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Abstract

Analysis of rare genetic variants has focused on region-based analysis wherein a

subset of the variants within a genomic region is tested for association with a complex

trait. Two important practical challenges have emerged. First, it is difficult to choose

which test to use. Second, it is unclear which group of variants within a region should

be tested. Both depend on the unknown true state of nature. Therefore, we develop

the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests

and groupings. Specifically, we demonstrate that several popular rare variant tests are

special cases of the sequence kernel association test which compares pair-wise similarity

in trait value to similarity in the rare variant genotypes between subjects as measured

through a kernel function. Choosing a particular test is equivalent to choosing a kernel.

Similarly, choosing which group of variants to test also reduces to choosing a kernel.

Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and

real data analyses show that our framework controls type I error while maintaining

high power across settings: MK-SKAT loses power when compared to the kernel for a

particular scenario but has much greater power than poor choices.

Key Words: Rare variants; Perturbation; Sequence kernel association test; Sequenc-

ing association studies.
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1 Introduction

Identification of genetic variants influencing complex phenotypes and disease is a major goal

of modern human genetics research. So far, despite the success of genome wide association

studies (GWAS)(Hindorff et al., 2009), newly discovered trait-associated genetic variants

still fail to explain a large proportion of the heritability of complex traits (Eichler et al.,

2010). It is hoped that with the advent of accessible DNA sequencing technology (Margulies

et al., 2005; Mardis, 2008; Ansorge, 2009), investigators can uncover more of the so-called

missing heritability. Some of the added information contained in sequencing data includes

rare variants, that is variants with minor alleles whose population frequency is low. This

contrasts with microarray technology which typically focuses on common variants that have

relatively high minor allele frequency (MAF). Rare variants associated with disease have al-

ready been reported (Cohen et al., 2006; Walsh et al., 2008; Nejentsev et al., 2009). However,

important distinctions between the analysis of common variants and rare variants must be

made (Carvajal-Carmona, 2010). Most importantly, the standard analysis of common vari-

ants focuses on analysis of each individual variant, one-by-one. Yet, power decreases with

lower MAF such that standard approaches for common variants are vastly underpowered

for analysis of rare variants. Also, multiple comparison corrections are a concern since the

number of variants is dramatically larger.

To address the limitations of using standard analytical approaches for variants, investiga-

tors have turned to region based approaches for rare variant association testing. In this class

of approaches, multiple genetic variants within a region, typically a biologically meaningful

unit such as a single gene or an exon, are simultaneously considered together. The cummula-

tive effect of the entire group of variants, or more often a subgroup of the variants (e.g. those

with MAF <1%), is assessed for association with the phenotype. Grouping the variants and

testing only the cumulative effect allows aggregation of effects across several variants. It
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also addresses the multiple comparison correction concern by substantially decreasing the

number of tests performed. A wide range of methods have beeen developed with varying

characteristics and underlying principles (Morgenthaler and Thilly, 2007; Li and Leal, 2008;

Morris and Zeggini, 2010; Madsen and Browning, 2009; Neale et al., 2011; Wu et al., 2011).

Despite the sucess of current approaches for rare variant testing (Cohen et al., 2006; Walsh

et al., 2008; Nejentsev et al., 2009), a number of practical concerns have arisen. In particular,

given the wide range of testing approaches which are optimized toward different scenarios, it

is unclear which method to use for any particular data set. Furthermore, it is unclear which

strategy to use for grouping variants, e.g. grouping variants with MAF <3% vs <1%, within

a region. Unfortunately, the answer to both questions depends on the underlying true state

of nature which is unknown prior to analysis. Knowledge on this would preclude need for

analysis. Selecting the “best” (often most significant) result after conducting analyses using

multiple methods or multiple group strategies would lead to severely inflated type I error

and increased false positives. Although some recent work has been done on omnibus testing

across different grouping strategies (Price et al., 2010; Lin and Tang, 2011) or across different

testing approaches (Lee et al., 2012), few methods consider both the testing approach and

the grouping strategy simultaneously.

To address this problem, we propose the multi-kernel sequence kernel association test

(MK-SKAT). In this article, we show that many commonly used testing approaches are

equivalent to particular cases of the sequence kernel association test (SKAT). SKAT is a

similiarity based analysis approach for rare variant testing wherein pair-wise similarity be-

tween individuals based on their rare variant profiles is measured via a kernel function and

then compared to pair-wise similarity in phenotype. Specifically, the currently used meth-

ods are equivalent to versions of SKAT using different kernel functions. We further show

that different choices of grouping strategies are also equivalent to using the SKAT with

different kernel functions. Consequently, the question of selecting a test to use as well as
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selecting a grouping strategy reduces to the problem of selecting an appropriate kernel func-

tion. This equivalence then leads us to exploit perturbation based procedures for omnibus

testing across multiple kernels (and accordingly multiple grouping and rare variant testing

approaches) (Wu et al., 2013). We conduct simulations and a real data applicaton to vali-

date our approach and show that our proposed method loses a small amount of power when

compared to the optimal grouping and testing approach, but offers considerably more power

over poor choices.

Broadly speaking, the main contribution of this work is to address a practical problem

faced by applied statistical researchers interested in analyzing sequencing association stud-

ies. In addition, we explicitly draw the connections between SKAT and several other rare

variant tests and grouping strategies which then enables utility of our previously developed

perturbation testing framework (Wu et al., 2013). Although the perturbation framework

underlies the statistical mechanisms for generating a p-value, we emphasize that the current

project differs significantly from our previous work in terms of the overall objective and the

application to rare variants. Furthermore, to accommodate features specific to rare vari-

ant sequencing studies, i.e. larger number of kernels (corresponding to different tests and

grouping strategies) as well as the larger number of variants which are not highly corre-

lated, we also make some technical modifications to the perturbation procedure to improve

computation.

The remainder of this paper is organized as follows. In the next section, we first re-

view the generic SKAT method and describe how different testing approaches and different

groupings all correspond to SKAT under different kernels. We then present the proposed

MK-SKAT approach for testing across different tests and groupings. We show results from

some representative simulation studies and from real data to illustrate our approach. We

conclude with a brief discussion.
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2 Methods

Within this article, we describe our methodology within the context of analyzing a single

gene region. However, the approach can be applied to multiple regions separately, with

appropriate control for multiple comparisons. We let yi denote the phenotype for the ith

individual in the study (i = 1, . . . , n), and Xi be a vector of environmental or demographic

variables for which we would like to adjust. For dichotomous phenotypes we let yi = 0

or 1 for controls and cases, respectively. For each given region, we let Zi be the vector

of genetic variants within the region coded under the additive model. The objective is to

test for an association between y and all the variants in Z or a subset of the variants in Z

while adjusting for X. We let G denote the indices of the variants within Z that we would

like to test. For instance G may be the indices of the variants with MAF < 1% or the

nonsynonymous variants. In doing so, one may select a subset of the variants in the region

to test or one may test all of the variants within the region. Clearly, restricting attention

to the truly causal variants would result in the higest power; however, which variants are

causal is unknown. At the same time, there are a range of tests to choose from. Determining

which group of variants to test and which test to use poses a grand challenge for geneticists.

In this section, we first review the SKAT method and draw connections between SKAT

and several other important tests. We describe how the questions of which test to use and

which variants to test can be recast as a question of kernel choice. We then develop the

MK-SKAT to construct an omnibus test that simultaneously considers multiple tests and

grouping strategies.
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2.1 Connections between SKAT and other Methods

2.1.1 SKAT

SKAT is a similarity based test that operates by comparing pair-wise genotypic similarity

between individuals to pair-wise phenotypic similarity, with correlation suggestive of associ-

ation. Mathematically, SKAT uses the linear model for quantitative traits

yi = α0 + X′iα + h(ZGi) + εi

and the logistic model for case/control studies

logitP (yi = 1) = α0 + X′iα + h(ZGi)

where α0 is an intercept term, α is the vector of regression coefficients for the covariates,

and εi has mean zero and variance σ2. The variants of interest ZGi for the i-th individual

are related to the outcome only through the function h(·) which is a general function lying

in a functional space generated by a positive definite kernel function K(·, ·). Intuitively,

K(ZGi ,ZGi′ ) measures similarity between i-th and i′-th individuals in the study based on ZG,

the variants of interest. This function fully specifies the relationship between the variants and

the outcome. If one sets K(ZGi ,ZGi′ ) = Z′GiZGi′ , which is the linear kernel, then this implies

that the function h(ZGi) =
∑

j∈G βjZij, i.e. h(·) is linear and the outcome depends on the

variants in a linear manner. By specifying a different kernel, one may specify an alternative

model. Under the default SKAT parameters, K(ZGi ,ZGi′ ) =
∑

j∈G w
2
jZijZi′j where wj is

equal to the beta probability density function with parameters 1 and 25 evaluated at the

MAF for the j-th variant. Also by default, G is set to be the entire group of both common

and rare variants within a region. This corresponds to a linear model but with additional

up-weighting for the effect of rarer variants.
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To test the effect of the rare variants under SKAT corresponds to testing H0 : h(ZG) = 0.

Defining the kernel matrix, K, to be the n-by-nmatrix with i, i′-th term equal toK(ZGi ,ZGi′ ),

for quantitative traits, we construct the variance component score statistic

Q =
(y − ŷ)′K(y − ŷ)

σ̂2

where ŷ = α̂0 + Xα̂ with α̂0, α̂, and σ̂ estimated under H0. For dichotomous traits, we can

construct a similar score statistic

Q = (y − ŷ)′K(y − ŷ)

where ŷ = logit−1(α̂0 + Xα̂) and α̂0, α̂ are again estimated under H0. To obtain a p-value

for significance, asymptotically, Q ∼
∑
λjχ

2
1 is a mixture of chi-squared distributions, with

weights λj equal to the eigenvalues of P
1/2
0 KP

1/2
0 where P0 = D−DX(X′DX)−1X′D with

D = I for quantitative traits and D = diag{ŷi(1 − ŷi)} for dichotomous traits. This null

distribution can be approximated using moment matching approaches (Liu et al., 2009) or

exact methods (Davies, 1980).

2.1.2 Existing Methods and Grouping Strategies as Special Cases of the SKAT

A wide range of region-based analysis approaches of rare variants have been proposed. Gener-

ally, however, they tend to fall within two classes: burden-based approaches and similarity-

based approaches. Burden-based tests generally operate by collapsing the rare variants

within a region into a single value using (possibly weighted) averaging and then testing for

association by regressing the phenotype on the collapsed variable or applying appropriate

permutation-based approaches. Letting G denote the indices of the rare variants over which

we would like to collapse, then the cohort allelic sum test (CAST) and combined multivariate
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collapsing (CMC) collapses the genetic variants within a region to a single binary variable

Ci = I

(∑
j∈G

Zij > 0

)

which is an indicator for whether the ith individual has any rare variants within the region.

In a slight variation, the count-based collapsing method computes the collapsed variable as

Ci =
∑
j∈G

Zij

which is the total number of rare variants within the region. To place a higher weight on

variants which are rarer, the weighted count collapsing method collapses the variants in G

into

Ci =
∑
j∈G

wjZij

where wj is a weight for the jth variant which is inversely related to the MAF for the jth

variant. To test whether the rare variants are related to the phenotype, the outcome is

regressed on the collapsed variable and possible covariates using the models

yi = α0 + X′iα + βCCi + εi

or

logitP (yi = 1) = α0 + X′iα + βCCi

for quantitative and dichotomous traits, respectively. Testing for the rare variant effect then

corresponds to testing H0 : βC = 0 which can be done using a standard 1-df test. The

burden-based rare variant association tests are similar in that they sum over all of the rare

variant genetic information. Thus, they are most powerful when the effects of the variants

are truly associated with the outcome and with common direction of effect, that is, all
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variants are deleterious or all variants are protective. Power is lost when effects are opposite

in directions or non-causal variants are included in G.

Similarity-based tests were proposed to address the power loss due to variants with oppos-

ing effects. This class includes SKAT, and compares pair-wise similarity between individuals

in terms of their genotype values to pair-wise similarity in phenotype, with correlation sug-

gestive of association. Also included within this class is the C-alpha test which tests for an

over-dispersion of the variance resulting from a rare variant effect rather than a change in

the mean effect. By testing variance rather than net effect, the test is powerful to detect

genetic association when the effects of the variants are not all in the same direction.

It has been previously noted that individual tests are equivalent to SKAT under particular

kernel functions(Wu et al., 2011; Lee et al., 2012). For example, the C-alpha test is equivalent

to SKAT using the kernel function K(ZGi ,ZGi′ ) =
∑

j∈G ZijZi′j. Further, each of the burden

based methods operate by using a univariable summary of the rare variants in G such that

the outcome is a simple linear function of the collapsed variable Ci. Therefore, each of the

CAST/CMC, count-based collapsing, and weighted count-based collapsing can be viewed as

SKAT with a linear kernel constructed based on the collapsed variable. Thus we have the

following tests and corresponding kernels:

• (Default) SKAT: K(ZGi ,ZGi′ ) =
∑

j∈G wjZijZi′j

• C-alpha: K(ZGi ,ZGi′ ) =
∑

j∈G ZijZi′j

• CAST (Binary Collapsing): K(ZGi ,ZGi′ ) = I
(∑

j∈G Zij > 0
)
I
(∑

j∈G Zi′j > 0
)

• Count-Based Collapsing: K(ZGi ,ZGi′ ) =
{∑

j∈G Zij

}{∑
j∈G Zi′j

}
• Weighted Count-Based Collapsing: K(ZGi ,ZGi′ ) =

{∑
j∈G wjZij

}{∑
j∈G wjZi′j

}
Given that many individual tests reduce to SKAT under different kernel, then the problem

of choosing a particular test reduces to the problem of choosing a particular kernel.
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We have, thus far, focused on testing the variants in a particular group, G. In practice

however, one must also choose, a priori, a group of variants to test. For example, one may

apply each of the tests to all of the variants in the region or one could restrict the variants

of interest to just the variants with <3% MAF, < 1% MAF, or <0.5% MAF, depending on

how one wishes to define “rare”. Additionally the investigator may want to restrict to a set

of only non-synonymous variants or those that are predicted to be “harmful” by Polyphen-2

(Adzhubei et al., 2010) or other software for predicting function. Use of different choices of

variants can easily be translated into a problem of kernel choice by simply restricting G to

be different sets of variants. For example, we can define G3% to be the variants with MAF <

3% and G0.5% to be the variants with MAF < 0.5%. Then if we are interested in the C-alpha

test, we can apply it to the variants with MAF < 3% or < 0.5% by constructing the kernels

K(ZG3%i
,ZG3%

i′
) =

∑
j∈G3% ZijZi′j and K(ZG0.5%i

,ZG0.5%
i′

) =
∑

j∈G0.5% ZijZi′j, respectively and

test using the usual SKAT procedure. Therefore, it follows that the problem of choosing

which group of variants to test also reduces to the problem of choosing a particular kernel.

2.2 Multi-Kernel Sequence Kernel Association Test

The questions facing researchers interested in rare variant analysis are first, which is the most

powerful test to use for a given data set, and second, which is the best group of variants to

test within a particular region? As noted earlier, these questions can be reduced to a question

of kernel choice: which kernel, from among a group of candidates, will yield highest power?

Despite transforming the problem, the answer to this question requires prior knowledge of

which variants are causal and what is their effect size and direction, knowledge which is

rarely available (since this would preclude the need for analysis). As a solution, one may

choose to test under all candidate kernels and report the best p-value, but this clearly leads

to inflated type I error. However, by exploiting the connections between SKAT and other

tests, we can utilize a perturbation strategy, related to the approach of Wu et al. (2013), to
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incorporate many tests and groupings while conserving type I error.

Our proposed unifying method, the multi-kernel SKAT (MK-SKAT), simultaneously con-

siders several test and variant grouping choices at once and constructs an omnibus test. The

idea behind the approach is that it constructs kernels based on each candidate test and group-

ing approach. For example, one may test using CAST, count-based collapsing, C-alpha, and

the default SKAT with 3 grouping strategies per test (MAF <3%, <1%, or <0.5%) for a total

of 12 combinations corresponding then to 12 candidate kernels. MK-SKAT then conducts

an omnibus test using a modified version of the perturbation approach of Wu et al. (2013) to

test across all of the candidate kernels. Operationally, the strategy applies SKAT with each

of the kernels, takes the minimum p-value, and then uses perturbation based techniques to

correct for having taking the minimum p-value. A single p-value is reported.

The intuition behind the procedure is that asymptotically σ̂−1(yi − ŷi) will be approxi-

mately normal such that we can replace it with a simulated normal random variable. Using

the same simulated normals for each candidate kernel allows for capture of the correlation

between tests. The full MK-SKAT procedure is as follows:

1. For each combination of candidate testing procedure and each candidate grouping

procedure, construct a corresponding kernel matrix, K`, to obtain a total of L candidate

kernels.

2. Using each candidate kernel, K`, obtain a corresponding score statistic as Q` and

p-value for significance p`.

3. Find the minimum p-value: pmin = min1≤`≤L p`

4. For ` ∈ 1, . . . , L, compute Λ` = diag(λ`,1, . . . , λ`,m`
), and V` = [v`,1,v`,2, . . . ,v`,m`

]

where λ`,1 ≥ λ`,2 ≥ . . . ≥ λ`,m`
are the m` positive eigenvalues of P

1/2
0 K`P

1/2
0 with

corresponding eigenvectors v`,1,v`,2, . . . ,v`,m`
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5. Generate r∗ = [r∗1, r
∗
2, . . . , r

∗
n]′ with each r∗j ∼ N(0, 1).

6. For each ` ∈ 1, . . . , L, rotate r∗ using the eigenvectors to generate r∗` = V′`r
∗.

7. Compute Q∗` = r∗`
′Λ`r

∗
` for each ` and obtain a corresponding p-value, p∗` , by comparing

Q∗` to the distribution function estimated for Q` and obtain the upper tail probability

exceeding Q∗` . We set p∗ = min1≤`≤L p
∗
` .

8. Repeat (5)-(7) B times to obtain p∗(1), p
∗
(2), . . . , p

∗
(B) for some large number B.

9. The final p-value for significance is estimated as

p = B−1
B∑
b=1

I(p∗(b) ≤ pmin)

It is important to note that direct use of the p-value is necessary rather than using the

maximum score statistic since the raw score statistics have different degrees of freedom.

As noted earlier, this procedure is closely related to the general perturbation procedure

previously used for testing across multiple kernels Wu et al. (2013). However, some technical

modifications have been made to tailor the procedure towards the current application. In

particular, the previous procedure required generation of a large augmented matrix with

dimensionality equal to the sum of the number of nonzero eigenvalues from all of the kernels

under consideration followed by eigen decomposition of the augmented matrix. This can be

slow if the rank of the individual kernels is high (i.e. many variants with low correlation) and

if many kernels are under consideration (i.e. many combinations of groupings and possible

tests); both of these can be true in rare variant studies. In contrast, the present strategy

requires simulation of more normal random variables but bypasses the need for working with

a large, augmented matrix.

Two key features of our test ensure that type I error is conserved despite the application of

multiple tests and grouping. First, our test requires uninformed selection of tests and variant
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groupings. In contrast, using the data to select a single optimal test would not conserve type

I error. Second, while it is true that the p-values of the test/grouping combinations are

correlated, as some tests are in fact nested, our perturbation method properly captures the

correlation and thus retains type I error control.

By capturing the correlation, our approach can accommodate a large number of tests

and groups as a long as they are highly correlated. Perfect correlation across tests would be

equivalent to conducting just a single test. Thus, under such scenarios, the increase in cost

is primarily computational. If the correlation between kernels is low, there is the potential

for larger power loss, though this is counterbalanced by the fact that one of the competing

kernels may have much higher power. Therefore, we generally recommend inclusion of a

broad range of tests and grouping strategies.

Although this strategy also generates a monte carlo p-value, there are two advantages in

comparison to permutation. First, covariates and variants can be correlated. In contrast,

in order for permutation to be valid, the variants must be uncorrelated with the covariates.

Second, the MK-SKAT procedure is more computationally efficient since the computation

now relies only on generating and then rotating n normal random variables while all other

parameters remain the same. In contrast, permutation requires complete re-estimation of

the kernel matrices, P0 matrices, eigendecompositions, and distribution parameters.

2.3 Simulations

We conducted a series of simulations to verify that the proposed MK-SKAT procedure is

valid in terms of controling type I error and has reasonable power compared to the individual

tests across which the MK-SKAT is combining.
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2.3.1 Type I Error

To demonstrate that the proposed methods are valid tests, in terms of protecting type I error,

we conducted a series of simulations under null models for both continuous and dichotomous

traits. We used a coalescent model to simulate a region with 100 variants in 104 haplotypes

with LD structure representative of a European population (Schaffner et al., 2005). Eighty-

five of the simulated variants had a true MAF less than 3% and 80 had a MAF less than

1%. We then paired haplotypes to simulate n = 1000 or 2000 diploid individuals. For type

I error simulations, we simulated quantitative outcomes for each individual without regard

to the genotype values under the null model:

yi = 0.5Xi1 + 0.03Xi2 + εi

where Xi1 ∼ ber(0.506), Xi2 ∼ N(29.2, 21.1), and εi ∼ N(0, 1). For dichotomous outcomes,

we simulated n/2 cases and n/2 controls from the null logistic model:

logitP (yi = 1) = −4.2 + 0.5Xi1 + 0.03Xi2

where Xi1 ∼ ber(0.506) but Xi2 ∼ N(0, 1).

In total, we simulated 105 data sets as described. We applied the MK-SKAT testing pro-

cedure to each data set. Specifically, we considered four different testing procedures: CAST,

count-based collapsing, the C-alpha, and SKAT tests. We also considerd three different

grouping strategies: we set the rare variant grouping, G, equal to the variants with MAF

< 0.5%, variants with MAF < 1%, and variants with MAF < 3%. Under the equivalence

with SKAT, this yielded a total of 12 different candidate kernels. We estimated the type I

error rate at the 0.05 level of 1) SKAT with each individual kernel, 2) MK-SKAT conditional

on a particular testing procedure (i.e. we assumed a fixed test while considering multiple
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groupings), 3) MK-SKAT conditional on a particular grouping strategy (i.e. we assumed a

fixed grouping while considering multiple tests), and 4) MK-SKAT testing across all twelve

candidate kernels.

2.3.2 Power

We also assessed the power of the MK-SKAT procedure under three different simulation

settings. For each setting, we again simulated haplotypes for a region containing 100 variants

as in the type I error simulations. These were then paired to generate n = 1000 individuals.

Then we simulated outcomes under the alternative model for quantitative traits:

yi = 0.5Xi1 + 0.03Xi2 + β′Zc
i + εi

and for dichotomous traits:

logitP (yi = 1) = −4.2 + 0.5Xi1 + 0.03Xi2 + β′Zc
i

Xi1, Xi2 and εi were as before, but Zc
i were the genotypes of the causal variants and β

were the corresponding regression coefficients which varied across simulation settings. For

dichotomous outcomes n/2 subjects were sampled as cases with the remaining n/2 set as

controls.

Under Setting 1, we considered a quantitative outcome with 50% of the variants with

true population MAF < 1% randomly selected to be causal. All causal variants were given

the same effect with β = 0.5. Since a large proportion of the variants were causal and they

all had the same effect, this scenario favored the burden approaches and particularly count

based collapsing.

Setting 2 again examined quantitative traits and was identical to Setting 1 except the

effects of the causal variants were equal to -0.5 and 0.5 with equal probability. Since the
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C-alpha SKAT CAST Count MK-SKAT
n=1000

0.5% 0.048 0.047 0.050 0.049 0.048
1% 0.048 0.049 0.049 0.050 0.050
3% 0.048 0.049 0.051 0.051 0.051
MK-SKAT 0.050 0.051 0.051 0.051 0.051

n=2000
0.5% 0.049 0.049 0.050 0.050 0.052
1% 0.047 0.047 0.050 0.050 0.051
3% 0.047 0.047 0.050 0.049 0.051
MK-SKAT 0.052 0.051 0.052 0.051 0.050

Table i: Type I error simulation results for quantitative traits. Each cell in the table corre-
sponds to the type I error of SKAT using a kernel constructed based on the testing procedure
at the top of the table and the grouping strategy at the left of the table. Rows and columns
labeled MK-SKAT correspond to the omnibus tests across tests (with fixed group) and
across groupings (with fixed test). The cells with both rows and columns labeled MK-SKAT
correspond to the omnibus test across all test and groupings.

causal variants had opposing effects, this scenario favored the similarity based tests.

Setting 3 differed from Settings 1 and 2 in that it examineed the case where the outcome

was dichotomous. Of the variants with true MAF < 3%, 20% were randomly selected to be

causal. All causal variants were again given equal effect size of β = 0.5.

We emphasize that these simulations were not intended to serve as a comprehensive

comparison of the methods across scenarios nor to understand when individual tests and

grouping strategies are optimal (since this depends on the true state of nature, which is

unknown in any real data). Instead, these simulations serve to understand how MK-SKAT

behaves relative to the best method and grouping strategy.
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C-alpha SKAT CAST Count MK-SKAT
n=1000

0.5% 0.033 0.032 0.051 0.050 0.042
1% 0.042 0.040 0.050 0.049 0.045
3% 0.046 0.044 0.050 0.050 0.046
MK-SKAT 0.039 0.037 0.052 0.051 0.044

n=2000
0.5% 0.041 0.041 0.050 0.050 0.047
1% 0.046 0.046 0.050 0.050 0.049
3% 0.047 0.047 0.050 0.050 0.050
MK-SKAT 0.047 0.045 0.051 0.051 0.047

Table ii: Type I error simulation results for dichotomous traits. Each cell in the table
corresponds to the type I error of SKAT using a kernel constructed based on the testing
procedure at the top of the table and the grouping strategy at the left of the table. Rows
and columns labeled MK-SKAT correspond to the omnibus tests across tests (with fixed
group) and across groupings (with fixed test). The cells with both rows and columns labeled
MK-SKAT correspond to the omnibus test across all test and groupings.

3 Results

3.1 Type I Error and Power

Type I error simulation results for quantitative traits and dichotomous traits are shown in

Table i and Table ii, respectively. For quantitative traits, individual methods as well as

MK-SKAT appropriately controlled the type I error at the α = 0.05 level. However, for

dichotomous traits, the C-alpha test and SKAT test tended to be conservative, reflectiing

previous results (Wu et al., 2011). Thus, MK-SKAT tests were conservative as well.

Results of the power analysis for the 3 settings are shown in Tables iii through v. In

Setting 1 (Table iii), the count kernel applied to the variants with MAF <1% performed

the best, followed closely by the CAST kernel applied to the same grouping. This was

not surprising considering they were best adapted to the true model in which all effects

have the same size and direction, and only rare variants with MAF <1% are sampled to be

causative. The MK-SKAT which tested over all 12 kernels had power slightly less than the
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C-alpha SKAT CAST Count MK-SKAT
n=1000

0.5% 0.43 0.43 0.64 0.66 0.64
1% 0.74 0.76 0.84 0.85 0.86
3% 0.47 0.64 0.63 0.63 0.71
MK-SKAT 0.69 0.72 0.81 0.85 0.84

n=2000
0.5% 0.70 0.71 0.85 0.87 0.87
1% 0.92 0.93 0.98 0.98 0.98
3% 0.76 0.89 0.88 0.88 0.92
MK-SKAT 0.92 0.93 0.97 0.98 0.97

Table iii: Power results for Setting 1. Each cell in the table corresponds to the power of
SKAT using a kernel constructed based on the testing procedure at the top of the table
and the grouping strategy at the left of the table. Rows and columns labeled MK-SKAT
correspond to the omnibus tests across tests (with fixed group) and across groupings (with
fixed test). The cells with both rows and columns labeled MK-SKAT correspond to the
omnibus test across all test and groupings.

most powerful single kernel. The results of the MK-SKAT testing across all 4 tests at the

1% MAF threshold group showed power would be nearly equivalent to the most powerful

single kernel as well. Also, if one tested the count kernel over the 3 groupings, power would

be conserved.

In Setting 2, power was dramatically decreased for the count and CAST kernels compared

to Setting 1 (Table iv). This was due to the true model having bidirectional genetic effect on

the outcome. Some rare variants increased the outcome, while some decreased the outcome.

Compared to Setting 1, power was reduced for C-alpha and linear weighted kernels, but

not to the same extent as count and CAST. C-alpha and linear weighted kernels applied

to the variants with MAF <1% performed the best in Setting 2. MK-SKAT testing over

all 12 kernels displayed power somewhat less than the most powerful single kernel, but

much greater than any of the CAST or count kernels. If one applied MK-SKAT over the

three groupings of the linear weighted kernel, power would be nearly equivalent to the most

powerful single kernel. This setting clearly showed the adaptability of the MK-SKAT method
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C-alpha SKAT CAST Count MK-SKAT
n=1000

0.5% 0.37 0.37 0.10 0.12 0.32
1% 0.63 0.65 0.17 0.23 0.57
3% 0.39 0.54 0.13 0.16 0.46
MK-SKAT 0.60 0.63 0.16 0.23 0.55

n=2000
0.5% 0.68 0.69 0.15 0.17 0.61
1% 0.87 0.88 0.26 0.36 0.84
3% 0.63 0.80 0.17 0.23 0.72
MK-SKAT 0.87 0.89 0.27 0.36 0.83

Table iv: Power results for Setting 2. Each cell in the table corresponds to the power of
SKAT using a kernel constructed based on the testing procedure at the top of the table
and the grouping strategy at the left of the table. Rows and columns labeled MK-SKAT
correspond to the omnibus tests across tests (with fixed group) and across groupings (with
fixed test). The cells with both rows and columns labeled MK-SKAT correspond to the
omnibus test across all test and groupings.

under variation in the genotype/phenotype structure.

Setting 3 compared power between methods for a dichotomous outcome (Table v). The

linear weighted kernel applied to the variants with MAF <3% performed the best. They

were best adapted to the true model where only 20% of the variants were truly causal, and

rare variants with MAF <3% were sampled as causative. MK-SKAT testing over all 12

kernels had power slightly greater than the most powerful single kernel, though this is likely

to be within the range of monte carlo error. If one applied MK-SKAT to the three groupings

using either the linear weighted or C-alpha kernel, power would nearly equivalent to the

most powerful single kernel.

Overall, results show that while protecting type I error, the MK-SKAT can achieve power

close to using the optimal test and grouping strategy. While there is generally some modest

loss in power relative to the best choice, the proposed omnibus tests offer considerably better

power than poor choices and represent a reasonable compromise. If one is able to restrict

attention to a particular group of variants based on prior information or to a particular

20



C-alpha SKAT CAST Count MK-SKAT
n=1000

0.5% 0.26 0.26 0.31 0.32 0.33
1% 0.53 0.55 0.52 0.50 0.59
3% 0.73 0.78 0.69 0.69 0.78
MK-SKAT 0.77 0.79 0.72 0.73 0.80

n=2000
0.5% 0.52 0.53 0.47 0.48 0.57
1% 0.75 0.77 0.70 0.69 0.78
3% 0.84 0.88 0.82 0.80 0.88
MK-SKAT 0.90 0.91 0.85 0.86 0.91

Table v: Power results for Setting 3. Each cell in the table corresponds to the power of SKAT
using a kernel constructed based on the testing procedure at the top of the table and the
grouping strategy at the left of the table. Rows and columns labeled MK-SKAT correspond
to the omnibus tests across tests (with fixed group) and across groupings (with fixed test).
The cells with both rows and columns labeled MK-SKAT correspond to the omnibus test
across all test and groupings.

testing procedure based on hypotheses of the underlying model, then power can be further

increased by restricting the MK-SKAT to fewer tests or fewer groupings.

3.2 Data Analysis

We examined the performance of our proposed method on a high-depth sequence data set

with 2000 subjects from the CoLaus population-based collection (Firmann et al., 2008).

Briefly, we examined a single candidate gene containing 86 variants of which the majority

had allele frequency less than 3%. Eight variants were non-synomymous and two were

predicted to be harmful. This gene is a drug target which has been shown to be associated

with obesity and cardiovascular related outcomes. In addition to genotype information, we

had 42 separate traits, most of which are related to obesity and cardiovascular measures,

and additional demographic covariates including age, gender and the top five eigenvalues of

genetic variability derived from the GWAS data. We illustrate the MK-SKAT procedure by

applying it to identify which of the 42 outcome traits are associated with the rare variants
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within this candidate gene.

We specifically considered testing using CAST, count based collapsing, weighted count

based collapsing, the C-alpha, and the default SKAT. For groupings, we considered using all

of the variants in the region, the variants with MAF <3%, variants with MAF <1%, variants

with MAF <0.5%, nonsynonymous variants, and variants predicted to be harmful. In total

we considered 27 different kernels based on combinations of the test choice and grouping

choice — the CAST, count based collapsing, and weighted count based collapsing were not

applied to all of the variants. In addition to applying SKAT with each of the candidate

kernels, we also applied the MK-SKAT testing across all 27 kernels.

Analysis results are presented in Figure 1, with p-values truncated at 10−6. Several p-

values would have met the threshold for significance and will be presented elsewhere. Given

that the candidate gene was selected as a positive control and that many of the outcome

measures are closely related, these results are in line with what we would anticipate. However,

for the purposes of illustrating our methodology, the individual p-values are not particularly

interesting. The key result is that for many traits, using different methods and different

groupings resulted in very different results in terms of significance. MK-SKAT did not tend

to have the smallest p-values. In general, MK-SKAT tended to yield results slightly less

significant than those using the best kernel (choice of test and grouping strategy). However,

MK-SKAT still performed considerably better than poor choices of kernels.

3.3 Computational Run Time

We examined the computational efficiency of the MK-SKAT procedure. Specifically, we con-

sidered the run time associated with running MK-SKAT to analyze a region with p observed

variants in n individuals assuming that we would like to consider 12 kernels constructed by

considering count based collapsing, weighted count based collapsing, SKAT and C-alpha tests

with grouping thresholds of 1%, 3% and 5%. This differs slightly from the earlier simulations

22



●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●

0 10 20 30 40

0
1

2
3

4
5

6

Compare All Methods/Groupings

Trait

−
Lo

g 
p−

va
lu

e

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●● ●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

● ●

●
●

●

●
●

●
● ●

●

●
●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●
●

● ●
●

●
●

●

● ●

●

●

●
●

● ●
●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

●

●

●

● ● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

● ●

●
●

● ●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
● ●

●

● ●
●

●
●

●

● ● ● ● ● ●

●
● ● ●

●
●

● ●

●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

● ● ●
● ●

●

●

●

● ●

● ●
●

● ●
● ●

●

● ●

●

● ● ●

●

●

● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

● ●

●

●

●

●
● ●

●
● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

● ●

●

●
●

●

● ●

● ●

● ●

●

●

●

●
● ●

●

●

●

●

● ● ●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

● ●

●

●
● ●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
● ●

● ●

●

●

●

● ●
●

● ●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
● ●

●

● ●
●

●
●

●

● ● ● ● ● ●

●
● ● ●

●
●

● ●

●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

● ● ●
● ●

●

●

●

● ●

● ●
●

● ●
● ●

●

● ●

●

● ● ●

●

●

● ●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

● ●

●

●

●

●
● ●

●
● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

Figure 1: Real data analysis results. Each column of circles corresponds to the p-values from
analyzing a different trait while each circle represents the p-value from a different kernel.
The triangle indicates the p-value from applying MK-SKAT to all of the kernels. p-values
have been truncated at 10−6. The dashed line indicates the bonferroni significance level.
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and was adjusted in order to accommodate the wider range of sample sizes and observed

variants under consideration. However, the computational results should not change as the

kernels and relative complexity are still the same. Results are presented in the left panel

of Figure 2 and show that the run time increases with sample size. Although there are

some differences in the computation time for situations with different numbers of variants,

such were small compared to differences in run time from increased sample size. This is in

part because the kernel machine framework requires working with n × n kernel matrices,

irrespective of the dimensionality.

As noted earlier, the testing procedure developed in this project is based on our previous

work (Wu et al., 2013). However, technical adjustments were made due to improve compu-

tation within the context of rare variant analysis with many possible kernels. To illustrate

the improvement in computation, we further compared the relative computational expense

of the current MK-SKAT procedure to our previous procedure. The results are presented in

the right panel of Figure 2 with the relative run times (run time of our current procedure

divided by run time of the previous procedure) as a function of sample size and number

of observed variants. When the sample size is large and when the number of variants un-

der consideration increases, our current procedure can be considerably faster. On the other

hand, when the number of variants is modest, then the previous procedure can be slightly

faster though the difference is small.

4 Discussion

In analysis of genetic rare variants, given the difficulties associated with selecting a test and

selecting a particular group of variants to test, MK-SKAT allows investigators to agnostically

consider several different, popular, testing approaches as well as several different ways of

thresholding the variants. Although there is some loss of power compared to the best single

test and best grouping, the power is still considerably higher than when using a poor choice
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Figure 2: Computational runtime as a function of sample size for the proposed algorithm (left
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number of variants and sample size (right panel).
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of test or a poor choice of grouping strategy while still conserving type I error.

Restriction of the MK-SKAT to a smaller set of possible kernels (i.e. smaller set of tests

or groupings) can yield higher power if the considered kernels are closer to the best test

and grouping strategy. If such information is available, such as through previous studies

of common variants within the region or through bioinformatics knowledge, we strongly

encourage investigators to directly restrict interest to a smaller group of candidate kernels.

On the other hand, in the absence of reliable prior knowledge, we recommend consideration

of a wide range of kernels. Importantly, if kernels are very similar to one another, then the

perturbation procedure will accomodate the correlation and will not penalize the significance

as much as if the considered kernels are more different.

We acknowledge that the computational expense of MK-SKAT can be high with larger

sample size, making it difficult to analyze large, genome-wide sequencing studies, but a

simple approach to decrease this burden would be to first screen using each of the candidate

kernels individually. If none of the individual kernels are close to significance, then MK-

SKAT is unlikely to yield a significant result. Since the majority of genetic regions are

not related to outcomes, applying MK-SKAT to only the promising genetic regions can

considerably reduce the overall computational expense of analyzing any real experiment.

Further computational improvements may be possible using powerful, new (i.e., parallel or

grid) computing technologies and represent an area of future research.

Interestingly, while several methods are special cases of SKAT, some other methods are

special cases of the MK-SKAT. The variable threshold test (Price et al., 2010) is equivalent

to MK-SKAT when the kernels under consideration are based on a single testing approach

with only the variable grouping being varied. However, we note that use of perturbation

still offers computational advantage over the threshold test. Similarly, the SKAT-O method

(Lee et al., 2012) is equivalent to MK-SKAT in which the variable grouping is fixed but

one is considering a range of linear combinations of SKAT and collapsing kernels. Thus, in
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comparison to SKAT-O, MK-SKAT would tend to excel when the ideal variable grouping

is not chosen for SKAT-O. MK-SKAT buffers against a broad range of variable groupings

since many can be tested simultaneously.

Further methods may also fall within the MK-SKAT framework, but although many

popular tests can be considered using MK-SKAT, there are certainly many useful tests that

fall outside. For example, tests that use the outcome information in order to estimate weights

for variants (Ionita-Laza et al., 2011; Hoffmann et al., 2010; Han and Pan, 2010; Lin and

Tang, 2011) cannot be applied. While these tests still can be considered special cases of

SKAT, the kernel is now estimated using the outcome such that standard asymptotics for

SKAT and the perturbation based techniques for MK-SKAT cannot be used to obtain p-

values. Further statistical work is needed in order to allow the MK-SKAT procedure to

encompass these methods.
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