocellion 1.0 User Manual, 1.0 edition, 
Accessed Jul 2013

	7.	Xavier JB, Picioreanu C, van Loosdrecht MCM 
(2005) A framework for multidimensional 
modelling of activity and structure of multispe-
cies biofilms. Environ Microbiol 7(8): 
1085–1103

Simulating Microbial Community Patterning Using Biocellion


	Chapter 16: Simulating Microbial Community Patterning Using Biocellion 
	1 Introduction
	1.1 Yeast Patterning Model Description
	1.2 Biocellion Overview
	1.3 Porting Overview

	2 Materials
	2.1 Installing Intel Thread Building Blocks
	2.2 Installing Biocellion 

	3 Methods
	3.1 Model Configuration
	3.2 Individual Agent Behavior
	3.3 Physico–Mechanical Interaction Between Agents
	3.4 State Changes in the Extracellular Space
	3.5 Simulation Output
	3.6 Setup for a Simulation Instance

	4 Notes
	References


