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Abstract

High-throughput sequencing technology has enabled population based

studies into the role of the human microbiome in disease etiology and expo-

sure response. Distance based analysis is a popular strategy to evaluate the

overall association between microbiome diversity and outcome, wherein the

phylogenetic distance between individuals’ microbiome profiles is computed

and tested for association via permutation. Despite their practical popularity,

distance based approaches suffer from important challenges, especially in the

difficulty in selecting the best distance and in extending the methods to al-

ternative outcomes, such as survival outcomes. We propose the microbiome

regression-based kernel association test (MiRKAT), which directly regresses

the outcome on the microbiome profiles via the semi-parametric kernel ma-

chine regression framework. MiRKAT allows for easy covariate adjustment

and extension to alternative outcomes while nonparametrically modeling the

microbiome through a kernel which incorporates phylogenetic distance. A

variance component score statistic is used to test for the association with an-

alytical p-value calculation. The model also allows simultaneous examina-

tion of multiple distances, alleviating the problem of choosing the best dis-

tance. Simulations demonstrate that MiRKAT provides correctly controlled

type I error and adequate power in detecting overall association. “Optimal”

MiRKAT which considers multiple candidate distances is robust in that it suf-

fers from little power loss compared to when the best distance is used and can

achieve tremendous power gain compared to when a poor distance is chosen.

Finally, we apply MiRKAT to real microbiome data sets to show that micro-

bial communities are associated with smoking and with fecal protease levels



after controlling for confounders.

Key Words: Microbiome composition; Phylogenetic distance; Kernel ma-

chine regression; Multi-kernel testing.



Introduction

The advent of massively parallel sequencing has enabled high-throughput profil-

ing of microbiota in a large number of samples via targeted sequencing of the 16S

rDNA gene,1–4 the sequence of which contains information about species iden-

tity. Knowledge on how microbial communities differ across individuals can pro-

vide key information on the role of communities in relation to variation in bio-

logical and clinical variables and is essential for gaining a broader understand-

ing of biological mechanisms underlying disease and response to exposures.5–9

Although considerable resources have been devoted to sequencing technologies

and to quantifying individual taxa, successful application of microbial profiling

to studying biomedical conditions requires novel statistical methods to efficiently

test for associations with microbial diversity.

A popular strategy for evaluating the association between overall microbiome

composition and outcomes of interest utilizes distance or dissimilarity based anal-

ysis, referred to as just distance based analysis for simplicity. Using standard

methods, the 16S gene tags are clustered based on their sequence similarity to

form Operational Taxonomic Units (OTUs), which can be essentially considered

as surrogates for biological taxa. Distance metrics are then constructed to mea-

sure the phylogenetic or taxonomic dissimilarity between each pair of samples by

exploring the phylogenetic relationship or the absolute and relative abundance of

different taxa. Then to assess the association between the microbiome diversity

and an outcome variable of interest, the pair-wise distance between each pairs of

samples is compared to the distribution of the outcome variable. For categori-

1



cal outcome variables, this is essentially comparing the pair-wise distances within

and between categories. Operationally, multivariate analysis10 or the top prin-

cipal coordinates (PCo)11 of the matrix of pairwise distances are used to test for

associations via permutation.

Among the many possible distances, the UniFrac distances are the most pop-

ular distances in the literature that are constructed based on a phylogenetic tree

relating taxa to one another.12, 13 There are several different versions of UniFrac

distances. The original, unweighted UniFrac distance between any pair of micro-

bial communities is calculated as the proportion of the total branch length within

the tree which leads to un-shared taxa (i.e. taxa in one community but not the

other). Thus, the UniFrac distance primarily considers only the species presence

and absence information and is most efficient in detecting abundance change in

rare lineages since more prevalent species are likely to be present in all individu-

als. Weighted UniFrac distance uses species abundance information to weight the

UniFrac distances, and thus is more powerful to detect changes in common lin-

eages. Generalized UniFrac distances14 were introduced as compromise between

weighted and unweighted UniFrac distance, which down-weight their empha-

sis on either abundant or rare lineages and therefore are more powerful to detect

changes in OTU clusters with modest abundance. Generalized UniFrac distance

involves an additional parameter α that generalized UniFrac distance with α = 1

is equivalent to weighted UniFrac distance. A range of other distances that do not

incorporate phylogeny are also available. For example, Bray-Curtis dissimilarity,

which is also commonly used, quantifies the taxonomic dissimilarity between two
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different sites based on counts at each site. Similarly, Euclidean distance can also

be used and is frequently thought to be similar to weighted UniFrac distance since

abundance information from common taxa tends to dominate.

Despite successes, distance based analysis suffers from a number of limita-

tions. First, as noted, many different distance metrics have been developed. While

there are similarities, they are designed to capture distance differently leading

to differential performance across different scenarios. This creates problems in

choosing a particular metric to use as the best metric for any particular data set

depends on the unknown true state of nature. A non-optimal distance metric will

reduce power to discover true associations. Using multiple metrics and cherry

picking the best result will result in inflated type I rates and lead to large numbers

of spurious results. Beyond difficulties in choosing a particular distance metric,

the need for permutation can be computationally expensive. Furthermore, the

analysis framework is not easily interpretable or allow for easy covariate adjust-

ment. Consequently, extending such approaches to accommodate more sophisti-

cated outcomes such as survival or multivariate information is challenging.

We propose in this paper the microbiome regression-based kernel association

test (MiRKAT), a flexible regression approach for testing the association between

microbial community profiles and a continuous or dichotomous variable of in-

terest such as an environmental exposure or disease. MiRKAT formalizes and

extends the strategy of Chen and Li (2013)15 to use the kernel machine regression

framework, previously developed for genotyping data,16–18 to directly regress the

variable of interest on the covariates (including potential confounders) and the
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microbiome compositional profiles. The kernel is a measure of similarity between

samples’ microbiome compositions and characterizes the relationship between

the microbiome and the variable of interest. We propose to use kernels that incor-

porate phylogenetic relationships among taxa by transforming existing distance

metrics into similarities. A variance component score test can be used to rapidly

obtain a p-value for the association between microbial community profiles and

the variable of interest.

In addition to fast computation, use of the kernel machine approach enables

flexible modeling and testing, while still incorporating phylogenetic information

and naturally accommodating covariates, under a well-studied, interpretable, and

statistically rigorous framework. Beyond extensions to allow alternative types of

outcomes, the framework allows for simultaneous examination of multiple dis-

tance metrics. This enables development of the “optimal” MiRKAT that has high

power in the omnibus. We demonstrate through simulations and analysis of real

data that MiRKAT and optimal MiRKAT are easy to apply and can be more robust

than existing tests with well controlled type I error across a range of models for

both continuous and dichotomous variables. We also explicitly establish connec-

tions between MiRKAT and existing distance based approaches.

The well-studied kernel machine framework forms the statistical underpin-

nings for our work, which is strength as this allows leverage of existing machinery

within a rigorous framework. However, MiRKAT differs from previous, related

kernel methods in the need to accommodate unique features of microbiome data.

In particular, we tailor the approach to accommodate microbiome data by adopt-
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ing kernels based on dissimilarity measures commonly used in microbiome com-

positional analysis. Furthermore, microbiome studies usually have more modest

sample sizes, yet the kernels built on standard distance metrics are frequently of

full rank with poor eigenvalue behavior. Consequently, in contrast to previous

analytic17–19 and perturbation based20 p-value calculation approaches which do

not control type I error well, we use alternative small sample corrections21, 22 and

permutation methods. MiRKAT differs from our earlier conference manuscript15

in that we formalize and fully flesh out the overall framework, we explicitly relate

the approach to existing distance methods, we use alternative small sample cor-

rections to control type I error, and we develop the optimal MiRKAT method for

testing across choices of distance metrics.

Methods

Notationally, we assume that n samples have been collected and their microbial

communities profiled. For the ith subject, let yi denote the outcome variable of

interest, Zi = (Zi1, Zi2, ..., Zip)
′ denote the abundances of all OTUs for individual i

and p is the total number of OTUs, and Xi = (Xi1, Xi2, ..., Xim)
′ are covariates that

we want to control for, such as age, gender, and other clinical and environmen-

tal variables which are suspected to influence microbial community diversity and

related to outcomes. The goal is to test for association between the outcome and

microbial profiles while adjusting for covariates X. Note that we will refer to y as

an “outcome” that depends on the microbiome composition while in some situa-
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tions it may be a variable that is thought to influence microbial diversity; however,

since our goal is association testing rather than causal modeling, the distinction

does not affect the validity of our method given the duality.23 We first consider

the problem of testing under a single distance metric (kernel) and then extend the

approach to optimally accommodate multiple distances simultaneously.

MiRKAT based on a single kernel

The intuition behind kernel machine framework is that it compares pairwise sim-

ilarity in the outcome variable to pairwise similarity in the microbiome profiles,

with high correspondence suggestive of association. MiRKAT exploits the kernel

machine regression framework to relate the covariates and the microbiota profiles

to the outcomes. Specifically, for a continuous outcome variable we use the linear

kernel machine model:

yi = β0 + β′Xi + f(Zi) + εi (1)

and for a dichotomous outcome variable (e.g. y = 1/0 for case/control) we use

the logistic kernel machine model:

logit(P (yi = 1)) = β0 + β′Xi + f(Zi) (2)

where β0 is the intercept, β = [β1, ..., βm]
′ is the vector of regression coefficients

for the m covariates, and for continuous phenotypes εi is an error term with mean

zero and variance σ2. This regression framework can be easily extended to other

more complicated outcomes, such as survival or multivariate outcomes.
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The relationship between the microbiome profile and the outcome variable is

fully characterized by function f(·): testing that there is no association between

microbiome composition and the outcome is equivalent to testing that f(Z) = 0.

Under the kernel machine regression framework, f(Zi) is assumed to be from

a reproducing kernel Hilbert space Hk generated from a positive definite kernel

function K(·, ·) such that f(Zi) =
∑n

i′=1 αi′K(Zi,Zi′) for some α1, α2, ..., αn.

The kernel measures the similarity between different individuals and different

choices of K(Zi,Zi′) corresponds to different underlying models. For example,

setting K(Zi,Zi′) =
∑p

j=1 ZijZi′j implies f(Zi) =
∑p

j=1 Zijβj , i.e. the model is lin-

ear. Therefore, by changing the kernel function, one is implicitly changing the

model being used. Using more sophisticated kernels will result in more complex

models which can allow for OTU interactions, nonlinear OTU effects or incorpo-

ration of phylogenetic relationships among OTUs. The matrix of pair-wise simi-

larities between pairs of individuals is defined as the kernel matrix K, where the

(i, i′)-th element of K is K(Zi,Zi′).

For microbiome composition data, the OTUs are related by a phylogenetic tree.

Kernels that exploit the degree of divergence between different sequences can be

much more powerful compared to similarity measures that ignore the phyloge-

netic tree information. We can construct the kernel matrix, which measures sim-

ilarities between the microbiome composition among subjects, by exploiting the

correspondence with the well-defined distance metrics, which measure dissimi-

larities between subjects. Specifically, we can construct the kernel matrix via the
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following transformation of the phylogenetic or taxonomic distance metrics:

K = −1

2
(I − 11′

n
)D2(I − 11′

n
) (3)

where D = [dij] is the pair wise distance matrix, e.g. weighted or unweighted

UniFrac distance or the Bray-Curtis dissimilarity, I is the identity matrix, 1 is a

vector of 1’s and D2 represents element wise square. For each distance metric,

we can construct the corresponding kernel matrix, e.g., weighted or unweighted

UniFrac kernels (KW and KU ) can be constructed based on weighted or unweighted

distance metrics. This choice of kernel is in line with the relationship between

kernel machine regression and distance based regression24 in that it can recover

the original distances using standard kernel operation: d2ij = Kii + Kjj − 2Kij .

Further, to ensure that the K to be a positive semi-definite matrix, we apply the

same positive semi-definiteness correction procedure as in15 that we first perform

an eigen decomposition of K = UΛU′ with Λ = diag(λ1, · · · , λn) being the eigen

values and then reconstruct using the absolute eigen values K∗ = UΛ∗U′ and

Λ∗ = diag(|λ1|, · · · , |λn|).

When only a single kernel is considered, the estimation of the coeffcients β and

f(Z) are conducted by maximizing the following penalized log-likelihood:

pl(f, β) =
n∑

i=1

logL(f, β; yi, xi, zi)−
1

2
λ||f ||2Hk

=
n∑

i=1

logL(f, β; yi, xi, zi)−
1

2
λα′Kα
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Through an important relationship between kernel machine regression and

mixed models,25–27 f(Z) can be viewed as a subject specific random effect which

follows a distribution with mean 0 and variance τK. Then testing for an asso-

ciation between the microbiome composition and the outcome is equivalent to

testing the null hypothesis that H0 : τ = 0. Under the mixed model framework,

this can be done using a standard variance component score test.28

In particular, the score statistic is computed as

Q =
1

2ϕ
(y − ŷ0)

′K(y − ŷ0) (4)

where ŷ0 is the predicted mean of y under H0, i.e. ŷ0 = β̂0 + β̂
′
X for continuous

traits and ŷ0 = logit−1(β̂0 + β̂
′
X) for dichotomous traits, β̂0 and β̂ are estimated

under the null model by regressing y on only the covariates X and ϕ is the dis-

persion parameter. For the linear kernel machine regression case, ϕ = σ̂2
0 where

σ̂2
0 is the estimated residual variance under the null model. In the logistic kernel

machine regression, ϕ = 1.

Under the null hypothesis, Q asymptotically follows a weighted mixture of χ2

distributions and p-value can be analytically obtained through higher order mo-

ment matching29 or exact methods30, 31 with possible small sample adjustments

via resampling.19 However, the comparatively small sample sizes for many mi-

crobiome studies and the complexity of the kernels considered here (often of full

rank with erratic eigenvalue behavior) lead to very conservative tests. Previously

considered Satterthwaite methods15 lead to type I error inflation. Thus, MiRKAT

further considers the use of new, alternative small sample adjustments for both
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continuous and dichotomous traits.21, 22

A key advantage of the score test is that it only requires fitting the null model

yi = β0 + β′Xi + εi for continuous traits and logit(P (yi = 1)) = β0 + β′Xi for

dichotomous traits. Consequently, MiRKAT allows for fast, supervised, distance-

based association testing under a regression framework that permits controls for

potential confounding.

As the proposed test is a score test, all the parameters are estimated under the

null model (linear regression or logistic regression), i.e.f(Z) does not need to be

estimated. This means that even if a poor kernel is chosen, the test is still statisti-

cally valid. Better choices of kernels simply improve power. From the perspective

of testing, a metric that better reflects the true relationship between the micro-

biome compositional profiles and the outcome will result in substantially higher

power.

Optimal MiRKAT based on multiple kernels

As noted, although MiRKAT is valid even if a poor kernel is chosen, better choices

of kernel can lead to improved power. Unfortunately, the best kernel to use re-

quires knowledge on how the microbiome influences the outcome. This is un-

known a priori as knowledge of this would preclude need for analysis. Therefore,

in this section, we develop the optimal MiRKAT which extends MiRKAT to simul-

taneously consider multiple possible kernels.

Suppose that we have a set of ℓ different candidate kernels K1, ...,Kℓ, such

as unweighted UniFrac, weighted UniFrac, Bray-Curtis kernels, etc., which are

10



constructed from corresponding distance metrices using equation (3).

The intuition behind the optimal MiRKAT is that it will consider testing using

each individual kernel, obtain the p-value for each of the tests, select the minimum

p-value and then adjust for having taken the minimum via a multiple comparison

technique. If sample sizes are large, this can be accomplished via the perturbation

based approach of Wu et al (2013).,20 but when the sample size is more modest,

we can apply a residual permutation approach to obtain the empirical null distri-

bution of the test statistic. Specifically, we use the following procedure:

1. Fit the null linear or logistic regression model by regressing y on X and ob-

tain the residuals r = y − ŷ0 where ŷ0 is the estimated value of y based on

the null model..

2. For each Kk, calculate Qk = 1
2ϕ

r′Kkr and corresponding p values pk through

the asymptotically distribution of Qk. Then the minimum p-value across all

the ℓ kernels is po = mink∈(1,...,ℓ) pk.

3. Residual permutation is used to obtain the null distribution of po to accom-

modate the fact that we have considered multiple kernels.

(a) For a continuous outcome, the permutation approach of Freeman and

Lane (1983)32 is used. Specifically, for each permutation j,

i. Reshuffle the residuals r to obtain the permuted residuals rj

ii. Create new values of yj as yj = ŷ0 + rj .

iii. Consider yj as new outcome. Refit the null linear regression model

by regressing yj on X to obtain the estimated residuals r̂j and ϕ̂j
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for calculation of the the score statistic Qj
k = 1

2ϕ̂j
r̂j′Kk r̂j using each

kernel. Kernel specific p-value pjk can be obtained by comparing Qj
k

to the same asymptotic distribution as in step 2.

iv. Obtain pjo = mink∈(1,...,ℓ) pj
k

(b) For a dichotomous outcome, we use the permutation approach of Epis-

tein et al. (2012),33 which uses Fisher’s non-central hypergeometric dis-

tribution to generate permuted 1/0 outcome values. Specifically,

i. Obtain the estimated odds of being a case for each individual sam-

ple, i.e. exp(β̂0+ β̂′Xi) where β̂0 and β̂ are the estimated coefficients

under the null logistic regression model as in step 1.

ii. For each permutation j, generate new binary outcomes for each

based on the estimated odds using the Fisher’s non-central hyper-

geometric distribution (modified version BiasedUrn package34 in

R).

iii. The permuted outcome is subsequently used to calculate the score

statistic Qj
k as in step 2 for each kernel and the kernel specific p-

value pjk by comparing Qj
k to the same asymptotical mixture of χ2

distribution.

iv. Obtain pjo = mink∈(1,...,ℓ) pj
k

4. Repeat step 3 for a large number of times B, to form the an empirical null

distribution for po.

5. Calculate the final p-value as p = 1
B

∑B
b=1 I(po > pbo).
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For each permutation j, pj1, · · · , p
j
ℓ are calculated using the same set of per-

muted outcomes and thus correlated; taking the minimum p-value across differ-

ent kernels accounts for this correlation. Although the optimal MiRKAT requires

permutation for the final p-value calculation, it only estimates residuals under

each permutated data using the null model, which essentially equates to finding

the QR residuals for continuous outcomes or logistic regression for binary out-

comes, and thus can be done very fast. Additionally, for each kernel, each Qj
k

follows the same weighted mixture of χ2 distribution with the weights and de-

gree of freedom need to be estimated only once.

Simulation study

We conducted simulation studies under a range of scenarios in order to verify

that MiRKAT correctly controls type I error rate and to assess the relative power

of MiRKAT using different kernels as well as the power of optimal MiRKAT.

We first simulated microbiome data sets following the general approach of

Chen and Li (2013)15 which has been shown to generate simulated data reflective

of real OTU counts. In particular, we simulated data sets comprised of n = 100,

200 or 500 individuals. Then the OTU information for each individual in a sim-

ulated data set was generated from a dirichlet-multinomial distribution which

accommodates the over-dispersion of OTU counts. To employ realistic parame-

ter values for the dirichlet-multinomial distribution, we estimated the dispersion

parameters and the proportion means from the real upper respiratory tract micro-

biome data set of Charlson et al.(2010)35 which consists of 856 OTUs measured on
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each of 60 samples. Then for each individual, we generated OTU counts on the

same 856 OTUs using the estimated parameters and assumed 1000 total counts

per sample. We considered two simulation scenarios for both continuous out-

comes and dichotomous outcomes, which differ in how the OTUs are related to

the outcome.

Under Simulation Scenario 1, the outcome is related to a group of taxa that de-

pends on a phylogenetic tree. Specifically, we partitioned all the OTUs into 20

clusters (lineages) by performing PAM (Partition Around Medoid) based on the

OTU distance matrix. The abundance of these OTU clusters varies greatly, with

each OTU cluster corresponding to some possible bacterial lineage. We then chose

a relatively abundant OTU cluster which constitutes of 19.4% of the total OTU

reads to be related to the outcome using the model. For continuous outcomes, we

simulated under the model:

yi = 0.5X1i + 0.5X2i + βscale(
∑
j∈A

Zij) + εi (5)

where εi ∼ N(0, 1).

For dichotomous outcomes, we simulated under the model

logit(E(yi|Xi,Zi)) = 0.5scale(X1i +X2i) + βscale(
∑
j∈A

Zij)) (6)

For both continuous and dichotomous outcomes, X1i and X2i are covariates

to be adjusted for, and A denotes the indices of the OTU’s the in the selected

cluster. The “Scale” function standardizes the total OTU abundance in the asso-
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ciated cluster to have mean 0 and standard deviation of 1. X1i were simulated as

Bernoulli random variables with success probability 0.5. For X2i, we considered

situations in which X2i and microbiome profiles (Z) were correlated and in which

the X2i and Zi are independent. In the simulation that X2i and Zi are indepen-

dent, X2i is simulated as N(0, 1). For the case when X2i and Zi are correlated, we

let X2i = scale (
∑

j∈A Zij) +N(0, 1).

Under Simulation Scenario 2 the outcome is associated with the 10 most abun-

dant OTUs in all the samples, without regard to the phylogeny. In particular,

instead of clustering the OTUs based on the phylogenetic relationship, we simply

selected the 10 OTUs with the largest average number of reads across all samples.

Then the continuous outcome was simulated as

yi = 0.5X1i + 0.5X2i + βscale(
∑
j∈A

Zi(j)

Z̄(j)
) + εi (7)

The dichotomous outcome was simulated as

logit(E(yi|Xi,Zi)) = 0.5scale(X1i +X2i) + βscale(
∑
j∈A

Zi(j)

Z̄(j)
) (8)

where εi ∼ N(0, 1), X1i and X2i are defined as earlier but A note denotes the set

of 10 most abundant OTU’s and Z̄(j) is the average reads for the jth OTU across

samples. The OTU reads were divided by its corresponding average to avoid the

situation that a single or a few OTUs can dominate the total effect.

The additional covariates X were simulated as before and we again consider

the scenario in which the covariates are associated with microbiome and the sce-
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nario in which the covariates are independent of the microbiome.

For both simulation scenarios, we considered using the weighted and un-

weighted UniFrac kernel (KW and KU ), Bray-Curtis kernel (KBC), and four gen-

eralized UniFrac Kernels with α values chosen as 0, 0.25, 0.5 and 0.75 , which are

denoted as K0, K0.25, K0.5 ,and K0.75. All these kernels are computed from the

corresponding distances. We selected these particular kernels (distances) for con-

sideration since they represent a range of different classes of kernels: the UniFrac

based methods utilize phylogenetic relationships while the Bray-Curtis does not,

and the weighted and general UniFracs take into account the abundance informa-

tion to differing degrees while the un-weighted UniFrac does not.

We applied MiRKAT using each single kernel to the simulated data sets to test

for associations between the simulated OTUs (Z) and the outcome (y). Addition-

ally, we also applied optimal MiRKAT. We applied tests with and without adjust-

ment for the potential confounders X. For comparison, we further considered a

naive Bonferroni adjusted test, which selects the minimum p-value across all the

single kernel testing and uses ℓ ∗minP to be the final p-value where minP is the

smallest p-value across all the single kernel tests and ℓ is the total number of tests.

For each choice of sample size n, simulation scenario, and correlation structure

between microbiome and covariates, we conducted 5000 simulations with β = 0

to examine for type I error rate. To assess the statistical power of the tests across

both simulation scenarios, we varied values of the coefficient β and conducted

2000 simulations for each choice of sample size, simulation scenario, correlation

structure, and value of β.
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Results

In this section, we present the simulation results examining the performance of

our proposed MiRKAT and optimal methods as well as the results from applying

our methods to two real data sets. We also consider the relationship between

MiRKAT and existing methods and demonstrate a close connection.

Simulation results

The type I error rates of MiRKAT and optimal MiRKAT across different simulation

scenarios for continuous outcome are shown in Table 1. The upper panel presents

the type I error result for Simulation Scenario 1 in which a single phylogenetic clus-

ter of the OTUs is associated with the outcome and the bottom panel presents

the type I error results for Simulation Scenario 2 in which the 10 most abundant

OTUs are associated with the outcome. Note that when the covariates are inde-

pendent of the microbiome that both simulation scenarios are equivalent as there

is no association between y and Z. For both simulation scenarios, when covariates

X and the microbiome composition Z are independent, MiRKAT was valid with

or without adjusting for X. However, when X and microbiome composition Z

are correlated, adjusting for covariates X is necessary: the type I error is seriously

inflated if the confounder X is not accounted for.

Figures 1 and 2 shows the statistical power for the tests with continuous out-

comes in Simulation Scenario 1 in which a phylogenetic cluster of OTUs is associ-

ated with the outcome. Specifically, Figure 1 shows the power when X and Z are
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independent and Figure 2 shows the power when X and Z are correlated. Note

that we only considered statistical tests that adjust for covariates X because the

tests without X adjustment have inflated type I error and are invalid.

The power is presented for MiRKAT using each individual kernel, the optimal

MiRKAT which incorporates multiple kernels, as well as the naive Bonferroni ad-

justed test. For all the kernels that were considered, the power increases when

the association strength increases. Good choices of kernel can greatly improve the

statistical power in detecting association while improper choice of kernel leads to

little power to detect the association. For this simulation scenario, the weighted

UniFrac kernel and the generalized UniFrac Kernel with α = 0.75 produced the

highest power as opposed to other kernels and the unweighted UniFrac kernel

was the least powerful. The optimal MiKRAT considering all metrics has power

close to the weighted UniFrac kernel, losing some power relative to the weighted

UniFrac kernel but still maintaining considerably better power than many other

choices of kernel. As expected, the optimal test is always more powerful than the

naive Bonferroni adjusted test.

Figures 3 and 4 show the statistical power for Simulation Scenario 2 where the

top 10 most abundant OTUs were associated with the outcome without regard

for phylogeny. We again show the power when X and Z are independent (Figure

3) and when X and Z are correlated (Figure 4). Results were similar to Simula-

tion Scenario 1 except that the Bray-Curtis distance metric gave the highest power.

MiRKAT, which considers all distance metrics, had smaller but comparable power

as the Bray-Curtis distance, and much higher power than the naive Bonferroni
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corrected test. The unweighted UniFrac kernel provided the least power.

In practice, the optimal kernel depends on the true state of nature and can

vary from case to case. The two simulation scenarios shows that proper choice of

kernel is essential in being well powered to discover associations between micro-

biome composition and outcomes, and poor choices of kernels leads to tremen-

dous power loss. Optimal MiRKAT, however, alleviates the problem by consider-

ing different kernels and is more robust compared to single-distance based analy-

sis as it hedges against different scenarios and works well in the omnibus.

The simulation results for dichotomous outcome are quanlitatively similar to

the results obtained from continuous outcome. The type I error results are sum-

marized in Table S1 and power results are shown in Figures S1, S2, S3 and S4.

Relationship Between MiRKAT and Existing Methods

A key advantage of MiRKAT is that it is already closely related to existing ap-

proaches for analyzing the association between microbiome composition and an

outcome. In particular, with large sample size, the PERMANOVA method10 can

be shown to be a special case of the kernel machine testing framework under

the scenario in which there are no confounding variables.24 Consequently, the

MiRKAT with a single kernel can be viewed as a generalization of PERMANOVA

that accommodates additional covariates. In numerical simulations, the correla-

tion between p-values obtained from single kernel MiRKAT and the correspond-

ing distance based method is usually more than 0.99 in scenarios when there

are no covariates to adjust for. For example, Figure S5 showed the p-values for
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MiRKAT and the distance based approach using 2000 simulated data sets when

a single distance/kernel was used. However, by using the asymptotic distribu-

tion, MiRKAT is considerably faster than corresponding distance based approach,

especially with large sample size (Figure S6).

Analysis of Smoking Data

Recently, a microbiome profiling study was conducted to examine the commu-

nities within the upper respiratory tract35 in order to understand the effect of

cigarette smoking on the orpharyngeal and nospharyngeal microbiome. While de-

tails can be found in the original manuscript and subsequent re-analyses,14 briefly,

swab samples were collected from right and left nasopharynx and oropharynx of

29 smoking and 33 nonsmoking adults. The variable region 1-2 (V1-V2) of the

bacterial 16S rRNA gene was PCR amplified and subject to multiplexed pryo-

sequencing. OTUs were constructed using the QIIME pipeline. Samples with less

than 500 reads and OTUs with only one read were removed, resulting in an OTU

table with 60 samples (28 smokers vs 32 nonsmokers) and 856 OTUs. Additional

covariates in this data included gender and antibiotic use within 3 months.

Distance based analysis of the oropharyngeal samples using permutation based

distance analysis (PERMANOVA) with both weighted and unweighted UniFrac

distances identified significant association between microbiome profiles and smok-

ing status. However, the analyses did not take into account potential confounders:

within the collected study sample, among the smokers 75% were male, yet among

the non-smokers, only 56% were male. The odds ratio of smoking between males
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and females is 2.33 within the data set. The imbalance in the proportion of male

and female subjects indicates strong potential for confounding: it is unclear whether

the differences in microbiome profiles between smokers and non-smokers is driven

by smoking or driven by the gender imbalance. Additionally, the tests were con-

ducted using either weighted or unweighted UniFrac distance; it is practically

attractive to consider multiple possible distance measurements while controlling

for possible confounding effects. MiRKAT represents a natural analysis approach.

Therefore, we re-analyzed the data from the oropharyngeal samples using

MiRKAT. Specifically, we applied MiKRAT method to analyze the association be-

tween smoking and microbial community composition, using weighted and un-

weighted UniFrac distance matrices and the Bray-Curtis distance, except here we

transformed them to be similarity metrics to form the kernels, but we further ad-

justed for gender, and antibiotic use. We also applied the optimal MiRKAT. Using

MiRKAT under individual distance metrics, we found the p-values from KW , KU

and KBC are 0.0048, 0.014 and 0.002 respectively. The optimal MiRKAT generated

a p-value of 0.0031. Thus, despite the potential for confounding, our results show

that the association between microbiome profiles and smoking status remains sig-

nificant after controlling for the potential confounders, reaffirming and providing

greater confidence in the earlier results. In addition to validating a previous anal-

ysis, this result also demonstrates the utility and importance of MiRKAT with

regard to accommodation of covariates and multiple kernels.
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Analysis of Fecal Protease Data

Fecal proteases (FP) are enteric enzymes that are elevated in subsets of individuals

with irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD, MIM

266600). It was demonstrated that FP from IBS affected individuals have a pro-

found impact on intestinal physiology including visceral sensitivity and colonic

permeability in mice.36 Although there is evidence that elevated FP levels can al-

ter intestinal physiology by activating proteinase activated receptors, it remains

unclear whether the FP levels are of human or microbial origin. Consequently,

Carroll et al.37 conducted a study to examine the relationship between FP levels

and microbiota in human fecal samples from 30 individuals affected with IBS and

24 healthy adults. 454 pyrosequencing of the 16S rRNA gene was again used to

profile the microbiomes and QIIME was again applied to quantify the composi-

tion and diversity of each community.

The original study identified a significant association between microbiome

composition and FP levels. However, analyses were restricted to the subjects with

the highest and lowest FP levels. Thus, we applied MiRKAT to the data set (limit-

ing to the 23 diarrhea-predominant IBS affected subjects and 23 healthy controls)

to test for an association between FP levels and microbiome composition, except

that we treated FP levels as continuous (so as to use all subjects) and we further

adjusted for additional potential confounders, including age, body mass index,

gender, race and functional bowel disorder. We considered MiRKAT using the

weighted UniFrac, unweighted UniFrac and Bray-Curtis kernels as well as the

optimal MiRKAT.
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Interestingly, the three distances gave discordant conclusions in that the un-

weighted UniFrac kernel and Bray-Curtis kernel yielded significant p values (p

=0.0046 and 0.039 respectively) while the weighted UniFrac kernel gave non-significant

result (p = 0.124). Un-weighted UniFrac is primarily based on the presence or

absence of an OTU, while weighted UniFrac distances further incorporates abun-

dance which could account for the differences but the difference in association

results makes it difficult to draw a single conclusion. The optimal MiRKAT which

simultaneously considers the three candidate kernels gives a single p-value of

0.0116 after covariate adjustment. This further demonstrates the advantages of

MiRKAT to be able to consider multiple kernels since using individual distance

metrics yielded disparate results and is difficult to interpret.

Discussion

We propose a kernel machine regression based method (MiRKAT) to test for the

association between microbial community composition and a continuous or di-

chotomous outcome of interest in which covariate effects are modeled parametri-

cally and the microbiome effect is modeled nonparametrically. The kernel matrix,

which defines the functional form of the microbiome effect, is constructed by ex-

ploiting its correspondence with the popular distance metric designed to convey

phylogenetic or taxonomic information among different OTUs. Additionally, the

proposed method allows incorporation of multiple candidate kernels simultane-

ously, enabling development of the optimal MiRKAT. Simulations and real data
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analyses indicate that the approach has reasonable power and that the optimal

MiRKAT is robust to poor choices of kernels. Close connections between MiRKAT

and existing analysis frameworks ensure that the approach is a natural addition

to the currently available methodology.

The optimal MiRKAT enables researchers to consider multiple distance and

dissimilarity metrics, simultaneously. Here, we focused primarily on the UniFrac,

weighted UniFrac, generalized UniFrac and Bray-Curtis metrics as our experi-

ences have shown that these tend to work well in practice. In principle, one can

include a wide range of other metrics with little penalty with regard to false posi-

tive rate, but the trade-off is that one may lose power if there are too many kernels

under consideration that are too disparate – use of highly correlated kernels will

not impact power very much. In the most extreme cases, optimal MiRKAT from

multiple perfectly correlated kernels will generate the same p-value as from each

of the individual kernel tests. Furthermore, we note that the tests using each of

the individual kernels are constructed based on the same data sets and are non-

negatively correlated (i.e. not competitive). Thus, the optimal MiRKAT should

always have higher power than the naive Bonferroni adjusted test.

A reasonable alternative to the proposed omnibus test approach is to construct,

as a kernel, a weighted combination of multiple kernels. In practice, the optimal

“weight” is unknown and needs to be estimated from data or selected via other

approaches, such as a grid search. From the mixed model point of view, estimat-

ing the weights is equivalent to estimating a variance component that disappears

when the null hypothesis is true; this violates the common regularity conditions in
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the standard asymptotic tests. Statistical methods for such problems, such as the

likelihood ratio tests, recently have been the focus of considerable statistical re-

search.38, 39 However, this is frequently much more computational intensive than

the score test, especially when there are many kernels under consideration. Fur-

thermore, there is very limited work on likelihood ratio test for variance com-

ponents when some parameters disappear under the null AND when the null

values are on the boundary of the parameter space. On the other hand, selecting

the best “weight” through a grid search can be conducted similarly as the opti-

mal MiRKAT in which each of the weighted combination of candidate kernels is

treated as a new kernel. However, when the number of kernels under consider-

ation increases or when a finer grid is used, the computation burden increases

quickly due to the large search space and rapidly becomes computationally pro-

hibitive. Therefore, if prior evidence is available to suggest that a single kernel

is the best kernel, then using that single kernel or using a smaller set of kernels

will be more powerful. In the absence of prior knowledge, then we suggest us-

ing a modest range of kernels with differing characteristics, e.g. a combination of

phylogeny based and non-phylogeny based kernels as in our simulations.

Beyond assessing the association with overall composition, there is consider-

able interest in identifying the individual taxa that are driving the apparent asso-

ciations. This approach for analyzing microbiome data is frequently complemen-

tary and parallel to methods for testing overall composition and diversity. One

common approach for doing this is to assess the marginal association between

each OTU and the outcome. However, in addition to difficulties in determining
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the scale of the analysis, i.e. whether to use percent composition or raw OTU

counts, a problem of considerable interest lies in using distance metrics to inform

the identification of individual taxa related to the outcome. To this end, as a re-

gression based approach combined with the relatively fast computation, MiRKAT

could enable a step-wise variable selection approach with AIC or BIC. Such an

approach could be applied post-hoc to identify the variables most strongly driv-

ing apparent associations. It may also be possible to use a penalized regression

approach within the kernel framework,40 but this remains a topic for future re-

search.

Microbiome studies are now being included within epidemiological, popula-

tion based, and clinical studies. In contrast to early microbiome studies with mod-

est sample sizes and relatively controlled experimental conditions, issues such as

confounding, covariate adjustment, and accommodation of more sophisticated

outcomes are increasingly important in such studies. MiRKAT’s ability to con-

trol for confounders within a principled regression based framework while main-

taining type I error and adequate power make it an attractive alternative to cur-

rently available methods. Furthermore, although we focused on dichotomous and

continuous variables of interest, the framework can be generalized to alternative

types of outcomes such as multivariate, longitudinal, and survival data. Thus,

with growing interest in applying microbiome to complex clinical and popula-

tion based studies, MiRKAT can be extended to open new avenues of research

by enabling analysis of data from the emerging studies with more sophisticated

outcomes.
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Supplemental Data

Supplemental Data include 6 figures and 1 table.
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Figure 1: Type I error and Power of MiRKAT based on different kernels for Simu-
lation Scenario 1 with continuous outcome: A selected phylogenetic cluster of the
OTUs are associated with the outcome and covariates X and the microbiome pro-
files Z were simulated independently. Panel A shows the results for tests that do
not adjust for X and panel B shows results that adjust for X. Kw, Ku, KBC , K0,
K0.25, K0.5 and K0.75 represents MiRKAT results using different individual kernels
respectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and general-
ized UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simula-
tion results for optimal MiRKAT considering all seven kernels and KminP shows
the results using a naive Bonferroni adjusted test. Sample size n = 100.
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Figure 2: Type I error and Power of MiRKAT based on different kernels for Simu-
lation Scenario 1 with continuous outcome: A selected phylogenetic cluster of the
OTUs are associated with the outcome and covariates X and microbiome composi-
tion Z are correlated through X2i = scale (

∑
j∈A Zij) +N(0, 1) where A represents

the selected cluster. Results are presented only for MiRKAT with X adjustment be-
cause unadjusted tests give seriously inflated type I error. Kw, Ku, KBC , K0, K0.25,
K0.5 and K0.75 represents MiRKAT results using different individual kernels re-
spectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and generalized
UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simulation
results for optimal MiRKAT considering all seven kernels and KminP shows the
results using a naive Bonferroni adjusted test. Sample size n = 100.
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Figure 3: Type I error and Power of MiRKAT based on different kernels for Sim-
ulation Scenario 2 with continuous outcome: The 10 most abundant OTUs are as-
sociated with the outcome. Additional covariates X and the microbiome profiles
Z were simulated independently. Panel A shows the results for tests that do not
adjust for X and panel B shows results that adjust for X. Kw, Ku, KBC , K0, K0.25,
K0.5 and K0.75 represents MiRKAT results using different individual kernels re-
spectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and generalized
UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simulation
results for optimal MiRKAT considering all seven kernels and KminP shows the
results using a naive Bonferroni adjusted test. Sample size n = 100.
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Figure 4: Type I error and Power of MiRKAT based on different kernels for Simu-
lation Scenario 1 with continuous outcome: The 10 most abundant OTUs are asso-
ciated with the outcome. Additional covariates X and the microbiome profiles Z
are correlated in that X2i = scale (

∑
j∈A Zij) +N(0, 1) where A represents the top

10 most abundant OTUs. Results are presented only for MiRKAT with X adjust-
ment because unadjusted tests give seriously inflated type I error. Kw, Ku, KBC ,
K0, K0.25, K0.5 and K0.75 represents MiRKAT results using different individual
kernels respectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and
generalized UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the
simulation results for optimal MiRKAT considering all seven kernels and KminP

shows the results using a naive Bonferroni adjusted test. Sample size n = 100.



Table 1: Empirical type I errors for MiRKAT and “optimal” MiRKAT with continu-
ous outcome. Type I error was evaluated for scenarios when additional covariates
are independent with the OTUs (X ⊥ Z) and scenarios when covariates are re-
lated to the OTUs (X ̸⊥ Z) using 5000 simulated data sets. Kw, Ku, KBC , K0,
K0.25, K0.5 and K0.75 represents MiRKAT results using different individual kernels
respectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and general-
ized UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simula-
tion results for optimal MiRKAT considering all seven kernels and KminP shows
the results using a naive Bonferroni adjusted test. P-values for “optimal” MiRKAT
were obtained by 1000 permutations. Numbers in bold show inflated type I error.

Simulation scenario 1: Clustered OTUs
X ⊥ Z Unadjust for X

n KW KU KBC K0 K0.25 K0.5 K0.75 Kopt KminP

100 0.053 0.050 0.050 0.046 0.047 0.048 0.052 0.050 0.023
200 0.052 0.047 0.051 0.053 0.049 0.048 0.051 0.051 0.026

X ⊥ Z Adjust for X
100 0.056 0.048 0.047 0.049 0.045 0.050 0.048 0.046 0.024
200 0.051 0.050 0.053 0.048 0.047 0.052 0.049 0.050 0.027

X ̸⊥ Z Unadjust for X
100 0.389 0.062 0.172 0.268 0.345 0.384 0.182 0.268 0.183
200 0.790 0.080 0.398 0.587 0.732 0.791 0.387 0.651 0.547

X ̸⊥ Z Adjust for X
100 0.055 0.047 0.047 0.049 0.046 0.049 0.046 0.049 0.024
200 0.052 0.049 0.051 0.047 0.047 0.052 0.050 0.049 0.026

Simulation scenario 2: top 10 OTUs
X ⊥ Z Unadjust for X

n KW KU KBC K0 K0.25 K0.5 K0.75 Kopt KminP

100 0.053 0.050 0.050 0.045 0.048 0.049 0.053 0.050 0.025
200 0.051 0.047 0.050 0.053 0.050 0.047 0.051 0.050 0.026

X ⊥ Z Adjust for X
100 0.056 0.048 0.047 0.050 0.046 0.051 0.047 0.049 0.021
200 0.051 0.049 0.053 0.047 0.047 0.052 0.050 0.051 0.023

X ̸⊥ Z Unadjust for X
100 0.153 0.048 0.669 0.105 0.124 0.147 0.157 0.516 0.067
200 0.307 0.048 0.976 0.194 0.239 0.293 0.320 0.932 0.151

X ̸⊥ Z Adjust for X
100 0.056 0.048 0.047 0.049 0.046 0.050 0.047 0.049 0.020
200 0.052 0.049 0.051 0.048 0.048 0.051 0.049 0.049 0.024
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Figure S1: Type I error and Power of MiRKAT based on different kernels for
Simulation Scenario 1 with dichotomous outcome: a selected phylogenetic clus-
ter of the OTUs are associated with the outcome. Additional covariates X and
microbiome effect Z were simulated independently. Panel A shows the results for
tests that do not adjust for X and panel B shows results that adjust for X. Kw,
Ku, KBC , K0, K0.25, K0.5 and K0.75 represents MiRKAT results using different indi-
vidual kernels respectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis,
and generalized UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal repre-
sents the simulation results for optimal MiRKAT considering all seven kernels
and KminP shows the results using a naive Bonferroni adjusted test. Results were
presented at n = 200.
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Figure S2: Type I error and Power of MiRKAT based on different kernels for for
Simulation Scenario 1 with dichotomous outcome:a selected phylogenetic clus-
ter of the OTUs are associated with the outcome. Additional covariates X and mi-
crobiome composition Z are correlated through X2i = scale (

∑
j∈A Zij) + N(0, 1).

We only considered MiRKAT with X adjustment because unadjusted tests give
seriously inflated type I error. Kw, Ku, KBC , K0, K0.25, K0.5 and K0.75 repre-
sents MiRKAT results using different individual kernels respectively: weighted
UniFrac, unweighted UniFrac, Bray-Curtis, and generalized UniFrac kernels with
α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simulation results for optimal
MiRKAT considering all seven kernels and KminP shows the results using a naive
Bonferroni adjusted test. Sample Size n = 200.
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Figure S3: Type I error and Power of MiRKAT based on different kernels for
Simulation Scenario 2 with dichotomous outcome: the 10 most abundant OTUs
are associated with the outcome. Additional covariates X and microbiome effect
Z were simulated independently. Panel A shows the results for tests that do not
adjust for X and panel B shows results that adjust for X. Kw, Ku, KBC , K0, K0.25,
K0.5 and K0.75 represents MiRKAT results using different individual kernels re-
spectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and generalized
UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the simulation
results for optimal MiRKAT considering all seven kernels and KminP shows the
results using a naive Bonferroni adjusted test. Results were presented at n = 200.
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Figure S4: Type I error and Power of MiRKAT based on different kernels for for
Simulation Scenario 2 with dichotomous outcome:the 10 most abundant OTUs
are associated with the outcome. Additional covariates X and microbiome compo-
sition Z are correlated through X2i = scale (

∑
j∈A Zij) + N(0, 1). We only consid-

ered MiRKAT with X adjustment because unadjusted tests give seriously inflated
type I error. Kw, Ku, KBC , K0, K0.25, K0.5 and K0.75 represents MiRKAT results
using different individual kernels respectively: weighted UniFrac, unweighted
UniFrac, Bray-Curtis, and generalized UniFrac kernels with α = 0, 0.25, 0.5 and
0.75. Koptimal represents the simulation results for optimal MiRKAT considering
all seven kernels and KminP shows the results using a naive Bonferroni adjusted
test. Results were presented at n = 200.
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Figure S5: Example plot of the p-value correlation using distance based approach
and MiRKAT when no additional covariates are considered. 5000 simulations
are plotted at sample size n = 200 for continuous outcome. Unweighted UniFrac
distance and kernel were used for the distance based approach and MiRKAT re-
spectively.
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Figure S6: Computation times of MiRKAT and distance based test as a function of
the sample size for continuous outcome. The figure presents the total computation
time for 100 repeated tests with each sample size. 999 permutations (the default
number) were used in distance based approaches.



Table S1: Empirical type I errors for MiRKAT and “optimal” MiRKAT with di-
chotomous outcome. Type I error was evaluated for scenarios when additional
covariates are independent with the OTUs (X ⊥ Z) and scenarios when covari-
ates are related to the OTUs (X ̸⊥ Z) using 5000 simulated data sets. Kw, Ku, KBC ,
K0, K0.25, K0.5 and K0.75 represents MiRKAT results using different individual ker-
nels respectively: weighted UniFrac, unweighted UniFrac, Bray-Curtis, and gen-
eralized UniFrac kernels with α = 0, 0.25, 0.5 and 0.75. Koptimal represents the
simulation results for optimal MiRKAT considering all seven kernels and KminP

shows the results using a naive Bonferroni adjusted test. P-values for “optimal”
MiRKAT were obtained by 1000 permutations. Numbers in bold show inflated
type I error.

Simulation scenario 1: Clustered OTUs
X ⊥ Z Unadjust for X

n KW KU KBC K0 K0.25 K0.5 K0.75 Kopt KminP

200 0.051 0.049 0.049 0.051 0.052 0.054 0.051 0.049 0.025
500 0.046 0.049 0.054 0.056 0.053 0.054 0.053 0.053 0.028

X ⊥ Z Adjust for X
200 0.054 0.051 0.050 0.051 0.053 0.054 0.054 0.053 0.028
500 0.047 0.048 0.051 0.053 0.055 0.051 0.049 0.055 0.029

X ̸⊥ Z Unadjust for X
200 0.105 0.054 0.075 0.081 0.099 0.116 0.123 0.092 0.057
500 0.156 0.056 0.092 0.149 0.210 0.260 0.285 0.214 0.138

X ̸⊥ Z Adjust for X
200 0.048 0.054 0.049 0.050 0.050 0.053 0.052 0.051 0.028
500 0.045 0.051 0.050 0.051 0.048 0.049 0.049 0.048 0.024

Simulation scenario 2: top 10 OTUs
X ⊥ Z Unadjust for X

n KW KU KBC K0 K0.25 K0.5 K0.75 Kopt KminP

200 0.046 0.052 0.047 0.048 0.048 0.047 0.047 0.050 0.028
500 0.058 0.044 0.045 0.051 0.050 0.052 0.053 0.048 0.025

X ⊥ Z Adjust for X
200 0.045 0.052 0.048 0.046 0.048 0.046 0.046 0.051 0.028
500 0.052 0.045 0.040 0.048 0.052 0.052 0.050 0.042 0.022

X ̸⊥ Z Unadjust for X
200 0.066 0.051 0.201 0.064 0.069 0.070 0.073 0.125 0.077
500 0.123 0.049 0.544 0.101 0.104 0.123 0.126 0.378 0.307

X ̸⊥ Z Adjust for X
200 0.047 0.056 0.052 0.044 0.047 0.052 0.052 0.049 0.024
500 0.051 0.047 0.056 0.051 0.050 0.046 0.049 0.054 0.024


