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Background: Microbes live in dynamic environments where nutrient concentrations fluctuate. Quantifying fitness in
terms of birth rate and death rate in a wide range of environments is critical for understanding microbial evolution
and ecology.
Methods: Here, using high-throughput time-lapse microscopy, we have quantified how Saccharomyces cerevisiae
mutants incapable of synthesizing an essential metabolite (auxotrophs) grow or die in various concentrations of the
required metabolite. We establish that cells normally expressing fluorescent proteins lose fluorescence upon death and
that the total fluorescence in an imaging frame is proportional to the number of live cells even when cells form
multiple layers. We validate our microscopy approach of measuring birth and death rates using flow cytometry, cell
counting, and chemostat culturing.
Results: For lysine-requiring cells, very low concentrations of lysine are not detectably consumed and do not support
cell birth, but delay the onset of death phase and reduce the death rate compared to no lysine. In contrast, in low
hypoxanthine, hypoxanthine-requiring cells can produce new cells, yet also die faster than in the absence of
hypoxanthine. For both strains, birth rates under various metabolite concentrations are better described by the
sigmoidal-shaped Moser model than the well-known Monod model, while death rates can vary with metabolite
concentration and time.
Conclusions: Our work reveals how time-lapse microscopy can be used to discover non-intuitive microbial birth and
death dynamics and to quantify growth rates in many environments.
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Author summary: How fast microbes give birth or die (fitness) is influenced by their genetic makeups (genotypes) and
environment. Microbes can mutate to many different genotypes, and the environment can change in many different ways.
Thus, it is important to measure fitness for many genotypes in many environments so that we can understand, for example,
why one genotype outcompetes another genotype. Here, we have developed a high-throughput method to quantify the fitness
of fluorescent cells using time-lapse microscopy. We applied this method to two S. cerevisiae (budding yeast) mutants that
had lost their ability to synthetize an essential metabolite. We found that the mutants behaved differently from one another in
response to metabolite limitation, and in some cases, behaved differently from our expectations. Our method will be useful
for quantifying growth phenotypes of fluorescent microbes.
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INTRODUCTION

Microbial fitness are important to measure, since fitness
differences between genotypes drive evolution and since
fitness effects from other species are an important
component of ecological interactions. Fitness needs to
be measured in diverse conditions since microbes live in
uncertain environments with, for example, fluctuating
nutrient levels.
Fitness is often measured as the net growth rate (here

referred to as “growth rate”) – the difference between
birth and death rates. An easy and rapid method for
measuring growth rate is to track optical density of a
culture over time. Since optical density cannot differ-
entiate between live and dead cells, this method is useful
when death rate is low. In contrast, flow cytometry can
yield live and dead cell counts, but generally requires
periodic manual sampling of the culture under observa-
tion. As an alternative method, high-throughput micro-
scopy has been developed and applied to, for example,
monitoring biofilm susceptibility to antibiotics [1] and
quantifying growth rate heterogeneity among micro
colonies [2]. High-content microscopy screening has
been designed to track features such as cell shape and
protein localization, and has been applied to libraries of
deletion mutants or cells treated with RNAi or small
molecule libraries [3,4].
Here, we use microscopy to distinguish cell birth from

cell death, especially at low metabolite concentrations
where death rate is high. Distinguishing birth from death
can be important. For example, metabolite consumption is
tied to birth and not to death. As another example, in the
extreme case of cells not dividing or dying, then natural
selection ceases. Based on the same reasoning, if two
populations have the same net growth rate, then a
population that divides and dies slowly should evolve
slower per unit time compared to a population that divides
and dies rapidly.
Several mathematical models phenomenologically

relate nutrient concentrations to population growth rates.
The best known model is the Monod model [5],
g=gmaxs=ðKM þ sÞ, where g is the growth rate, s is the
concentration of the limiting metabolite, gmax is the
maximal growth rate, and KM is the concentration of s at
which half gmax is achieved. Other growth models such as
the Teisser and the Contois [6] models have also been
proposed. However, like the Monod model, they do not
consider cell death since they assume zero (instead of
negative) growth rate at zero metabolite concentration. A
different growth model by Kovárová-Kovar and Egli [7]
incorporates a fixed death rate, although in reality, death
rate could vary with metabolite concentrations.
Previously, we constructed a two-strain synthetic yeast

cooperative community as a model system to explore how

cells in a cooperative community might evolve and how
inter-species cooperation might shape species coexistence
and spatial patterning [8–12]. In this community, a red-
fluorescent strain required lysine and released hypox-
anthine (an adenine precursor) [13], while a green-
fluorescent strain required hypoxanthine and released
lysine. To establish a mathematical model for this
community, we needed to measure each strain’s birth
and death rates at various concentrations of the required
metabolite.
Here, we describe a microscopy assay that we

developed and validated for quantifying a strain’s birth
and death rates at various concentrations of the required
metabolite. Our approach can be applied to quantifying
the birth and death dynamics of other fluorescently
labeled microbes.

RESULTS

Using fluorescence to quantify cell birth and death

We imaged fluorescent yeast cells in microtiter plates. Our
inverted fluorescence microscope was equipped with
motorized stage and filter wheel, and was enclosed in a
temperature-controlled chamber (Figure 1A; Methods,
“Microscope setup”) to ensure a nearly constant tempera-
ture (Supplementary Figures S1 and S2). To enable
automated long-term imaging with minimal photo-
damage, we wrote a LabVIEW routine to perform
autofocusing in bright-field (Methods, “Autofocusing”)
and then capture images in the fluorescence channel.
However, despite controlling the chamber temperature,
condensation developed on the microplate lid over time,
which sometimes interfered with autofocusing. To resolve
this, we developed a “lid warmer” (Methods, “Lid
warmer”) using transparent, conductive ITO glass
(Figure 1B) to warm the microplate lid to ~0.7oC above
the stage temperature (Supplementary Figure S1B). This
eliminated condensation (Figure 1C) and allowed reliable
auto-focusing over tens of hours.
For yeast cells expressing a fluorescent protein, total

fluorescence intensity (after background subtraction)
scaled linearly with live fluorescent cell density up to at
least nine cell layers (Supplementary Figure S3). Cells
lost fluorescence immediately upon losing cell integrity
(compare Supplementary Movie 3 vs Supplementary
Movie 4). Thus, increases or decreases in fluorescence
were proportional to cell division or cell death, respec-
tively.
To measure birth and death rates, we performed time-

lapse imaging of fluorescent yeast cells at various
concentrations of the required metabolite (Figure 1D).
Even in the absence of the required metabolite, total
fluorescence intensity initially increased due to residual
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growth fueled by cellular storage of metabolites [14] (e.g.,
0–3 h in Figure 1D). Thus for our data analysis, we only
used images after residual growth.

Death rate is time-dependent

Death rate is not constant. We measured death rate of
lys2– cells in zero lysine. Since new birth was negligible
(no birth out of 603 cells over 30 h; e.g., Supplementary
Movie 3) and since total fluorescence was indicative of
live cell density, death rate could be estimated by
quantifying the negative slope of ln(fluorescence) against
time. We observed multi-phasic death kinetics, with a
slow death rate followed by a faster death rate (Figure 2A,
lightest grey; Figure 2B, [Lys]= 0; Supplementary

Figure S4). ade8– cells in the absence of hypoxanthine
also displayed time-dependent death rate (Figure 2C and
2D). For both strains, death rate would eventually slow
down, as demonstrated in our previous work [8]. As
shown below, death rate also depended on metabolite
concentration.
Death rates from independent quantification methods

are largely comparable. We quantified death rates of lys2–
cells in zero lysine by flow cytometry, and by manual or
automated counting of live fluorescent cells in micro-
scopy images, and compared results to that from
quantifying total fluorescence intensity (Figure 2B,
[Lys] = 0; Supplementary Figure S4; Methods, “Indivi-
dual cell tracking at low metabolite concentrations”). As
expected, subtle differences existed among the three

Figure 1. Automated high-throughput microscopy. (A) Microscope setup. An enclosure around the microscope provides a

temperature-controlled environment. A motorized stage allows repeated bright-field and fluorescent imaging of the same positions in
specified wells of a microtiter plate (Supplementary Movies 1–3). Motorized filter cubes allow automated filter switching. (B) An ITO
glass lid warmer prevents condensation. Sensors on the plate lid (“thermistor”) and the microscope stage provide temperature
measurements to a LabVIEWprogramwhich turns the ITO lid warmer on or off to maintain the plate at ~ 0.7˚Cwarmer than the stage

(Supplementary Figure S1). (C) The lid warmer eliminates condensation. The images were taken after a 24-hour imaging
experiment at 30˚C. (D) Growth of lys2– (WY1335) cells at various lysine concentrations. Background-subtracted total fluorescence
intensities from four picture frames were normalized against their respective initial values, averaged, and plotted. Residual growth

(prior to dashed line) at zero lysine is presumably fueled by vacuolar lysine storage. When calculating growth rates, we only
considered post residual growth data. Circles and triangles mark two independent experiments.
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methods. Overall, manual cell counting yielded a slightly
higher death rate than automated cell counting (Supple-
mentary Figure S5B), presumably because manual but not
automated cell counting could detect the death of a bud.
Manual cell counting yielded a lower death rate than flow
cytometry (Figure 2B, compare circles with diamonds of
the same color), possibly because sample handling in flow
cytometry reduced the viability of starving cells. Finally,
manual cell counting yielded a slightly lower death rate

than fluorescence intensity (Figure 2B, compare circles
with triangles of the same color). This implies that
fluorescence per live cell declined during starvation.

Distinct birth and death dynamics at low metabolite
concentrations

Low concentrations of metabolites may not be consumed.
We started with a small number of cells to minimize

Figure 2. Death rate is nutrient- and time-dependent. Exponentially-growing lys2– (WY1335) cells were washed free of lysine

at 0 h, and imaged in minimal medium SD supplemented with 0 to 1 µM lysine. (A) Birth events were restricted to the first few hours,
and thus may be regarded as part of residual growth. Early and late death rates were calculated using data before and after asterix
(*), respectively, and plotted in panel B (circles). (B) Death rates of lys2– cells at 0 µM lysine were also tracked using microscopy

fluorescence intensity (triangles) and flow cytometry (diamonds). In all assays, death rate started slow (cyan), and then increased
(blue). Death rates from the three quantification methods were comparable, although manual cell counting seemed to report lower
death rate than the other two methods (circles lower than triangles and diamonds of the same color). For each experiment, we

tracked birth and death events from an initial of 200–300 cells. Death rates at 0 µM lysine were jittered along the x-axis to aid
visualization. (C) Death dynamics of ade8– cells. Exponential ade8– (WY1340) cells were washed free of hypoxanthine
supplements at time zero. Because ade8– cells died slowly, evaporation from small sample volume in microscopy assay became
significant. Thus, we incubated a larger culture volume in a glass tube and tracked dead and live cell densities over time using flow

cytometry. (D) Multiphasic death rate. Death rate was initially slow (cyan) and then sped up (blue). Early death rates were generally
calculated within 24–96 h, while late death rates were generally calculated within 70–230 h. (E) Death rates of ade8– cells in zero or
low concentrations of hypoxanthine. Exponential ade8– (WY1340) cells were washed free of hypoxanthine supplements at time

zero. Death rate was quantified from 24 h to 42–66 h either by counting live cells or measuring total fluorescence intensity over time.
In cases where we observed mutant clones, we excluded those from our quantification.
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metabolite depletion during growth rate measurements in
low concentrations of metabolite (Methods, “Sample
setup”). Low concentrations of lysine (e.g., 0.33–1 µM;
Supplementary Movie 2) were barely consumed by lys2–
cells, while concentrations> 1.75 µM were depleted
down to< 1 µM (Figure 3B). Consistently, maximal
fluorescence intensity only scaled linearly with input
lysine concentrations greater than 1.75 µM (Figure 3A),
the level around which half maximal growth rate was
achieved (Figure 4). We inferred that low concentrations
of hypoxanthine (e.g., 0.1–0.2 µM; too low to be directly
measured from supernatants) were largely un-consumed
by ade8– cells based on the following inference. Since
1–3 fmole of hypoxanthine was consumed per ade8– cell
[13], the input medium (300 µL of 0.2 µM or 6�104

fmole hypoxanthine) should support the birth of a total of
2�104–6�104 cells. Instead, we observed an increase of
£1800 cells (£60% of the starting 3000 cells;
Figure 3C).
Low concentrations of metabolites lead to distinct birth

and death dynamics depending on the strain genotype.
For lys2– cells in low (£1 µM) lysine, although total
fluorescence intensity increased for longer compared to
zero lysine (Figure 1D), this increase generally corre-
sponded to cell swelling rather than cell birth (Supple-
mentary Figure S7). Birth events, if any, were restricted to
the initial few hours and not sustained at later time points
(Figure 2A and Supplementary Figure S6A) despite the
nearly-constant metabolite concentration (Figure 3B).
Thus, the initial birth events of lys2– could be interpreted
as low lysine prolonging the residual growth phase and
delaying the onset of death phase. Low lysine also
reduced early and late death rates of lys2– cells
(Figure 2B). In contrast, for ade8– cells, low input
concentrations (e.g., 0.1–0.2 µM) of hypoxanthine led to

increased birth and death rates compared to zero
hypoxanthine (Figure 3C). ade8– cells were occasionally
born in low hypoxanthine, even after the onset of death
phase (Supplementary Figure S6B from 30 to 66 h).
Moreover, a small number of ade8– cells transiently lost
fluorescence, but then regained fluorescence and con-
tinued to divide (Supplementary Movie 5). In summary,
for lys2– cells, low concentrations of lysine were not
consumed, did not sustain birth beyond the initial stage,
but delayed the onset of death phase and slowed the death
rate once cells began to die (Figure 2). For ade8– cells,
low concentrations of hypoxanthine, which were likely
largely unconsumed, increased both birth and death rates
(Figure 3C). Overall, death rate is not only time-
dependent, but also nutrient concentration-dependent.

Microscopy and chemostats yield similar results at
intermediate metabolite concentrations

A concern about microscopy assay is that growth rate at a
particular input metabolite concentration will continu-
ously decline as the metabolite is consumed. To test this,
we grew lys2– cells in various input lysine concentrations,
and measured growth rate (e.g., slope in Figure 1D) across
sliding time windows (Supplementary Figure S8). For
lysine concentrations≥2.5 µM, maximal growth rate was
maintained across at least two contiguous sliding
windows (Supplementary Figure S8), and thus can be
used as the growth rate corresponding to the input lysine
concentration. However, at lower lysine concentrations
(e.g., 1.75 µM), the growth rate continuously declined
throughout the experiment, and thus it was unclear
whether our measured maximal growth rate was truly
maximal. To verify our observations, we employed an
independent measurement method where we grew lys2–

Figure 3. Very low concentrations of metabolites may not be consumed and can lead to distinct birth and death dynamics.
(A) Maximal fluorescence of a lys2 – (WY1335) culture scales with input lysine concentration only when lysine concentration exceeds a

threshold (1.75 µM). Maximal fluorescence was normalized against that at zero lysine. (B) Low concentrations of lysine (£1 µM)
remain largely unconsumed by lys2 – over 40 h. We measured lysine concentrations in supernatants using the rate bioassay (Methods,
“Bioassay”). (C) A low level of hypoxanthine increases cell birth and death in ade8 – cells. Exponential ade8 – (WY1340) cells were

washed and starved for 24 h, and then imaged every 2 h in 0 μM (light grey), 0.1 µM (dark grey) and 0.2 µM (black) hypoxanthine. A
small amount of hypoxanthine increased both cell birth (0–20 h; Supplementary Figure S6B) and cell death (20–66 h).
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cells in lysine-limited chemostats [15] where population
growth rate could be controlled by setting the dilution rate
(Methods, “Chemostat culturing”). We set the dilution
rate to various values, and measured the corresponding
lysine concentrations (Supplementary Figure S9). Che-
mostat measurements were consistent with microscopy
measurements (Figure 4A, blue crosses).

The Moser model is superior to the Monod model in
describing lys2– and ade8– cell birth

The birth rate of lys2– cell increased with lysine
concentration in a sigmoidal fashion. At low (£1µM)
lysine, birth rate was zero (Figure 2A; Supplementary
Figure S6A). When lysine was not rate-limiting (³ 5
µM), lys2– cells achieved a maximal growth rate of
0.50�0.02/h in microscopy assay (Figure 1D, magenta),
consistent with the value measured from culture optical
density over time (0.49�0.03/h). At intermediate and
high lysine concentrations (≥1.75 µM), death rate was
small (< 0.002/h [13]) compared to growth rate
(³ 0.1/h), and thus we approximated growth rate as birth
rate (Figure 4A). The data were better characterized by the
Moser model bðsÞ=bmaxs

n=ðKm
n þ snÞ (black line;

Figure 4A), than the Monod model bðsÞ=bmaxs=ðKm þ

sÞ (grey dotted line; Figure 4A). In both models, s is the
lysine concentration, bmax is the maximal birth rate, Km is
the Monod constant (s required to achieve half maximal
birth rate). The Moser model has an additional parameter,
n, which is analogous to the cooperativity coefficient in
the Hill equation. For ade8–, the Monod model worked
relatively well, but the Moser model provided a more
accurate estimation of the maximal birth rate (Supple-
mentary Figure S10 legend). Increased accuracy in the
Moser model is not surprising given the additional
parameter. Nevertheless, an accurate fit to experimental
data is useful when we incorporate the relationship
between metabolite concentrations and growth rates into
population dynamics models.

DISCUSSION

Using microscopy, we quantitatively measured cell
growth in a wide range of nutrient environments. Growth
rates can differ depending on the duration of starvation
(Supplementary Figure S11), where we cut off “residual
growth” (Figure 2A and Supplementary Figure S8), and
whether birth and death rates are calculated from
fluorescence or cell counts (Figure 2B and Figure 3C).
Since there is no single “correct” procedure, it is

Figure 4. The birth rate of lys2– as a function of lysine concentration is better described by the Moser model than the

Monodmodel. (A) A sigmoidal relationship between birth rate and lysine concentration. For lysine concentrations£1 µM, birth rates
were zero (Supplementary Figure S6A). For lysine concentrations≥1.75 µM, we calculated growth rates within 2–4 h sliding
windows and used the maximal growth rates to approximate birth rates since death rates were small (~0.002/h [13]). Separately in

chemostats, we controlled growth rates (~birth rates) and measured the corresponding lysine concentrations at steady state
(Methods). Results from microscopy (green) and chemostats (blue) are consistent. The birth rate of lys2– as a function of lysine
concentration can be described by the Moser equation (black) where bðLÞ=bmaxLL

nL=ðKL
nL þ LnL Þ with bmaxL=0:50 (95% CI: 0.48–

0.53) per hour, KL=1:9 (95% CI: 1.8–2.0) µM, and n = 4.47 (95% CI: 3.2–5.7). In comparison, the best-fit of the Monod equation
gðLÞ=bmaxLL=ðKL þ LÞ (grey dotted, bmaxL=0:85 per hour and KL=4:6 µM) fits the data poorly. (B) Lysine permease Lyp1 is localized
to the vacuole in response to low lysine. We tagged the high-affinity lysine permease Lyp1 with a fluorescent GFP tag in lys2– cells

(WY1620) to observe Lyp1 localization. Cells were grown to exponential phase in SD plus 164 µM lysine, and washed and re-
suspended in SD plus 1 µM or 164 µM lysine. Cells were diluted into wells of a Nunc 96-well Optical Bottom Plate (Fisher Scientific,
165305) and imaged after 10 h using a 40� oil immersion objective, but otherwise under standard microscopy conditions (Methods).
Lyp1-GFP localized to the membrane and the vacuole in high lysine (left), but localized predominately to the vacuole in low lysine

(right).
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important to be aware of the limitations of each method.
We recommend cross-checking one method against
another, independent, method. For example, we cross-
checked microscopy measurements against chemostat
measurements (Figure 4), and cross-checked microscopy
measurements against flow cytometry (Figure 2B and
Supplementary Figure S4).
Population dynamics of lys2– and ade8– strains shared

certain features under nutrient limitation. For example,
both displayed time- and nutrient-dependent death rates
(Figure 2 and Supplementary Figure S4). The two strains
differed in other aspects. For lys2– cells, low concentra-
tions (0.33–1 µM) of lysine were largely un-consumed
(Figure 3A and 3B), and did not support birth beyond
residual growth (Supplementary Figure S6A), but did
delay and slow death when compared to full starvation
(Figure 2). In contrast, for ade8– cells, low concentrations
(0.1–0.2 µM) of hypoxanthine increased death rates
(Figure 3C) compared to full starvation, and, at the same
time, supported some birth (Supplementary Figure S6B).
These seemingly counter-intuitive behaviors probably
resulted from the fact that these mutations disrupted
biosynthetic pathways that would normally produce the
necessary metabolite. In the case of ade8–, the diverse
forms of adenine-containing compounds in the cell
(including those in RNA and DNA, ATP, ADP, AMP,
and reduced and oxidized forms of NAD, NADP, and
FAD) possibly allowed new births to occur. In the case of
lys2–, the storage might be more limited and new births
did not occur beyond residual growth. In both cases, since
the cell did not “know” that it could not make the
metabolite, it would try to grow and divide in the absence
of the metabolite, which resulted in an abnormally high
death rate [16].
The Monod model has been observed to fit, for

example, the growth rates of yeast strains at various
glucose concentrations [2]. For lys2– cells, since the birth
rate of lys2– increased with lysine concentration in a
sigmoidal fashion, the Moser model fit the data much
better than the Monod model (Figure 4A). This sigmoidal
relationship could be explained by, for example,
cooperative binding by nutrient transporters, as seen in a
variety of cells types, including yeast [17–19]. However,
in the case of lys2– cells, this sigmoidal relationship likely
resulted from stress-induced permease re-cycling. Speci-
fically, at very low lysine concentrations, high affinity
lysine permease Lyp1 was ubiquitinated and targeted to
the vacuole for degradation [20] (Figure 4B) so that the
amino acids could be recycled to help cells cope with the
stress [21].
For ade8– cells in hypoxanthine, the Monod model

closely fit experimental data. The Moser model was still
more accurate than Monod model (Supplementary Figure
S10), although a two-parameter model (Moser) is

expected to improve the fit over a one-parameter model
(Monod). Regardless, a growth model that faithfully
captures experimental observations is useful. For exam-
ple, when modeling a community of two cross-feeding
strains, a Moser model of how fast each strain grows in
various concentrations of partner-supplied metabolite can
be incorporated into the community dynamics model.
In summary, our work demonstrates the potential of

high-throughput microscopy assays in quantifying micro-
bial birth and death dynamics. Our method can be used to,
for example, estimate the chronological life span of
individual cells in a high-throughput fashion.

METHODS

Strains and growth medium

We used strains from the RM11 background with the
following genetic modifications introduced via transfor-
mation [22]. Strain WY1335 (“lys2–”) has the genotype
of ho::loxP AMN1-BY ste3::Hph fba1::FBA1-mCherry-
loxP ade4::ADE4-PUR6 (o/e) lys2::loxP. Strain WY1340
(“ade8–)” has the genotype of ho::loxP AMN1-BY ste3::
NAT fba1::FBA1-EGFP-loxP lys21::LYS21(o/e) ade8::
loxP. For our bioassay of low metabolite concentrations,
we used an evolved clone (WY2270) isolated after lys2–
had grown for tens of generations under lysine limitation.
This clone displayed an increased affinity for lysine. For
our LYP1 localization assay, we tagged LYP1 with GFP in
a lys2– strain via transformation (WY1620). We stored
these strains at –80oC in YPD+ 15% glycerol.
We used rich medium YPD (10 g/L yeast extract,

20 g/L peptone, 20 g/L glucose) for streaking out single
colonies and for growing saturated YPD overnight
cultures which were then used as inoculum to grow
exponential cultures. We found ade8– cells could grow to
a higher density in YPD if supplemented with 100 µM
hypoxanthine. We sterilized YPD media by autoclaving.
YPD overnight cultures were stored at room temperature
for no more than 4–5 days prior to experiments. We used
defined minimal medium SD (6.7 g/L DifcoTM yeast
nitrogen base w/o amino acids, 20 g/L glucose) for all
experiments [23], with supplemental metabolites added as
noted. To achieve higher reproducibility than autoclaving,
we sterilized SD media by filtering through 0.22 µm
filters.
We performed all culturing at 29.5�1oC. lys2– cells

were pre-grown to exponential phase in SD supplemented
with excess (164 µM) lysine and washed 3–5 times with
SD. Where noted, we starved lys2– cells for 3–6 h to
deplete intracellular lysine storage. Otherwise, we did not
starve lys2– prior to starting an experiment. ade8– cells
were pre-grown to exponential phase in SD supplemented
with excess hypoxanthine (100 µM), washed 3–5 times

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 75

Microscopy quantification of microbial birth and death dynamics



with SD, and pre-starved in SD for 24 h to deplete cellular
storage, unless otherwise noted.

Microscope setup

Imaging was performed using a Nikon Eclipse TE-2000U
inverted fluorescence microscope. A temperature-con-
trolled enclosure (in vivo scientific controller, model
300353) maintained the microscope at a temperature close
to a set temperature (29.5˚C). We turned off the dark room
air conditioning system since it could cause fluctuations in
chamber temperature.
The microscope had a motorized stage to allow z-

autofocusing (Methods, “Autofocusing”) and systematic
xy-scanning of locations in microplate wells. Our
LabVIEW (National Instruments) program controlled
the microscope body, illumination, and stage position
through serial port communication. The program moved
the stage gently so that cells were not disturbed and
individual cells could be tracked from one time point to
the next. The microscope was also equipped with
motorized switchable filter cubes capable of detecting a
variety of fluorophores. We used an ET DsRed filter cube
(Exciter: ET545/30�, Emitter: ET620/60 m, Dichroic:
T570LP) for mCherry-expressing strains, and an ET GFP
filter cube (Exciter: ET470/40�, Emitter: ET525/50 m,
Dichroic: T495LP) for GFP-expressing strains. Fluores-
cence and transmitted light images were taken with a
Photometrics CoolSNAP HQ [2] cooled CCD camera,
interfaced with LabVIEW through the Bruxton Inc. SIDX
API. Unless otherwise stated, we used a 10� objective,
with a numerical aperture of 0.30, because it provided a
wide field of view while allowing easy observation of
individual cells.
Image acquisition was done with an in-house Lab-

VIEW program, incorporating autofocusing in bright-
field followed by fluorescence imaging with automati-
cally adjusted exposure time to avoid camera saturation.
Optimal exposure times for fluorescence imaging may
vary (~0.1–1 s). We observed that long exposure with
low-intensity light perturbed cell growth less than short
exposure with high-intensity light. When we imaged
ade8– cells using a particular light configuration, the very
short exposure time (0.05 s for initial images) created
problems for image analysis. This could be due to the
latency in shutter opening/closing becoming important in
short exposure times. Alternatively, since high-intensity
light was used (and hence the short exposure time),
exposure time had to be reduced as cells grew to avoid
camera saturation, and adjusting for variable exposure
time during data analysis could introduce errors. When
we added a neutral density filter and/or adjusted the size
of light aperture so that the exposure time was ~0.3 s, data
analysis became normal. Four locations per well were

imaged, with ~20–200 initial cells per image.

Lid warmer

During extended imaging, condensation could accumu-
late on the underside of microplate lid, even in the
temperature-controlled chamber. We encountered failures
in autofocusing due to heavy condensation, and con-
densation can degrade proper Kӧhlier illumination. In
order to prevent condensation, we used an optically
transparent heating plate to warm the lid (Figure 1B),
which kept the lid temperature an average of 0.68°C with
2s of 0.22°C higher than the stage temperature
(Supplementary Figure S1B). This eliminated condensa-
tion (Figure 1C).
Our lid warmer used an ITO glass heating plate, with an

integrated thermistor temperature sensor (Oven Industries
TR91-170). The 1 mm-thick ITO glass had a 140 nm ITO
coating (from SPI Supplies), transmitted 88% of visible
light, and had a sheet resistance between 30–60 Ohms/sq.
We cut a 70 mm � 120 mm sheet with beveled corners to
match the microplate lids. To apply power for heating, we
affixed strips of 5 mm-wide conductive copper foil tape to
the ITO coating along two opposite ends of the heating
plate, and applied silver conductive epoxy (MG Chemi-
cals, 8332-13G) to the tape, extending 1–2 mm onto the
ITO coating to ensure a reliable connection. Wires were
connected through brass conductors, which were insu-
lated with heat shrink tubing and epoxied to the edge of
the heating plate. We measured the resistance of the plate
to be 20 Ohms, so the application of 5V DC generated
(5V)2/26 Ohms = 1.0 W. This provided the needed heat
when applied. The sensor readings were tested, and
adjusted if necessary, using a Barnant 115 thermocouple
thermometer with a T type probe.
The temperature of the heating plate was controlled by

a LabVIEW program, with the aid of a DAQ (National
Instruments USB-6008) for reading temperature sensors.
Based on the measured temperatures of the heating plate
and the microscope stage, the LabVIEW program
activated or deactivated the heating plate when the
temperature difference was £0.5oC or ≥0.8oC, respec-
tively. As discussed above, the heating plate was run at a
fixed power of ~ 1 W when active. Note: The 5V supply
from the DAQ was used for the sensors, and a separate
supply was used for heating the plate.

Sample setup

We used flat-bottom transparent microplates with wells
joined together at the bottom by a continuous sheet of
plastic, such as Costar 3370 96-well plates (rather than
96-well plates where the spaces between the wells was
open to the surrounding environment and thus more
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susceptible to temperature fluctuations). In these plates,
air warmed by the lid warmer thermally insulates the sides
of individual wells, which improves temperature uni-
formity.
We filled the outermost wells of a 96-well microtiter

plate with water to reduce evaporation, leaving up to 60
wells for imaging. We diluted cells to low densities
(1000–5000 cells inoculated in 300 µL medium) to
maximize our growth window and to minimize metabolite
depletion during measurements. When assaying death in
the absence of supplements, we added 2~10 fold more
cells since there was little cell birth. We spun the plates at
2000 rpm for 2 min to settle all cells to the bottom of the
wells, set up the microscope as described above, and
imaged the same four positions in each selected well
periodically (every 0.5–2 h). For each position, a bright-
field and a fluorescent image was saved. For growth
assays, we ran experiments until fluorescence leveled off
(16+ h for lys2–, and 30+ h for ade8– cells). For death
assays, we ran experiments for up to 66 h. We found that
growth rates for the same samples did not vary
significantly across different well positions in a plate
(Supplementary Figure S2).

Autofocusing

Automated imaging of the cells was performed using
custom software written in LabVIEW. At each time point,
it was necessary to auto-focus on the cells (in bright-field)
due to the small vertical drift caused by small changes in
temperature or mechanical stress. At the beginning of an
experiment, manual focusing was performed on four
corner sample wells to ensure that the plate was level
(otherwise, we needed to adjust the screw positions of the
plate holder). Then, coarse auto-focusing was performed
for one position in each sample well at �100 z-positions
spaced at 3 µm apart, and the best focal plane was chosen
to initiate an experiment. To identify the best focal plane
for imaging and to prevent a loss of focus during the
experiment, fine auto-focusing (�30 z-positions spaced at
2 µm apart) was performed for each image location at
each time point.
Each 16-bit, grayscale image was imported directly into

LabVIEW, and converted into a two-dimensional array of
real numbers. The optimal z-position for focusing was
chosen using a variant of the Brenner auto-focus
algorithm [24,25]. The quality of focus, AðzÞ, was
measured by computing the average of the squared
horizontal and vertical gradient:

AðzÞ=
XN – 2

i=1
ðpðiþ 2, jÞ – pði, jÞÞ2

þ
XM – 2

j=1
ðpði, jþ 2Þ – pði, jÞÞ2,

where N �M were the dimensions of each image, and
pði, jÞ was the pixel intensity at row i and column j. Local
maxima in AðzÞ corresponded to sharply-focused images
(in bright-field). Comparison between data two pixels
apart rather than adjacent pixels reduced the effects of
correlated noise and the natural illumination of nearby
pixels.
When observing yeast we often observed multiple local

maxima in the range of z positions (Supplementary Figure
S12A). Assuming yeast cells behave like small spherical
lenses of diameter D � 5μm, then this phenomenon is
likely a complex function of reflection, refraction, and
diffraction [24]. However, some qualitative features may
be illustrated by simply considering refraction of a ball
lens, where the effective focal length (EFL) is Ref. [22]:

EFL=
ncD

4ðnc – nwÞ
,

where nw=1:33 is the index of refraction of the
surrounding water, and nc is the index of refraction of
the cell. Supplementary Figure S12 shows that local
maximum (iii) was due to light that was focused
approximately 14 µm from the yeast cells, which would
correspond to nc=1:46. This is consistent with previous
measurements showing that nc � 1:53 [27], although we
note that this value depends on the size and density of the
cells. The second maximum (i) was located at an image
plane below the cells that contained light halos from the
apparent source of the focused light.
We found that the local minimum in AðzÞ between these

two maxima (ii) conveniently corresponded to a focal
plane adequate for identifying and imaging fluorescent
cells (Supplementary Figure S12). Thus, we chose this
local minimum for imaging in all of our experiments. The
three points closest to the minimum were fit to a parabola,
and the minimum of the parabola was chosen as the
optimal focus position. The microscope stage was then
moved to the optimal focal plane for bright-field and
fluorescence imaging. A similar method for autofocusing,
i.e., using the local minimum in the autofocus score, has
been used before [28].

Individual cell tracking at low metabolite
concentrations

At very low concentrations of supplements and low cell
densities, birth and death events could be counted. In
manual counting, we scanned through fluorescent images
in ImageJ (e.g., Supplementary Movies 2–3). After
counting the initial number of cells in an image, we
proceeded through each image and noted the appearance
or disappearance of cells. We counted a birth event as the
appearance of a new cell adjacent to a cell present in the
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previous image. We differentiated this from two verti-
cally-stacked cells shifting orientation to create the
appearance of a new cell birth, as the fluorescence
intensity of stacked cells dropped noticeably during
orientation shift. We counted a death event when a cell
present in the previous image suddenly lost fluorescence.
Occasionally cellular fluorescence slowly faded over time
rather than disappearing suddenly, and in this case we
counted the initial drop in intensity as the death of the cell.
We also automated live and dead cell counting to

analyze time-lapse bright-field and fluorescent images.
The ImageJ plugin CellQuant was written by AdamWaite
and is available at https://github.com/nodice73/ImageJ/
blob/master/CellQuant.txt. For each cell sample, we took
an off-focus bright-field image to create a dark ring
around each cell (Supplementary Figure S12, case iii;
Supplementary Figure S13A) and an in-focus fluores-
cence image. The plugin then created a mask in the bright-
field image to separate the background from the cell-
containing foreground. Specifically, low frequency inten-
sity information (e.g., due to non-uniform illumination)
was removed using the “rolling ball” background
subtraction [29,30]. The bit depth of the image was
reduced to 8 (since it gave more consistent thresholding
values from image to image) and the image was blurred
with a Gaussian filter with a standard deviation of 1 to
reduce high frequency noise caused by, for example, shot
noise in camera. A variance filter with a radius of 3 was
used to identify edges. The image was duplicated and
thresholded using both “RenyiEntropy” and “MaxEn-
tropy” algorithms [31], since one of the two algorithms
would work well depending on cell density. To create a
mask, all pixel intensities greater than the threshold value
were assigned 1, and the rest assigned 0. Sometimes,
spurious noise would cause a small group of white pixels
(much smaller than cell size) in the middle of black
background, and such small holes were filled. Then, two
selections were created. Since a selection can represent
either background or cell-containing foreground, the
standard deviation of each selection was calculated, and
the selection with the lower standard deviation was used
as the background selection. Among the two thresholds
created by “RenyiEntropy” and “MaxEntropy”, the
plugin selects the threshold defining the larger back-
ground area (which is less prone to artifacts). Once the
background selection was determined, the average back-
ground value of the original bright-field image was
calculated.
To select individual cells, the average background

value calculated above was used to alter the pixel
intensity of the original bright-field image (details in
Supplementary Figure S13B). A Gaussian blur with
standard deviation of 0.5 was then applied to the modified
bright-field image (Supplementary Figure S13B) to

reduce high frequency noise. To select individual cells,
the “Find Maxima” algorithm was run on the altered and
blurred bright-field image, with output set to “Segmented
Particles”. The “Analyze Particles...” algorithm was then
run on the segmented particles, and the selections added
to the ROI manager. The cell selections (including the
dark ring) were applied to the original bright-field image,
and those with low variance were rejected as background
(Supplementary Figure S13C).
After individual cells were selected, each cell’s

fluorescence was quantified in the fluorescence image.
To do this, low frequency intensity information was
removed in fluorescence image using the rolling ball
background subtraction, and spurious bright pixels were
removed with the “Remove Outliers…” command. A
background mask in the fluorescence image was made as
described for bright-field, and the selection made from
this mask was used to define an average background for
the fluorescence image. The average background plus a
user-defined number of standard deviation of this back-
ground (1 standard deviation was used here) were
subtracted from the fluorescence image. Values below
zero were set to zero. Cell selections from bright-field
image were then applied to this background-subtracted
fluorescence image (Supplementary Figure S13D). Cell
selections from bright-field containing zero fluorescence
were counted as dead cells, and all other cell selections
were considered live.
These counts yielded similar results to the manual

counting procedure described above and could be applied
to make the assay higher-throughput. CellQuant consis-
tently under-counts cells by ~10% as compared to manual
counting (Supplementary Figure S5), presumably due to
differences in the definition of a cell — a budded cell is
counted as two cells in manual counting and as one cell by
CellQuant. All counting data presented in this paper are
from manual counting unless otherwise noted.

Fluorescent image analysis

We analyzed time-lapse images using Bioact, an ImageJ
[32] plugin written by Adam Waite (Supplementary
Figure S14, available at https://github.com/nodice73/
Java/tree/master/imagej_plugins/bioact). Bioact mea-
sured the background-subtracted total fluorescence inten-
sity of all cells in an image. To distinguish fluorescent
cells from background, each fluorescent image was
blurred with a Gaussian filter using a standard deviation
(σ) of 1 pixel. Low frequency noise was removed using
the “Rolling Ball” background subtraction algorithm
[29,30]. The dynamic range of the fluorescent image was
reduced from 16-bit to 8-bit, and each pixel was replaced
by the maximum value in a 3 pixel radius. The resulting
image was thresholded using the “MaxEntropy” method
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[31] for low density images or the “IsoData” method [33]
for higher-density images and converted to a binary mask
[32]. After filling holes using binary closing, the mask
was dilated by 2 pixels. From this mask, the percent pixels
considered foreground was calculated. Each mask was
then applied to the un-manipulated original image, and
the foreground and background intensities were mea-
sured. At low cell densities, the background was
calculated for each image and subtracted. We found that
when the foreground made up more than a specified
fraction of the total image area, the background estimate
was no longer accurate, and the running average back-
ground value calculated before this threshold was met was
used as the background value for subsequent images. This
method occasionally failed if cells were nearly confluent
during late stage growth. However, we were only
interested in maximum growth rate, which occurred
before confluency.
We plotted background-subtracted fluorescence inten-

sity over time for all four positions in each well to allow
visual inspection. In rare occasions, all four positions
were out-of-focus and none were used. In a small subset
of experiments, a discontinuous jump in data appeared in
all four positions for reasons we do not understand. We
did not calculate rates across the jump. Occasionally, data
from one or two positions deviated from the rest. This
could have been due to a number of reasons, including
spurious shifts in stage position, or black or bright dust
particles in the field of view. In these cases, we inspected
the images, and outliers with obvious causes were
excluded. If the fluorescence dynamics of four positions
differed due to cell heterogeneity at low concentrations of
metabolites, all positions were retained.
We normalized intensity against that of time zero, and

averaged across positions. We calculated growth rate over
three to four consecutive time points, and plotted the
maximal growth rate against metabolite concentration. If
maximal growth rate occurred at the end of an experi-
ment, then the experimental duration was too short and
data were not used.

Bioassay

We used a bioassay to quantify lysine concentrations from
supernatants. In order to obtain supernatant, we filtered
cell cultures through a 0.45 µm nitrocellulose filter and
stored supernatant at –80oC until quantification. We
mixed 150 µL supernatant sample with an equal volume
of master mix containing 2� SD and lysine-requiring
tester cells (~1�104 cells/mL WY2270) in a flat-bottom
96-well plate. We measured growth rates of WY2270 in
unknown samples and compared them to growth rates of
WY2270 run concurrently with known concentrations of
lysine. The growth rate scaled linearly with lysine

concentration up to 1 µM (i.e., 2 µM in undiluted sample,
Supplementary Figure S15). From this standard curve, we
inferred lysine concentrations of samples. Assay sensi-
tivity was 0.1 µM.

Flow cytometry

We first prepared bead standards for quantifying cell
density. Fluorescent beads (ThermoFisher Cat R0300,
3 μm red fluorescent beads) were autoclaved in a factory-
clean glass tube, diluted into sterile 0.9% NaCl, and
supplemented with sterile-filtered Triton X-100 to a final
0.05% (to prevent beads from clumping). We sonicated
beads and kept them in constant rotation to prevent
settling. We quantified bead concentrations by counting
beads using a hemacytometer and a BD Coulter counter.
The final bead stock was generally 4~8�106/mL.
Culture samples were diluted to OD 0.01–0.1 (7�105–

7�106/mL) in MilliQ H2O in unautoclaved 1.6 mL
Eppendorf tubes. In a 96-well plate, 90 µL sample was
supplemented with 10 µL bead stock to calculate cell
density from cell:bead ratio. We also added 2 µL of 1 µM
nucleic acid dye ToPro3 (Molecular Probes T-3605)
which stains dying/dead cells with compromised mem-
brane. Flow cytometry was performed on Cytek DxP
Cytometer equipped with four lasers, ten detectors, and an
autosampler. Fluorescent tags GFP, mCherry, and ToPro
were respectively detected by 50 mW 488 nm laser with
505/10 (i.e., 500–515 nm) detector, 75 mW 561 nm Laser
with 615/25 detector, and 25 mW 637 nm laser with 660/
20 detector. Each sample was run in triplicate and
individually analyzed using FlowJo® software to identify
numbers of events of beads, dead cells, and various live
fluorescent cells. We calculated the mean cell density
from triplicate measurements, with the coefficient of
variation generally within 5%–10%.

Chemostat culturing

We constructed an eight-vessel chemostat with a design
[15] modified from an existing multiplexed culturing
device [34]. A chemostat creates a nutrient-limited
environment where the population is forced to grow at a
constant, pre-determined rate slower than the maximal
growth rate [35].
Specifically, a medium containing a limiting metabolite

is added to the culturing chamber at a constant flow rate f
(mL/h). The culture effluent is removed from the chamber
at the same rate f, thereby maintaining a constant culture
volume V. Mathematically [35], live population density N
satisfies

dN=dt=ðr – f =V ÞN , (1)

where r (h–1) is the growth rate (birth rate minus death
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rate), f is the flow rate, and f/V is the dilution rate (h–1).
At steady state, the growth rate and the dilution rate are
equal:

r=f =V : (2)

The limiting metabolite also reaches a steady state in the
culturing vessel. Thus, the steady state concentration of
the limiting metabolite supports a growth rate equaling
the dilution rate.
Due to rapid evolution, we designed experiments so

that live and dead populations quickly reached steady
state and the experiment lasted £26 h [13]. Specifically,
we washed exponentially-growing cells to remove
extracellular lysine and inoculated 1/4–1/2 of the volume
at 1/3 of the expected steady-state density. We filled the
rest of the 19 mL chamber with reservoir media (resulting
in less than the full 20 µM of reservoir lysine, but more
than enough for maximal initial growth rate, ~10–15 µM).
We sampled cultures periodically to track population
dynamics using flow cytometry (Supplementary Figure
S9A) and filtered supernatant through a 0.45 µm
nitrocellulose filter. We froze the supernatants for
metabolite quantification at the conclusion of an experi-
ment (Supplementary Figure S9B).

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at https://

doi.org/10.1007/s40484-018-0160-7.
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