
209

Lianhong Sun and Wenying Shou (eds.), Engineering and Analyzing Multicellular Systems: Methods and Protocols,
Methods in Molecular Biology, vol. 1151, DOI 10.1007/978-1-4939-0554-6_15, © Springer Science+Business Media New York 2014

Chapter 15

Modeling Community Population Dynamics
with the Open-Source Language R

Robin Green and Wenying Shou

Abstract

The ability to explain biological phenomena with mathematics and to generate predictions from
mathematical models is critical for understanding and controlling natural systems. Concurrently, the rise
in open-source software has greatly increased the ease at which researchers can implement their own
mathematical models. With a reasonably sound understanding of mathematics and programming skills, a
researcher can quickly and easily use such tools for their own work. The purpose of this chapter is to
expose the reader to one such tool, the open-source programming language R, and to demonstrate its
practical application to studying population dynamics. We use the Lotka–Volterra predator–prey dynam-
ics as an example.

Key words Modeling, R, Lotka–Volterra, Population dynamics, Predator–prey relationship

1  �Introduction

Mathematics is integral to the study of biological systems. From the
direct application of the Malthusian growth model [1] to abstrac-
tion from Fibonacci number series, mathematical models can help
researchers explain natural phenomena quantitatively and generate
new hypotheses better than with only experimental observations.
After translating a biological problem into a set of mathematical
equations, solutions can be sought and visualized.

Perhaps one of the most popular tools for such analysis is the
open-source language and computing environment R (r-project.
org). First developed by Ross Ihaka and Robert Gentleman at the
University of Auckland in 1993, R is part of the Free Software
Foundation’s GNU Project, a massive collaborative effort meant to
develop high quality open-source software (http://www.fsf.org/).
R offers users a plethora of standard statistical and computational
tools, extensive collections of predefined functions, and a well-main-
tained and documented support system. In addition to the preexist-
ing functionalities, R also allows users to define their own functions

http://r-project.org/
http://r-project.org/
http://www.fsf.org/

210

and algorithms. Syntax (jargon for rules and structure of the
programming language) of R is also relatively easy to understand.

Here we will demonstrate how R can be used to express and
analyze mathematical models of population dynamics. We describe
the Lotka–Volterra equations for representing population dynam-
ics between predator and prey. We then present a step-by-step
guide to getting set up to use the R environment, and an easy-to-
follow implementation of the above model in R. By the end of this
chapter, the reader will have a basic understanding of how to
implement and numerically solve a mathematical model based on
differential equations, visualize the solutions, and explore different
permutations to formulate new hypotheses.

Disclaimer: The reader should note that this chapter is not intended to
give a full background or tutorial on R. For a more comprehensive
introduction to R, please see ref. 2. It should also be noted that R, at its
current stage, may have a slower performance than other languages for
specific types of problems.

2  �Background: The Lotka–Volterra Equations

A fundamental phenomenon in population ecology is predation,
the feeding of one organism (the predator) on another (the prey).
In 1926, the biophysicist Alfred Lotka proposed a mathematical
model [3] to represent this relationship. The Italian mathematician
Vito Volterra explored this relationship independently of Lotka
[4]. This has led to the proposal of the Lotka–Volterra equations:

	

d
d
x
t

Ax Bxy= − .
	

(1)

	

d
d

y
t

Cxy Dy= − .
	

(2)

where

●● x(t) is population density of the prey at time t.
●● y(t) is the population density of the predator at time t.
●● A is net birth rate (natural birth rate subtracting natural death

rate, in the unit of per time unit) of the prey population in the
absence of predator.

●● B is the rate at which prey are killed due to the presence of
predator (in the unit of per time unit per predator density).

●● C is the birth rate of the predator population due to the presence
of prey (in the unit of per time unit per prey density).

●● D is the death rate of the predator population in the absence of
prey.

Robin Green and Wenying Shou

211

●● dx/dt and dy/dt are the rates of change of x and y, respectively.

Intuitively, the reader can think of the two differential equa-
tions as:

The rate at which the prey population changes is the birth rate of the
prey minus the rate of consumption of the prey by the predator

and

The rate at which the predator population changes is the birth rate of
the predator (which is dependent on the amount of prey present)
minus the death rate of the predator.

Thus these rates are dependent on the densities of both the
predator and the prey populations, in addition to parameters which
are static in this model.

It is important to note that this model does make assumptions
that might not necessarily be true:

●● There is an ample source of food for the prey at all times.
●● The predator population only feeds on the prey population (no

other source of food) and feeds continuously.
●● There is infinite space to hold both predator and prey

populations.
●● The rate of change of the population is proportional to its

density.
●● The interactions between predator and prey are determined

by the product of the density of the two populations, much like
in the collision of two reactants in concerted bimolecular reac-
tions. There are no spatial refuges for prey.

From Eqs. 1 and 2 at time t' = t + dt, where dt approaches 0,

	
x t x t

x
t

t x t Ax Bxy t′() = () + ×





 = () + −()×d

d
d d .

	
(3)

	
y t y t

y
t

t y t Cxy Dy t′() = () + ×





 = () + −()×d

d
d d .

	
(4)

Once the initial (t = 0) values for x(t) and y(t) are known, the
prey and predator populations densities x(t) and y(t) can be com-
puted for any t.

For pedagogical purposes, we first present an R implementa-
tion based on Euler (first-order) approximations in Eqs. 3 and 4
to estimate population dynamics corresponding to Eqs. 1 and 2.
We will then present a more practical and efficient implementation
using the deSolver package to solve Eqs. 1 and 2. For a more
complete overview, please see ref. 5.

Modeling Community Population Dynamics with the Open-Source Language R

212

3  �Getting Started with R

For this chapter, the authors ran all simulations in RStudio (www.
rstudio.com), an open-source environment for R computing.
While certainly not the only environment available, RStudio is sim-
ple and provides an integrated environment for basic computation,
writing scripts, and visualizing data in addition to up-to-date docu-
mentation on various aspects of the language.

To install RStudio, please visit www.rstudio.com/ide/down-
load/desktop and download the package most suitable for your
operating system (the authors recommend you select the version
under “Recommended For Your System” at the top of the page).
Once the package is downloaded, click on the file and follow the
on-screen instructions to install all files in the proper directories.
Depending on where you chose to install RStudio, the graphical
user interface (GUI) icon should appear in that directory. Click on
it and you should see a screen similar to the one below (see Fig. 1):

The first thing to do is to familiarize yourself with the environ-
ment. The “Console” window is where you can perform simple
computations, call scripts and functions, and create variables for
later use. For example, in the “Console” window, type the follow-
ing commands (“>” automatically appears in the Console for a new
command) (see Fig. 1):

>a<−2
>b<−50

Fig. 1 New RStudio session

Robin Green and Wenying Shou

http://www.rstudio.com/
http://www.rstudio.com/
http://www.rstudio.com/ide/download/desktop
http://www.rstudio.com/ide/download/desktop

213

This is called “defining a variable.” Basically, you are telling
the current environment that the character a now holds the value
(in R, this value is called a “numeric”) 2, and the character b holds
the value ‘50. Next, type the following command (note the quotation
marks):

>word<-‘airplane’

The assignment of variable names is not limited to single letters
or symbols (something we will exploit later in our code). In this
case, you are telling the environment that word holds the string of
characters (in R, this is known simply as a “character”) that make
up “airplane”.

These variables that you have created can be manipulated.
Type the following commands:

> a+b
[1] 52
> a-b
[1] -48
> a*b
[1] 100
> b/a
[1] 25
>

Your screen should show the values 52, −48, 100, and 25. As you
can see, simple arithmetic operations can be performed with the
newly created variables.

Next, the user should become familiar with their working
directory. In your console, type the following command to get the
current working directory:

> getwd()

You should see something equivalent to the following:

> getwd()
[1] ”/Users/user1”

This location can be changed with the following command:

> setwd(‘path/to/desired/directory’)

To save your work to the current working directory, type the
following command:

> save.image()

This will create a file called “.RData” (this will be a hidden file
in most directories). To load the “.RData” file for future use, type
the following command:

> load(‘.RData’)

Modeling Community Population Dynamics with the Open-Source Language R

214

Alternatively, RData can be files that are explicitly named dur-
ing the save process, which also makes them visible in directories:

>save.image(‘LotkaVolterraExample.RData’)
>load(‘LotkaVolterraExample.RData’)

Use the up arrow key to return to the previous command, and
repeat this process to access earlier commands. Now that you are
familiar with the basics, you are ready to begin implementing the
Lotka–Volterra equations.

4  �Implementation

To get started, click on the “File” button in the top left-hand cor-
ner of the screen and select “File->New->R-Script”. This should
be a drop down screen in RStudio that looks something like the
following (Fig. 2):

In this new window, type the following (Fig. 3):
This is the framework that will contain the function that you

will write. Inputs to a function can be put inside (). Next, set up
your environment to easily save and run your work. To “tell” the
R environment to use the code you have written, you may “source”
your script by selecting “Source on Save” from the top left corner
of your window, as shown below (Fig. 4):

Fig. 2 New RScript window

Robin Green and Wenying Shou

215

Fig. 3 New Lotka–Volterra function

Fig. 4 Source on save command

Sourcing can be thought of as a way of making the R environ-
ment reevaluate the file/script in question. By sourcing the file/
script, you are telling the R environment to execute the file/script,
which can either result in running a program or in this case, updat-
ing a function. Next, click on the floppy disc icon to save your
script as, for example, LV_Example. Since you are saving your
script for the first time, name the file as you wish (it will be saved
as a .R file). This file will be saved in your current working direc-
tory. When you save your file, on your Console screen you should
see something similar to the following output:

> source(‘~/LV_Example.R’)

This means your function is now “ready” to be called in your
environment. Add the following print statement to your function
in the scripting window and save/source your script (Fig. 5):

Now “call” your function by typing the following:

> Lotka_Volterra()

You should see the following on your screen:

[1] “This statement will be printed”

Note that we added the print command in between the two curly
braces (“{ }”) of the function. Anything written in between these
curly braces will only be executed when the function is called. If the
same print command was instead placed outside the braces, then
the command would be executed every time the file is sourced.

Modeling Community Population Dynamics with the Open-Source Language R

216

Next, we will describe how to pass variables to your function.
Add the following commands to your function:

Lotka_Volterra<-function(x_start)
{
 print(‘This statement will be printed’)
 print(x_start)
}

Now, call your function like before. You will notice an error
message:

> Lotka_Volterra ()
[1] “This statement will be printed”
Error in print(x_start): argument “x_start” is
missing, with no default

Because no value was passed to the function, yet the function
required a value to be assigned to “x_start”, we got an error
message. This can be solved in two ways. The first is to explicitly
pass a value to the function:

> Lotka_Volterra(8)
[1] “This statement will be printed
[1] 8
> Lotka_Volterra(x_start=8)
[1] “This statement will be printed”
[1] 8

Or, alternatively, you can define a default value for “x_start” in
your RScript function, shown below:

Lotka_Volterra<-function(x_start=10)
{

This means that if no value is passed to the function, “x_start”
will automatically be assigned to 10. However, explicitly passing a
value to the function overrides this:

> Lotka_Volterra()
[1] “This statement will be printed”
[1] 10
> Lotka_Volterra(8)

Fig. 5 Adding a print command

Robin Green and Wenying Shou

217

[1] “This statement will be printed”
[1] 8
> Lotka_Volterra(x_start=8)
[1] “This statement will be printed”
[1] 8

It may be easier to define default parameters for the purpose of
this program; otherwise calling the function each time will require
you to specify every parameter in the console, which can be onerous.

Modify your function as follows (be sure to delete the two
previous print statements you were using within your function, as
they are no longer needed):

Lotka_Volterra<-function(x_start=5,y_start=2,A=
1,B=0.2,C=0.04,D=0.5,iterations=10000,t
ime_step=0.01)

These will be the default parameters for running the simula-
tions. It may be useful to keep a record of what each of these
parameters represents when writing the code. This can be accom-
plished by commenting our code. Comments are not “read” by the
program when running, so they only serve as documentation for
the programmer (or someone else reading the code in the future).
Commenting in R can be accomplished by adding “#” at the
beginning of a line in our script. We can use comments to add
notes about our code, as shown below (Fig. 6):

Next, add the following commands to your code:

x<-x_start
y<-y_start

dt<-time_step
graph_frame<-c(0,x,y)

Fig. 6 Documenting the code

Modeling Community Population Dynamics with the Open-Source Language R

218

The first two commands simply assign the values of “x_start”
and “y_start” to the new variables “x” and “y”, respectively. The
third command sets the time step for simulation “dt” to the value
stored in “time_step.” The last command creates a vector called
“graph_frame.” The vector is one of the most important data types
in R. Intuitively, it can be thought of as a collection of variables
held together in a searchable container (similar to lists in Python or
arrays in C++). Essentially, we have created a 1 × 3 table of values,
which will be expanded to store the results of our code. The first
column will hold information on time (which starts at 0 and is in
an arbitrary unit), the second and third columns a will respectively
hold the population densities of prey and predator corresponding
to the time point in the first column.

Next, add the following to your code, just below the above
commands:

for(i in 1:iterations)
{

}

This is known as defining a loop. A loop is a section of code that
is repeated until some criterion tells the loop to stop or a command
is explicitly given to break out of the loop. In our case, we have
qualified that our loop should continue until the “for” statement is
no longer true. In our “for” statement, we are implicitly defining a
vector containing all the numbers from one to iterations. Intuitively,
this can be thought of as saying:

Repeat the loop until the value of i, which iterates through a vector of
all the number of iterations, is equal to the number specified in the
variable iterations (in this case, has reached the end of the vector).

It is important to note that the value of i will increase by one
as it traverses the vector of values from one to the number of itera-
tions. To test this, add the following print command to your loop:

for(i in 1:iterations)
{
 print(i)

}

If you source your code and call the function, you’ll notice
that, new lines of numbers ranging from 1 to 10,000 appear on
your console, demonstrating that “i” is being increasing while the
code stays within the loop. Now you have the entire framework in
place to begin modeling with the Lotka–Volterra equations.

Robin Green and Wenying Shou

219

Start by adding the code required to update the population
densities of predator and prey at each iteration:

for(i in 1:iterations)
{

 dx<-(A*x-B*x*y)*dt
 dy<-(C*y*x-D*y)*dt

 x_new<-x+dx
 y_new<-y+dy

 print(i)

}

Within each iteration, dx and dy calculate changes in popula-
tion densities of x and y according to Eqs. 3 and 4, respectively.
New values of x and y after time dt are evaluated and stored in
variables “x_new” and “y_new”, respectively.

We then add the following lines in the loop after the definition
of x_new and y_new inside the loop:

new_data<-c(i*dt,x_new,y_new)

graph_frame<-rbind(graph_frame,new_data)

The first line stores three pieces of information (time elapsed
i × dt, and the values of “x_new” and “y_new” at time i × dt) in a
vector called new_data. The next line adds this new_data to our
graph_frame as a new row through a command called rbind
(i.e. row-bind), expanding an original N × 3 table to an (N + 1) × 3
data vector (which can also be referred to as a matrix).

Finally, update the values of “x” and “y” for the next
iteration:

x<-x_new
y<-y_new

Delete the “print(i)” at the end of the code and your loop
should loop like the one below (Fig. 7):

Thinking about the code within the loop logically, we can
summarize the sequence of events as follows:

For each iteration/given unit of time:

–– estimate changes in the values of x and y from the last
iteration based on the Lotka-Volterra equation

–– apply these changes to x and y to get new estimates
–– add these new estimates and their corresponding time

stamp to our overall vector
–– update the values of x and y with new estimates

The result of this loop is an N × 3 table/matrix of points, with
each of the N rows containing a time point, and an estimate of the
numbers of prey and predator for that time point.

Modeling Community Population Dynamics with the Open-Source Language R

220

These data can also be visualized easily in RStudio by using the
“matplot” function to plot columns in a given vector against one
another. Add the following to your code outside of the loop after
all iterations:

�matplot(x=graph_frame[,1],y=graph_frame
[,c(2,3)],pch=20)

Notice how we have selected which columns to use in the mat-
plot function. Multidimensional vectors are indexed row by column.
To select everything in the first column (for the x-axis), we leave
the first entry in brackets empty and select “1” for the second
entry. To select both the second and third columns to be plotted
against the first column, we use a vector containing the columns
we want, in this case “2” and “3”. The “pch” command is simply
specifying how the data should be represented, with different val-
ues specifying different shapes. Here, pch = 20 represents solid
circles.

Now call your function. Something similar to the below should
appear in the bottom right of your screen (Fig. 8):

This plot can be made more readable with modifications to the
matplot function. For example, each axis can be labeled and a title
can be added as follows:

matplot(x=graph_frame[,1],y=graph_frame[,c(2,3)
],pch=20,xlab=’Time’,ylab=’Population

Density’,main=’Lotka-Volterra Simulation’)

Fig. 7 Final loop code

Robin Green and Wenying Shou

221

This should give you a plot like this (see Fig. 9):
The colors of the plots can be changed as well by specifying

with the “col” option in matplot (see Fig. 10):

matplot(x=graph_frame[,1],y=graph_frame[,c(2,3)],
pch=20,xlab=’Time’,ylab=’Population

Density’,main=’Lotka-Volterra Simulation’,
col=c(‘darkgreen’,’darkblue’))

Fig. 8 Initial simulation result

Fig. 9 Initial simulation result

Modeling Community Population Dynamics with the Open-Source Language R

222

Finally, a legend can be added to the plot for convenience
(note that this is separate from the matplot function) (see Fig. 11):

legend(x=’topleft’,legend=c(‘Prey’,’Predator’),
col=c(‘darkgreen’,’darkblue’),lwd=5)

At this point, you can delete the any early print commands,
as they are not needed for further work with the program. Note:
For certain calculations, loops may not be the most time-efficient
method. Unless storage for the values generated in a loop are

Fig. 11 Result with legend

Fig. 10 Results with new colors

Robin Green and Wenying Shou

223

pre-allocated, calculations typically take less time using slightly
more complex built-in functions in R like the apply function, which
applies a given calculation over a table of values (also known as
matrix calculation). For more information see the R help (type ‘?”)
for ‘for’, ‘vector’, ‘matrix’ and ‘apply’.

5  �Analysis of the Lotka–Volterra Model

Perhaps one of the most striking characteristics of the plot is its
oscillatory nature. At periodic intervals, the prey and predator pop-
ulations will dramatically rise and fall but out-of-phase with each
other. Notice the rapid increase in the prey population density just
prior to a rapid rise in the predator population density, followed by
a sudden drop in the prey population density which in turn causes
a drop in the predator population density. Biologically, this pattern
can be explained:

For some given period of time:

–– a low predator population density (which is the result of a
low prey population density i.e. lack of food supply) allows
the prey population to expand through reproduction with
little predation

–– the sudden increase in prey population density now results
in an increased food supply for the predators, which allows
the predators to consume and reproduce more, resulting
in a larger predator population density and lower prey
population density

–– when the prey population density decreases, the predators
no longer have a food supply to sustain their population,
so they begin to die and decrease in population density

This cycle repeats infinitely in this model.
An important trend to note is the increasing peak heights of

both the predator and prey populations, which turns out to be an
artifact of the estimation in the code. The Euler approximation is a
somewhat crude method for solving differential equations and as
such will result in some error associated with any solution. To
improve the accuracy of these estimations, the time step for each
iteration could be decreased, which results in diminishment of this
artifact. However, to calculate the solution for the same amount of
time, the number of iterations must be increased (since time is
calculated by multiplying the time step by number of iterations).

6  �Incorporating Alternative Assumptions to the Lotka–Volterra Model

As mentioned above, the Lotka-Volterra equations are based on
assumptions about the nature of the predator–prey interactions
and the environment in which they occur. Arguments could be

Modeling Community Population Dynamics with the Open-Source Language R

224

made about the validity (or lack thereof) of such assumptions.
Therefore, it is useful to explore different possible models based
alternative assumptions. For example, let’s assume the following:

●● Rather than having access to an infinite amount of space and
resource, there is a carrying capacity, K, for the prey population.

●● The predator population does not necessarily infinitely feed on
the prey population. Rather, if there was an abundance of prey
available, the predator population would become sated prior to
eating all the prey.

To incorporate these assumptions into the model, we can
modify our two previous differential equations:

	

d
d
x
t

Ax
x
K

y Bf x= −





 − × ()1 .

	
(5)

	

d
d

y
t

y Cf x Dy= × () − .
	

(6)

where

●● K is carrying capacity of the environment for the prey popula-
tion. Notice how when x is small, the growth rate of prey
approaches its maximum value A and as x approaches K
(the total number of prey gets closer to its carrying capacity),
the population will grow at a near-zero rate (indicative of com-
petition within the prey population for food).

●● Bf(x) is the prey-consumption rate per predator density, which
is represented by,

	
Bf x

Bx
x

() =
+α

.
	

(7)

where B is the maximum prey-consumption rate per predator den-
sity (per time unit per predator density), α is the prey population
density at which half maximal prey-consumption rate per predator
density is achieved. Notice when x is large, Bf(x) saturates at B;
when x is small, Bf(x) increases almost linearly with x.

Our code can be modified, as shown below, to incorporate
these changes (Fig. 12):

Note that in the above implementation we have updated some
of the initial parameters, added the K and α parameters, and are
now calling a new function Predation_Num outside our loop.

Running the above code gives the following result (Fig. 13):
Notice that the prey population oscillations never exceed the

initial population density. Because the prey population is limited, the
predator prey is also limited in how large it can grow. We could
hypothesize that increasing the carrying capacity of the environment
for the prey population could mitigate this effect (Fig. 14):

Robin Green and Wenying Shou

225

Lotka_Volterra_Expanded<-function(x_start=5,
y_start=2,A=1.3,B=0.5,C=1.6,D=0.7,iterations=

10000,time_step=0.01,alpha=1, K=10)

Because the prey population is allowed to grow to a higher
carrying capacity limit, the maxima of both populations become
larger.

Fig. 13 Alternative Lotka–Volterra model result

Fig. 12 Alternative Lotka–Volterra code

Modeling Community Population Dynamics with the Open-Source Language R

226

If we assume a larger α value (i.e., low predator affinity for prey
from low capturing efficiency), a different pattern is likely to
emerge. This can be tested as shown below (Fig. 15):

Lotka_Volterra_Expanded<-function(x_start=5,
y_start=2,A=1.3,B=0.5,C=1.6,D=0.7,iterations=

10000,time_step=0.01,alpha=10, K=10)

Fig. 14 Altered carrying capacity result

Fig. 15 Altered alpha value result

Robin Green and Wenying Shou

227

Here we notice that the populations seem to reach a “steady
state”. This can also be demonstrated mathematically by setting the
rate of change for each population equal to zero in Eqs. 5 and 6.

	
0 1= −






 − × ()Ax

x
K

y Bf x .
	

(8)

	 0 = × () −y Cf x Dy. 	 (9)

From Eqs. 7 and 9, we obtain

	
f x

D
C

x
a x

() = =
+

.
	

(10)

Thus, x*, the steady state level of prey x is

	
x

D
C D

* ~ . .=
−
α

7 8
	

(11)

Combine Eqs. 8 and 11, y*, the steady state level of predator y is

	

y
Ax

x
K

Bf x

Ax
x
K

B
x

a x

A
B

a x
x*

*
*

*

*
*

*

*

*
*

=
−











()
=

−










+

= +() −
1 1

1
KK









 ~ . .10 2

	

(12)

As shown above, when the rates of change for both populations
are set to zero, the steady state population densities for both preda-
tor and prey correspond to the values shown in the above graph. At
the steady state, the birth of prey equals consumption of prey, while
the birth of predator due to consumption of prey equals the natu-
ral death of predator.

7  �Using ODE Solver Libraries for Population Modeling

The above examples were pedagogical demonstrations of how R
can be used to simulate population dynamics based on approximat-
ing differential equations with difference equations via Euler’s
method. There are other mathematical techniques for solving dif-
ferential equations that are more accurate than Euler’s method.
Many of these techniques are incorporated into the R environment
through packages, which can be thought of as an “add-on” to the
current environment meant to serve a specific purpose. For exam-
ple, one of the most popular packages for solving differential equa-
tions in R is the deSolve package [6]. This package is useful when
solving initial value problems, which are differential equations
where the initial values of the state variables (e.g., population den-
sities of prey and predator) are given.

Modeling Community Population Dynamics with the Open-Source Language R

228

We will illustrate how to use this package to solve the Lotka–
Volterra equations (1) and (2). The first step is to install the deSolve
package. This can be achieved using the install.packages
command:

> install.packages(‘deSolve’)

You should see something similar to Fig. 16 on your console.
Next, open a new R Script for editing and add the following to

it (Fig. 17):
To make the code more understandable, let’s break it down sec-

tion by section. First, look at the following piece of code:

library(deSolve)

parameters<-c(A=1,B=0.2,C=0.08,D=0.5)
state<-c(x=5,y=2)

The library command is a way of telling the R environment to
load the functionalities from the installed deSolve package for use in
this script. Note that in this case we are storing the parameters of
the Lotka–Volterra equations in a vector called parameters. The ini-
tial values of state variables x and y (prey and predator population
densities, respectively) are stored in a vector called state. Next, we
declare the actual function used for calculations:

LV<-function(t,state,parameters){
 with(as.list(c(state,parameters)),{
 dxOVERdt<-(A*x-B*x*y)
 dyOVERdt<-(C*y*x-D*y)
 return(list(c(dxOVERdt,dyOVERdt)))
})
}

Notice that dxOVERdt and dyOVERdt correspond to the
dx/dt and dy/dt from Eqs. 1 and 2, respectively. The with(as.
list(c(…)) command is used to allow to access the values stored in
the parameters (A, B, C, and D) and state (x and y) by their names

Fig. 16 Install package command output

Robin Green and Wenying Shou

229

Fig. 17 ODE solver implementation

(this is a syntax step that must be taken for easily using the deSolve
package). It is also important to note that we are returning a vector
of the dxOVERdt and dyOVERdt values (the order is also impor-
tant—rates of change for state variables must be returned in the
same order they were listed in the state vector). This function will
be applied iteratively by the deSolve package for model
calculations.

times<-seq(0, 100,by = 0.01)
out<-ode(y=state, times=times, func=LV,
parms=parameters)

The first command uses the seq function, which is used to create a
time sequence data object. Essentially, this data object will be used to
tell the deSolve package to sample from t = 0 to t = 100 every 0.01 time
steps (just like our code written previously). The second command
uses the ode (ordinary differential equations) function from the deSolve
package and stores the output in the matrix out. The ode is the default
function for standard initial value problems, but there are many more
functionalities in the deSolve package (for more information, type

Modeling Community Population Dynamics with the Open-Source Language R

230

“?deSolve” in the Console). By default, ode uses an interface to an
ODE solver written by Linda R. Petzold and Alan C. Hindermarsh
[7]. However, there are other approaches, such as the Runge-Kutta
method, that can be used by the ode function with the method param-
eter (for more information, type “?ode” into the Console).

Finally, because out is a type of matrix, it can be indexed and
plotted like previous examples:

matplot(x=out[,1],y=out[,c(2,3)],pch=20,xlab=’
Time’,ylab=’Population Density’, main=’Lotka-
Volterra Simulation’,col=c(‘darkgreen’,’darkb
lue’))

legend(x=’topleft’,legend=c(‘Prey’,’Predator’),
col=c(‘darkgreen’,’darkblue’),lwd=5)

Note that in this case, we haven’t stored the bulk of the code in
a function. Rather, every time the script is sourced, the entire code
will run. Sourcing this file should give Fig. 18:

Notice how the peak heights of the predator and prey popula-
tions do not seem to increase, despite having a time step of 0.01.
This can be attributed to the more accurate estimation in the ode
function compared to the Euler’s method.

Note: If, at any time, debugging is required, there are useful
functionalities built into R that allows the user to halt execution
of a function or script and examine the values stored in various
parameters. One such function, browser(), can be placed at a
given point in a script/function/loop and creates an interactive
environment for the user to examine values. For more informa-
tion, type “?browser” into your command console.

Fig. 18 Results using deSolve package

Robin Green and Wenying Shou

231

8  �Conclusion

The purpose of this chapter was to demonstrate the power of using
simple and open-source software like R to examine population
dynamics represented by a mathematical model. With a mathemat-
ical model, hypotheses can be easily formulated and tested. The
ability to represent abstract concepts in an intuitive manner can
greatly facilitate the understanding of novel concepts and phenom-
ena, leading to new insights in biological sciences.

Acknowledgements

The authors would like to thank members of the Shou lab (Björn
F.C. Kafsack, David Skelding, Babak Momeni and Adam Waite),
Sarah Holte, Jerry Davison, and Alex Hu for their critical feedback
and insightful comments. Work in the W.S. group is supported by
the W. M. Keck Foundation and the National Institutes of Health
(Grant 1 DP2OD006498-01). R.G. is an NSF predoctoral fellow.

References

	1.	Malthus T (1798) An essay on the principle of
population: an essay on the principle of popula-
tion, as it affects the future improvement of
society with remarks on the speculations of Mr.
Godwin M, Condorcet and other writers.
Electronic Scholarly Publishing, London,
http://www.esp.org/books/malthus/popula-
tion/malthus.pdf

	2.	Venables WN, Smith DM (2013) The R Core
team. An introduction to R-Notes on R: a pro-
gramming environment for data analysis and graph-
ics version 3.0.1 (2013-05-16). http://www.
cran.r-project.org/doc/manuals/R-intro.pdf

	3.	Lotka AJ (1925) Elements of physical biology.
Williams & Wilkins, Baltimore, MD

	4.	Volterra V (1926) Variations and fluctuations of
the number of individuals in animal species living
together. J Cons Perm Int Ent Mer 3:3–51,
Reprinted in R.N. Chapman, Animal Ecology,
New York, 1931

	5.	Soetaert K, Petzoldt T, Setzer RW (2010)
Solving differential equations in R. R J 2(2):
5–15

	6.	Soetaert K, Petzoldt T, Setzer S (2010) Solving
differential equations in R: package deSolve.
J Stat Softw 33(9):1–25

	7.	Hindmarsh A (1983) ODEPACK, a system-
atized collection of ODE solver (Stepleman R,
et al. ed). IMACS Trans Sci C Comput
1:55–64

Modeling Community Population Dynamics with the Open-Source Language R

	Chapter 15: Modeling Community Population Dynamics with the Open-­Source Language R
	1 Introduction
	2 Background: The Lotka–Volterra Equations
	3 Getting Started with R
	4 Implementation
	5 Analysis of the Lotka–Volterra Model
	6 Incorporating Alternative Assumptions to the Lotka–Volterra Model
	7 Using ODE Solver Libraries for Population Modeling
	8 Conclusion
	References

