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Chapter 15

Modeling Community Population Dynamics  
with the Open-Source Language R

Robin Green and Wenying Shou

Abstract

The ability to explain biological phenomena with mathematics and to generate predictions from 
mathematical models is critical for understanding and controlling natural systems. Concurrently, the rise 
in open-source software has greatly increased the ease at which researchers can implement their own 
mathematical models. With a reasonably sound understanding of mathematics and programming skills, a 
researcher can quickly and easily use such tools for their own work. The purpose of this chapter is to 
expose the reader to one such tool, the open-source programming language R, and to demonstrate its 
practical application to studying population dynamics. We use the Lotka–Volterra predator–prey dynam-
ics as an example.
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1  �Introduction

Mathematics is integral to the study of biological systems. From the 
direct application of the Malthusian growth model [1] to abstrac-
tion from Fibonacci number series, mathematical models can help 
researchers explain natural phenomena quantitatively and generate 
new hypotheses better than with only experimental observations. 
After translating a biological problem into a set of mathematical 
equations, solutions can be sought and visualized.

Perhaps one of the most popular tools for such analysis is the 
open-source language and computing environment R (r-project.
org). First developed by Ross Ihaka and Robert Gentleman at the 
University of Auckland in 1993, R is part of the Free Software 
Foundation’s GNU Project, a massive collaborative effort meant to 
develop high quality open-source software (http://www.fsf.org/). 
R offers users a plethora of standard statistical and computational 
tools, extensive collections of predefined functions, and a well-main-
tained and documented support system. In addition to the preexist-
ing functionalities, R also allows users to define their own functions 
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and algorithms. Syntax (jargon for rules and structure of the 
programming language) of R is also relatively easy to understand.

Here we will demonstrate how R can be used to express and 
analyze mathematical models of population dynamics. We describe 
the Lotka–Volterra equations for representing population dynam-
ics between predator and prey. We then present a step-by-step 
guide to getting set up to use the R environment, and an easy-to-
follow implementation of the above model in R. By the end of this 
chapter, the reader will have a basic understanding of how to 
implement and numerically solve a mathematical model based on 
differential equations, visualize the solutions, and explore different 
permutations to formulate new hypotheses.

Disclaimer: The reader should note that this chapter is not intended to 
give a full background or tutorial on R. For a more comprehensive 
introduction to R, please see ref. 2. It should also be noted that R, at its 
current stage, may have a slower performance than other languages for 
specific types of problems.

2  �Background: The Lotka–Volterra Equations

A fundamental phenomenon in population ecology is predation, 
the feeding of one organism (the predator) on another (the prey). 
In 1926, the biophysicist Alfred Lotka proposed a mathematical 
model [3] to represent this relationship. The Italian mathematician 
Vito Volterra explored this relationship independently of Lotka 
[4]. This has led to the proposal of the Lotka–Volterra equations:
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where

●● x(t) is population density of the prey at time t.
●● y(t) is the population density of the predator at time t.
●● A is net birth rate (natural birth rate subtracting natural death 

rate, in the unit of per time unit) of the prey population in the 
absence of predator.

●● B is the rate at which prey are killed due to the presence of 
predator (in the unit of per time unit per predator density).

●● C is the birth rate of the predator population due to the presence 
of prey (in the unit of per time unit per prey density).

●● D is the death rate of the predator population in the absence of 
prey.
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●● dx/dt and dy/dt are the rates of change of x and y, respectively.

Intuitively, the reader can think of the two differential equa-
tions as:

The rate at which the prey population changes is the birth rate of the 
prey minus the rate of consumption of the prey by the predator

and

The rate at which the predator population changes is the birth rate of 
the predator (which is dependent on the amount of prey present) 
minus the death rate of the predator.

Thus these rates are dependent on the densities of both the 
predator and the prey populations, in addition to parameters which 
are static in this model.

It is important to note that this model does make assumptions 
that might not necessarily be true:

●● There is an ample source of food for the prey at all times.
●● The predator population only feeds on the prey population (no 

other source of food) and feeds continuously.
●● There is infinite space to hold both predator and prey 

populations.
●● The rate of change of the population is proportional to its 

density.
●● The interactions between predator and prey are determined 

by the product of the density of the two populations, much like 
in the collision of two reactants in concerted bimolecular reac-
tions. There are no spatial refuges for prey.

From Eqs. 1 and 2 at time t' = t + dt, where dt approaches 0,
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Once the initial (t = 0) values for x(t) and y(t) are known, the 
prey and predator populations densities x(t) and y(t) can be com-
puted for any t.

For pedagogical purposes, we first present an R implementa-
tion based on Euler (first-order) approximations in Eqs. 3 and 4 
to estimate population dynamics corresponding to Eqs. 1 and 2. 
We will then present a more practical and efficient implementation 
using the deSolver package to solve Eqs.  1 and 2. For a more 
complete overview, please see ref. 5.
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3  �Getting Started with R

For this chapter, the authors ran all simulations in RStudio (www.
rstudio.com), an open-source environment for R computing. 
While certainly not the only environment available, RStudio is sim-
ple and provides an integrated environment for basic computation, 
writing scripts, and visualizing data in addition to up-to-date docu-
mentation on various aspects of the language.

To install RStudio, please visit www.rstudio.com/ide/down-
load/desktop and download the package most suitable for your 
operating system (the authors recommend you select the version 
under “Recommended For Your System” at the top of the page). 
Once the package is downloaded, click on the file and follow the 
on-screen instructions to install all files in the proper directories. 
Depending on where you chose to install RStudio, the graphical 
user interface (GUI) icon should appear in that directory. Click on 
it and you should see a screen similar to the one below (see Fig. 1):

The first thing to do is to familiarize yourself with the environ-
ment. The “Console” window is where you can perform simple 
computations, call scripts and functions, and create variables for 
later use. For example, in the “Console” window, type the follow-
ing commands (“>” automatically appears in the Console for a new 
command) (see Fig. 1): 

>a<−2
>b<−50

Fig. 1 New RStudio session
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This is called “defining a variable.” Basically, you are telling 
the current environment that the character a now holds the value 
(in R, this value is called a “numeric”) 2, and the character b holds 
the value ‘50. Next, type the following command (note the quotation 
marks):

>word<-‘airplane’

The assignment of variable names is not limited to single letters 
or symbols (something we will exploit later in our code). In this 
case, you are telling the environment that word holds the string of 
characters (in R, this is known simply as a “character”) that make 
up “airplane”.

These variables that you have created can be manipulated. 
Type the following commands:

> a+b
[1] 52
> a-b
[1] -48
> a*b
[1] 100
> b/a
[1] 25
>

Your screen should show the values 52, −48, 100, and 25. As you 
can see, simple arithmetic operations can be performed with the 
newly created variables.

Next, the user should become familiar with their working 
directory. In your console, type the following command to get the 
current working directory:

> getwd()

You should see something equivalent to the following: 

> getwd()
[1] ”/Users/user1”

This location can be changed with the following command:

> setwd(‘path/to/desired/directory’)

To save your work to the current working directory, type the 
following command:

> save.image()

This will create a file called “.RData” (this will be a hidden file 
in most directories). To load the “.RData” file for future use, type 
the following command:

> load(‘.RData’)

Modeling Community Population Dynamics with the Open-Source Language R
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Alternatively, RData can be files that are explicitly named dur-
ing the save process, which also makes them visible in directories:

>save.image(‘LotkaVolterraExample.RData’)
>load(‘LotkaVolterraExample.RData’)

Use the up arrow key to return to the previous command, and 
repeat this process to access earlier commands. Now that you are 
familiar with the basics, you are ready to begin implementing the 
Lotka–Volterra equations.

4  �Implementation

To get started, click on the “File” button in the top left-hand cor-
ner of the screen and select “File->New->R-Script”. This should 
be a drop down screen in RStudio that looks something like the 
following (Fig. 2):

In this new window, type the following (Fig. 3):
This is the framework that will contain the function that you 

will write. Inputs to a function can be put inside ( ). Next, set up 
your environment to easily save and run your work. To “tell” the 
R environment to use the code you have written, you may “source” 
your script by selecting “Source on Save” from the top left corner 
of your window, as shown below (Fig. 4):

Fig. 2 New RScript window
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Fig. 3 New Lotka–Volterra function

Fig. 4 Source on save command

Sourcing can be thought of as a way of making the R environ-
ment reevaluate the file/script in question. By sourcing the file/
script, you are telling the R environment to execute the file/script, 
which can either result in running a program or in this case, updat-
ing a function. Next, click on the floppy disc icon to save your 
script as, for example, LV_Example. Since you are saving your 
script for the first time, name the file as you wish (it will be saved 
as a .R file). This file will be saved in your current working direc-
tory. When you save your file, on your Console screen you should 
see something similar to the following output:

> source(‘~/LV_Example.R’)

This means your function is now “ready” to be called in your 
environment. Add the following print statement to your function 
in the scripting window and save/source your script (Fig. 5):

Now “call” your function by typing the following:

> Lotka_Volterra()

You should see the following on your screen:

[1] “This statement will be printed”

Note that we added the print command in between the two curly 
braces (“{ }”) of the function. Anything written in between these 
curly braces will only be executed when the function is called. If the 
same print command was instead placed outside the braces, then 
the command would be executed every time the file is sourced.
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Next, we will describe how to pass variables to your function. 
Add the following commands to your function:

Lotka_Volterra<-function(x_start)
{
   print(‘This statement will be printed’)
   print(x_start)
}

Now, call your function like before. You will notice an error 
message:

> Lotka_Volterra ()
[1] “This statement will be printed”
Error in print(x_start): argument “x_start” is 
missing, with no default

Because no value was passed to the function, yet the function 
required a value to be assigned to “x_start”, we got an error 
message. This can be solved in two ways. The first is to explicitly 
pass a value to the function:

> Lotka_Volterra(8)
[1] “This statement will be printed
[1] 8
> Lotka_Volterra(x_start=8)
[1] “This statement will be printed”
[1] 8

Or, alternatively, you can define a default value for “x_start” in 
your RScript function, shown below:

Lotka_Volterra<-function(x_start=10)
{

This means that if no value is passed to the function, “x_start” 
will automatically be assigned to 10. However, explicitly passing a 
value to the function overrides this:

> Lotka_Volterra()
[1] “This statement will be printed”
[1] 10
> Lotka_Volterra(8)

Fig. 5 Adding a print command
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[1] “This statement will be printed”
[1] 8
> Lotka_Volterra(x_start=8)
[1] “This statement will be printed”
[1] 8

It may be easier to define default parameters for the purpose of 
this program; otherwise calling the function each time will require 
you to specify every parameter in the console, which can be onerous.

Modify your function as follows (be sure to delete the two 
previous print statements you were using within your function, as 
they are no longer needed):

Lotka_Volterra<-function(x_start=5,y_start=2,A=
1,B=0.2,C=0.04,D=0.5,iterations=10000,t
ime_step=0.01)

These will be the default parameters for running the simula-
tions. It may be useful to keep a record of what each of these 
parameters represents when writing the code. This can be accom-
plished by commenting our code. Comments are not “read” by the 
program when running, so they only serve as documentation for 
the programmer (or someone else reading the code in the future). 
Commenting in R can be accomplished by adding “#” at the 
beginning of a line in our script. We can use comments to add 
notes about our code, as shown below (Fig. 6):

Next, add the following commands to your code:

x<-x_start
y<-y_start

dt<-time_step
graph_frame<-c(0,x,y)

Fig. 6 Documenting the code
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The first two commands simply assign the values of “x_start” 
and “y_start” to the new variables “x” and “y”, respectively. The 
third command sets the time step for simulation “dt” to the value 
stored in “time_step.” The last command creates a vector called 
“graph_frame.” The vector is one of the most important data types 
in R. Intuitively, it can be thought of as a collection of variables 
held together in a searchable container (similar to lists in Python or 
arrays in C++). Essentially, we have created a 1 × 3 table of values, 
which will be expanded to store the results of our code. The first 
column will hold information on time (which starts at 0 and is in 
an arbitrary unit), the second and third columns a will respectively 
hold the population densities of prey and predator corresponding 
to the time point in the first column.

Next, add the following to your code, just below the above 
commands:

for( i in 1:iterations)
{

}

This is known as defining a loop. A loop is a section of code that 
is repeated until some criterion tells the loop to stop or a command 
is explicitly given to break out of the loop. In our case, we have 
qualified that our loop should continue until the “for” statement is 
no longer true. In our “for” statement, we are implicitly defining a 
vector containing all the numbers from one to iterations. Intuitively, 
this can be thought of as saying:

Repeat the loop until the value of i, which iterates through a vector of 
all the number of iterations, is equal to the number specified in the 
variable iterations (in this case, has reached the end of the vector).

It is important to note that the value of i will increase by one 
as it traverses the vector of values from one to the number of itera-
tions. To test this, add the following print command to your loop:

for( i in 1:iterations)
{
   print(i)

}

If you source your code and call the function, you’ll notice 
that, new lines of numbers ranging from 1 to 10,000 appear on 
your console, demonstrating that “i” is being increasing while the 
code stays within the loop. Now you have the entire framework in 
place to begin modeling with the Lotka–Volterra equations.
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Start by adding the code required to update the population 
densities of predator and prey at each iteration:

for( i in 1:iterations)
{

    dx<-(A*x-B*x*y)*dt
    dy<-(C*y*x-D*y)*dt

    x_new<-x+dx
    y_new<-y+dy

    print(i)

}

Within each iteration, dx and dy calculate changes in popula-
tion densities of x and y according to Eqs. 3 and 4, respectively. 
New values of x and y after time dt are evaluated and stored in 
variables “x_new” and “y_new”, respectively.

We then add the following lines in the loop after the definition 
of x_new and y_new inside the loop:

new_data<-c(i*dt,x_new,y_new)

graph_frame<-rbind(graph_frame,new_data)

The first line stores three pieces of information (time elapsed 
i × dt, and the values of “x_new” and “y_new” at time i × dt) in a 
vector called new_data. The next line adds this new_data to our 
graph_frame as a new row through a command called rbind 
(i.e. row-bind), expanding an original N × 3 table to an (N + 1) × 3 
data vector (which can also be referred to as a matrix).

Finally, update the values of “x” and “y” for the next 
iteration:

x<-x_new
y<-y_new

Delete the “print(i)” at the end of the code and your loop 
should loop like the one below (Fig. 7):

Thinking about the code within the loop logically, we can 
summarize the sequence of events as follows:

For each iteration/given unit of time:

–– estimate changes in the values of x and y from the last 
iteration based on the Lotka-Volterra equation

–– apply these changes to x and y to get new estimates
–– add these new estimates and their corresponding time 

stamp to our overall vector
–– update the values of x and y with new estimates

The result of this loop is an N × 3 table/matrix of points, with 
each of the N rows containing a time point, and an estimate of the 
numbers of prey and predator for that time point.
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These data can also be visualized easily in RStudio by using the 
“matplot” function to plot columns in a given vector against one 
another. Add the following to your code outside of the loop after 
all iterations:

�matplot(x=graph_frame[,1],y=graph_frame 
[,c(2,3)],pch=20)

Notice how we have selected which columns to use in the mat-
plot function. Multidimensional vectors are indexed row by column. 
To select everything in the first column (for the x-axis), we leave 
the first entry in brackets empty and select “1” for the second 
entry. To select both the second and third columns to be plotted 
against the first column, we use a vector containing the columns 
we want, in this case “2” and “3”. The “pch” command is simply 
specifying how the data should be represented, with different val-
ues specifying different shapes. Here, pch = 20 represents solid 
circles.

Now call your function. Something similar to the below should 
appear in the bottom right of your screen (Fig. 8):

This plot can be made more readable with modifications to the 
matplot function. For example, each axis can be labeled and a title 
can be added as follows:

matplot(x=graph_frame[,1],y=graph_frame[,c(2,3)
],pch=20,xlab=’Time’,ylab=’Population 

Density’,main=’Lotka-Volterra Simulation’)

Fig. 7 Final loop code
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This should give you a plot like this (see Fig. 9):
The colors of the plots can be changed as well by specifying 

with the “col” option in matplot (see Fig. 10):

matplot(x=graph_frame[,1],y=graph_frame[,c(2,3)], 
pch=20,xlab=’Time’,ylab=’Population 

Density’,main=’Lotka-Volterra Simulation’, 
col=c(‘darkgreen’,’darkblue’))

Fig. 8 Initial simulation result

Fig. 9 Initial simulation result
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Finally, a legend can be added to the plot for convenience 
(note that this is separate from the matplot function) (see Fig. 11):

legend(x=’topleft’,legend=c(‘Prey’,’Predator’),
col=c(‘darkgreen’,’darkblue’),lwd=5)

At this point, you can delete the any early print commands, 
as they are not needed for further work with the program. Note: 
For certain calculations, loops may not be the most time-efficient 
method. Unless storage for the values generated in a loop are 

Fig. 11 Result with legend

Fig. 10 Results with new colors
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pre-allocated, calculations typically take less time using slightly 
more complex built-in functions in R like the apply function, which 
applies a given calculation over a table of values (also known as 
matrix calculation). For more information see the R help (type ‘?”) 
for ‘for’, ‘vector’, ‘matrix’ and ‘apply’. 

5  �Analysis of the Lotka–Volterra Model

Perhaps one of the most striking characteristics of the plot is its 
oscillatory nature. At periodic intervals, the prey and predator pop-
ulations will dramatically rise and fall but out-of-phase with each 
other. Notice the rapid increase in the prey population density just 
prior to a rapid rise in the predator population density, followed by 
a sudden drop in the prey population density which in turn causes 
a drop in the predator population density. Biologically, this pattern 
can be explained:

For some given period of time:

–– a low predator population density (which is the result of a 
low prey population density i.e. lack of food supply) allows 
the prey population to expand through reproduction with 
little predation

–– the sudden increase in prey population density now results 
in an increased food supply for the predators, which allows 
the predators to consume and reproduce more, resulting 
in a larger predator population density and lower prey 
population density

–– when the prey population density decreases, the predators 
no longer have a food supply to sustain their population, 
so they begin to die and decrease in population density

This cycle repeats infinitely in this model.
An important trend to note is the increasing peak heights of 

both the predator and prey populations, which turns out to be an 
artifact of the estimation in the code. The Euler approximation is a 
somewhat crude method for solving differential equations and as 
such will result in some error associated with any solution. To 
improve the accuracy of these estimations, the time step for each 
iteration could be decreased, which results in diminishment of this 
artifact. However, to calculate the solution for the same amount of 
time, the number of iterations must be increased (since time is 
calculated by multiplying the time step by number of iterations).

6  �Incorporating Alternative Assumptions to the Lotka–Volterra Model

As mentioned above, the Lotka-Volterra equations are based on 
assumptions about the nature of the predator–prey interactions 
and the environment in which they occur. Arguments could be 
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made about the validity (or lack thereof) of such assumptions. 
Therefore, it is useful to explore different possible models based 
alternative assumptions. For example, let’s assume the following:

●● Rather than having access to an infinite amount of space and 
resource, there is a carrying capacity, K, for the prey population.

●● The predator population does not necessarily infinitely feed on 
the prey population. Rather, if there was an abundance of prey 
available, the predator population would become sated prior to 
eating all the prey.

To incorporate these assumptions into the model, we can 
modify our two previous differential equations:
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where

●● K is carrying capacity of the environment for the prey popula-
tion. Notice how when x is small, the growth rate of prey 
approaches its maximum value A and as x approaches K 
(the total number of prey gets closer to its carrying capacity), 
the population will grow at a near-zero rate (indicative of com-
petition within the prey population for food).

●● Bf(x) is the prey-consumption rate per predator density, which 
is represented by,

	
Bf x

Bx
x
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where B is the maximum prey-consumption rate per predator den-
sity (per time unit per predator density), α is the prey population 
density at which half maximal prey-consumption rate per predator 
density is achieved. Notice when x is large, Bf(x) saturates at B; 
when x is small, Bf(x) increases almost linearly with x.

Our code can be modified, as shown below, to incorporate 
these changes (Fig. 12):

Note that in the above implementation we have updated some 
of the initial parameters, added the K and α parameters, and are 
now calling a new function Predation_Num outside our loop.

Running the above code gives the following result (Fig. 13):
Notice that the prey population oscillations never exceed the 

initial population density. Because the prey population is limited, the 
predator prey is also limited in how large it can grow. We could 
hypothesize that increasing the carrying capacity of the environment 
for the prey population could mitigate this effect (Fig. 14):
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Lotka_Volterra_Expanded<-function(x_start=5, 
y_start=2,A=1.3,B=0.5,C=1.6,D=0.7,iterations= 

10000,time_step=0.01,alpha=1, K=10)

Because the prey population is allowed to grow to a higher 
carrying capacity limit, the maxima of both populations become 
larger.

Fig. 13 Alternative Lotka–Volterra model result

Fig. 12 Alternative Lotka–Volterra code
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If we assume a larger α value (i.e., low predator affinity for prey 
from low capturing efficiency), a different pattern is likely to 
emerge. This can be tested as shown below (Fig. 15):

Lotka_Volterra_Expanded<-function(x_start=5, 
y_start=2,A=1.3,B=0.5,C=1.6,D=0.7,iterations= 

10000,time_step=0.01,alpha=10, K=10)

Fig. 14 Altered carrying capacity result

Fig. 15 Altered alpha value result
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Here we notice that the populations seem to reach a “steady 
state”. This can also be demonstrated mathematically by setting the 
rate of change for each population equal to zero in Eqs. 5 and 6.
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From Eqs. 7 and 9, we obtain
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Thus, x*, the steady state level of prey x is
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Combine Eqs. 8 and 11, y*, the steady state level of predator y is
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As shown above, when the rates of change for both populations 
are set to zero, the steady state population densities for both preda-
tor and prey correspond to the values shown in the above graph. At 
the steady state, the birth of prey equals consumption of prey, while 
the birth of predator due to consumption of prey equals the natu-
ral death of predator.

7  �Using ODE Solver Libraries for Population Modeling

The above examples were pedagogical demonstrations of how R 
can be used to simulate population dynamics based on approximat-
ing differential equations with difference equations via Euler’s 
method. There are other mathematical techniques for solving dif-
ferential equations that are more accurate than Euler’s method. 
Many of these techniques are incorporated into the R environment 
through packages, which can be thought of as an “add-on” to the 
current environment meant to serve a specific purpose. For exam-
ple, one of the most popular packages for solving differential equa-
tions in R is the deSolve package [6]. This package is useful when 
solving initial value problems, which are differential equations 
where the initial values of the state variables (e.g., population den-
sities of prey and predator) are given.
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We will illustrate how to use this package to solve the Lotka–
Volterra equations (1) and (2). The first step is to install the deSolve 
package. This can be achieved using the install.packages 
command:

> install.packages(‘deSolve’)

You should see something similar to Fig. 16 on your console.
Next, open a new R Script for editing and add the following to 

it (Fig. 17):
To make the code more understandable, let’s break it down sec-

tion by section. First, look at the following piece of code:

library(deSolve)

parameters<-c(A=1,B=0.2,C=0.08,D=0.5)
state<-c(x=5,y=2)

The library command is a way of telling the R environment to 
load the functionalities from the installed deSolve package for use in 
this script. Note that in this case we are storing the parameters of 
the Lotka–Volterra equations in a vector called parameters. The ini-
tial values of state variables x and y (prey and predator population 
densities, respectively) are stored in a vector called state. Next, we 
declare the actual function used for calculations:

LV<-function(t,state,parameters){
   with(as.list(c(state,parameters)),{
      dxOVERdt<-(A*x-B*x*y)
      dyOVERdt<-(C*y*x-D*y)
      return(list(c(dxOVERdt,dyOVERdt)))
})
}

Notice that dxOVERdt and dyOVERdt correspond to the 
dx/dt and dy/dt from Eqs.  1 and 2, respectively. The with(as.
list(c(…)) command is used to allow to access the values stored in 
the parameters (A, B, C, and D) and state (x and y) by their names 

Fig. 16 Install package command output
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Fig. 17 ODE solver implementation

(this is a syntax step that must be taken for easily using the deSolve 
package). It is also important to note that we are returning a vector 
of the dxOVERdt and dyOVERdt values (the order is also impor-
tant—rates of change for state variables must be returned in the 
same order they were listed in the state vector). This function will 
be applied iteratively by the deSolve package for model 
calculations.

times<-seq(0, 100,by = 0.01)
out<-ode(y=state, times=times, func=LV, 
parms=parameters)

The first command uses the seq function, which is used to create a 
time sequence data object. Essentially, this data object will be used to 
tell the deSolve package to sample from t = 0 to t = 100 every 0.01 time 
steps (just like our code written previously). The second command 
uses the ode (ordinary differential equations) function from the deSolve 
package and stores the output in the matrix out. The ode is the default 
function for standard initial value problems, but there are many more 
functionalities in the deSolve package (for more information, type 
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“?deSolve” in the Console). By default, ode uses an interface to an 
ODE solver written by Linda R. Petzold and Alan C. Hindermarsh 
[7]. However, there are other approaches, such as the Runge-Kutta 
method, that can be used by the ode function with the method param-
eter (for more information, type “?ode” into the Console).

Finally, because out is a type of matrix, it can be indexed and 
plotted like previous examples:

matplot(x=out[,1],y=out[,c(2,3)],pch=20,xlab=’
Time’,ylab=’Population Density’, main=’Lotka-
Volterra Simulation’,col=c(‘darkgreen’,’darkb
lue’))

legend(x=’topleft’,legend=c(‘Prey’,’Predator’),
col=c(‘darkgreen’,’darkblue’),lwd=5)

Note that in this case, we haven’t stored the bulk of the code in 
a function. Rather, every time the script is sourced, the entire code 
will run. Sourcing this file should give Fig. 18:

Notice how the peak heights of the predator and prey popula-
tions do not seem to increase, despite having a time step of 0.01. 
This can be attributed to the more accurate estimation in the ode 
function compared to the Euler’s method.

Note: If, at any time, debugging is required, there are useful 
functionalities built into R that allows the user to halt execution 
of a function or script and examine the values stored in various 
parameters. One such function, browser(), can be placed at a 
given point in a script/function/loop and creates an interactive 
environment for the user to examine values. For more informa-
tion, type “?browser” into your command console.

Fig. 18 Results using deSolve package
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8  �Conclusion

The purpose of this chapter was to demonstrate the power of using 
simple and open-source software like R to examine population 
dynamics represented by a mathematical model. With a mathemat-
ical model, hypotheses can be easily formulated and tested. The 
ability to represent abstract concepts in an intuitive manner can 
greatly facilitate the understanding of novel concepts and phenom-
ena, leading to new insights in biological sciences.
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