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Abstract

Many genetic association studies collect a wide range of complex traits.

As these traits may be correlated and share a common genetic mechanism,

joint analysis can be statistically more powerful and biologically more mean-

ingful. However, most existing tests for multiple traits cannot be used for

high-dimensional and possibly structured traits, such as network-structured

transcriptomic pathway expressions. To overcome potential limitations, in

this paper we propose the dual kernel-based association test (DKAT) for test-

ing the association between multiple traits and multiple genetic variants, both

common and rare. In DKAT, two individual kernels are used to describe the

phenotypic and genotypic similarity, respectively, between pairwise subjects.

Using kernels allows for capturing structure while accommodating dimen-

sionality. Then, the association between traits and genetic variants is sum-

marized by a coefficient which measures the association between two kernel

matrices. Finally, DKAT evaluates the hypothesis of non-association with an

analytical p-value calculation without any computationally expensive resam-

pling procedures. By collapsing information in both traits and genetic vari-

ants using kernels, the proposed DKAT is shown to have correct type I error

rate and higher power than other existing methods in both simulation studies

and application to a study of genetic regulation of pathway gene expressions.

Key Words: Dual kernels; Genetic association analysis; High-dimensional

traits; Network structure; Pleiotropy.



Introduction

Large scale genome wide association studies and next generation sequencing as-

sociation studies have resulted in the identification of a wide range of genetic

variants, common and rare, related to a host of complex traits and disorders.1–3

Traditional genetic association analyses have focused on identifying association-

s between individual genetic variants or groups of genetic variants with a single

trait of interest. However, this approach proves inadequate when a single variable

does not fully capture the trait or phenotype of interest and further may result in

power loss. In many situations, joint analysis of multiple traits, simultaneous-

ly, may prove advantageous as compared to single trait analysis for a number of

reasons. First, joint analysis tends to be statistically more powerful than the in-

dividual trait analysis:4–6 joint analysis can reduce the multiple testing correction

burden associated with individually testing multiple traits and, more important-

ly, can exploit the correlation structure by borrowing information across multiple,

related traits. Second, joint analysis facilitates the elucidation of shared genetic

mechanisms and pleiotropic relationships, thus serving as an appropriate mean-

s for improving biological understanding.7–14 Finally, many traits are inherent-

ly multi-phenotypic. For example, metabolic syndrome, which increases risk for

heart disease, diabetes, and stroke, is defined based on the presence of three out of

five conditions;15, 16 information may be gained by using all five conditions as trait

measures rather than considering only formal diagnosis of metabolic syndrome.

A wide range of statistical and computational methods have been develope-

d for analyzing multiple phenotypes. Broadly speaking, these methods fall into
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three main categories. The first category is based on directly integrating univariate

results from analyzing each trait separately. However, these methods can handle

at most a moderate number of traits, e.g., less than 20 traits.17, 18 Furthermore,

such methods generally do not directly harness correlation and relationships a-

mong the traits. The second category of methods are based on applying classical

dimension reduction methods, e.g. principal component analysis5 and canoni-

cal correlation analysis,19 in order to collapse multiple traits into a single score.

However, results based on dimension reduction methods are difficult to interpret

and lose power when the weights for collapsing the multiple traits are imperfect.6

The final category is the broadest and is based multivariate regression methods,

which often assume a model for the relationships between multiple traits and a

single SNP.20–25 The specific modeling strategies underlying each approach varies

with some approaches using strategies such as classical mixed models and other-

s using alternative strategies, e.g., MultiPhen20 which uses ordinal regression to

regress a SNP on multiple traits. These methods often suffer when underlying

parametric assumptions are violated.26 Many of these methods have been extend-

ed to allow for accommodation of multiple variants as well as multiple traits,27–30

with the understanding the multi-variant analysis can oftentimes improve power

for the same reasons that multi-trait analysis can improve power.

There are considerable and increasing interests in high-dimensional structured

phenotypes, such as imaging traits or other omics data, as they are often inherent-

ly interesting and also can serve as intermediate traits which help in elucidat-

ing underlying molecular mechanisms while being more directly related to eti-
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ology. However, despite interest, phenotypes such as imaging outcomes,31 and

other sources of -omics data such as gene expression, metabolomics intensity32

and microbiome composition,33 continue to pose grand challenges. Beyond the

intrinsic high-dimensionality and scale of the data, such phenotypes are often

statistically complex in that they have underlying structure that needs to be ac-

commodated. Examples of structures include network/pathway relationships

in metabolomic data and gene expression data, and phylogenetic relationship-

s in microbiome data. Most existing multivariate-trait association methods do

not generally accommodate high-dimensional structured phenotypes. Methods

based on univariate analysis and collapsing rapidly lose power as dimensional-

ity increases,17, 18 since they typically suffer from power loss due to heavy mul-

tiple testing burden, which comes with the high-dimensional traits. Dimension

reduction-based association analysis usually considers surrogate outcomes (e.g.,

principal components), which breaks down the inherent structures in the original

phenotypes. More complicated multivariate regression modeling strategies of-

ten become unstable or computationally intractable when dimensionality of traits

increases.27, 29 None of the methods directly consider the issue of incorporating

high-dimensional structured traits, which leads to potential power loss of detect-

ing existing associations.34 Thus, new methods are necessary.

A powerful approach in genetic association analysis is the kernel machine re-

gression (KMR) framework, which has proven to be a useful tool for association

studies with both common and rare variants.35–39 Under the original KMR frame-

work, a single phenotype is modeled to be related to a group of genetic variants.
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The relationship is captured by way of a kernel function which measures simi-

larity among the risky variants. Then testing proceeds by comparing pair-wise

similarity in genetic variant profiles between subjects (measured by the kernel

matrix) to pairwise similarity in phenotypes (measured by the cross product ma-

trix of traits), with correspondence in similarity indicative of association.40, 41 By

intelligently choosing kernels, structure in the genetic variants can be directly ac-

commodated,42, 43 while dealing with high dimensionality.

Motivated by these kernel-based genetic association tests, we propose the d-

ual kernel-based association test (DKAT) which is designed to assess the asso-

ciation between a high-dimensional, possibly structured, phenotypes of interest

with multiple genetic variants, though the approach trivially applies to single ge-

netic variant analysis as well. The idea of DKAT is that we propose to use not

only a kernel for the genetic variants but also a kernel for the high dimension-

al and structured traits. In other words, we replace the cross product matrix for

traits in existing KMR framework with a kernel matrix to better capture the high-

dimensionality as well the structure of the traits. To associate the traits (now em-

bedded within a kernel) and a group of genetic variants, we again compare simi-

larity in genetic variant profiles to similarity in phenotypic profiles. In particular,

the normalized Frobenius inner product between two kernel matrices is used as

the statistic to summarize the genotype-phenotype association.

Besides being able to incorporate high-dimensional structured traits in genet-

ic association analysis, another major contribution of DKAT is that we introduce

a new test design for genetic association testing. Currently, two most popular
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p-value calculation methods for genetic association analysis is either based on

large-sample asymptotic theory29, 30, 36, 37 or via permutations.28, 44 However, the

large-sample asymptotic theory-based p-value calculation can lead to conserva-

tive test with accumulated estimation error,45, 46 as in studies with small samples

or high-dimensional traits. On the other hand, the permutation test is inefficient

when a stringent p-value is required, as in many genome-wide association stud-

ies. We propose a fast pseudo-permutation technique for DKAT, which approx-

imates the empirical distribution of all n! potential permuted DKAT statistics by

moment matching. In this new test design, we only calculate the first three sample

moments of permutations without explicitly calculating the permutations them-

selves. Then, the Pearson type III density with the same moments is used to ap-

proximate the empirical distribution of all permutations, where a Pearson type III

density is selected in this paper due to its good approximation performance for

DKAT-similar statistics.47–49 Fortunately, first three sample moments of these n!

permutations have closed-form expressions.50 Thus, we can analytically calculate

both the Pearson type III density and the DKAT p-value. Our DKAT test design is

more efficient and accurate than those currently used for genetic association tests,

since it neither requires explicit permutations nor relies on large-sample asymp-

totic theory.

5



Material and Methods

Throughout this paper, we assume that we have a study with n unrelated individ-

uals who have been genotyped and phenotyped. For the ith subject (i = 1, . . . , n),

let Gi = (gi1, . . . , gim) denote the vector of genotypes, where gij = 0, 1, or 2 rep-

resenting the number of minor alleles, and Yi = (yi1, . . . , yip) denote the set of p

traits, e.g. the expression values of p genes in a pathway or the abundances of p

metabolites in a pathway. The objective is to test the global association between

the group of traits and the group of genetic variants which will be accomplished

by using the kernel machine framework. We emphasize that although our focus

is on the setting in which we have multiple genetic variants, our method trivially

applies to the scenario when m = 1, that is, when we are interested in the relation-

ship between a single variant and multiple traits.

Single Kernel-based Association Tests

Before discussing multi-trait association analysis, we first briefly review the KMR

framework, which has been widely used to test the association between a set of

genetic variants and a single trait.35–39, 51, 52 Specifically, the KMR relates the trait

(continuous or dichotomous) to the set of genotype values using the following

generalized partial linear model:51, 52

g(E(yi|Xi,Gi)) = Xiα + f(Gi), (1)
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where α = (α0, α1, . . . , αq)
′ is the regression coefficients for the covariates, f(·)

is a generally specified function belongs to a space spanned by a kernel function

kg(·, ·), g(·) is a link function, such as identity function for continuous traits and

logit function for dichotomous traits. The kernel kg(·, ·) is the genotype kernel and

has corresponding kernel matrix KG, where KG(i, j) = kg(Gi,Gj), i, j = 1, . . . , n.

The key to this KMR framework is usage of a positive semi-definite kernel func-

tion kg(Gi,Gj) as a similarity measure between genotypes Gi and Gj ,42, 43 which

can facilitate capture of structure and relationships among genetic variants.

In the KMR model (1), the trait is related to the variants through f(·). Hence,

testing the hypothesis of no association between the trait and genetic variants after

adjusting for covariates is equivalent to testing f(·) = 0. Through connections

between KMR and generalized linear mixed models,51, 52 we can treat f(G) as a

vector of subject specific random effects with mean zero and variance τKG. Then

testing f(·) = 0 is equivalent to testing whether the variance component τ is equal

to zero, which can be easily accomplished using a variance component score test

with the following test statistic

S :=
1

2φ
(y − ŷ)′KG(y − ŷ) =

1

2φ
tr (KG(y − ŷ)(y − ŷ)′) , (2)

where y = (y1, . . . , yn)′, ŷ is the estimated trait values under the null model of

f(·) = 0, and tr(·) denotes the trace of a matrix. When the trait is continuous, φ =

σ̂2 with σ̂2 being estimated under the null model. When the trait is dichotomous,

φ = 1. Under the null, Q follows a mixture of χ2 distributions which can be

approximated using exact methods.53
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Test statistic (2) is essentially the sum of element-wise product of two n × n

matrices. One is KG and the other is cross product of the trait residuals (y−ŷ)(y−

ŷ)′. In genetic association analysis, the kernel matrix KG is often used to measure

the subject-pairwise similarity in terms of genotypes35–37 and the cross product of

residuals (y − ŷ)(y − ŷ)′ is often used to measure subject-pairwise similarity of

phenotypes.40, 41 Heuristically speaking, statistic S compares the subject-pairwise

similarity in the trait to that in genotypes, where a high correspondence usually

leads to a large statistic value and suggests existence of association.

There are two straightforward ways to extend the single kernel-based asso-

ciation test statistic (2) to accommodate multiple traits Y. One is to stack the

columns of Y into a huge column vector y∗ = vec(Y) and apply the statistic (2) to

y∗.27 However, a major limitation is that this approach can be computationally in-

tractable with high-dimensional traits since it needs to eigendecompose a np× np

matrix. The other approach to incorporate multiple traits is simply to replace the

univariate trait residuals cross product matrix (y − ŷ)(y − ŷ)′ by the multivariate

traits residuals cross product matrix (Y−Ŷ)(Y−Ŷ)′, where Ŷ is estimated under

the null model Y = XB + E assuming all traits are continuous. The second ap-

proach typically loses power when traits are highly or even modestly correlated

with each other.29 Furthermore, both approaches fail to capture any complicated

structures within traits (e.g., inherent regulatory network structure within tran-

scriptomic pathway expressions), which can further lead to power loss.34 To ad-

dress this issue, we propose the DKAT approach in the following section to allow

for testing association between a high-dimensional, possibly structured traits and
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one or more genetic variants.

A DKAT

To address the aforementioned limitations, we propose to use a phenotype kernel

KY to model multiple traits simultaneously. Similar the genotype kernel KG, the

phenotype kernel KY is used to summarize the phenotypic similarity. Compared

with the cross product matrix (Y − Ŷ)(Y − Ŷ)′ used in some existing methods,

DKAT is able to capture complex structures among the multiple phenotypes by

embedding the phenotypes in a kernel.

Like the single kernel-based association tests in KMR, we test the association

between multiple traits and multiple genetic variants by comparing the pheno-

typic similarity matrix and genotypic similarity matrix across pairs of individuals.

Motivated by works of relating two matrices from the same individuals,47–49 we

propose the new DKAT statistic as

D :=
tr(HKGHKY )√

tr(HKGHKG)tr(HKY HKY )
, (3)

where H = In − 11′/n is a centering matrix, In is the nth order identity matrix,

and 1 is a n-dimensional vector of ones. Since H is idempotent, the numerator

tr(HKGHKY ) is essentially the same as tr(HKGHHKY H), which is the element-

wise multiplication of centered genotype kernel matrix HKGH and centered phe-

notype kernel matrix HKY H. Hence, our DKAT statistic shares the same spirit of

comparing two similarities as the single kernel-based association tests statistic (2).
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Moreover, if the phenotype kernel is picked as KY = (Y − Ŷ)(Y − Ŷ)′, then the

DKAT statistic reduces to the form of KMR statistic in (2). Therefore, most exist-

ing kernel association tests27, 29, 35–37, 39, 51, 52 can be viewed as special forms of DKAT.

Alternative to comparing two kernel matrices, there exist some similar statistics

either comparing two input matrices47 or two distance matrices.48 Kernels have

been widely used to capture structures among genotypes.30, 35–38 Following this

steam, specific kernels are used in this paper to capture the inherent structures

among both genotypes and phenotypes.

Intuitively speaking, the larger the DKAT statistic, the more likely the geno-

type kernel matrix resembles the phenotype kernel matrix, which further implies

that the phenotypes might be associated with the genotypes in a specific way. To

calculate the exact critical value of a DKAT under a given significance level, we

need to study its distribution under the null hypothesis of no association. Two

current standard approaches of calculating the null distribution of a genetic as-

sociation test statistic are permutation-based resampling methods28, 44 and large

sample-based asymptotic methods.29, 30, 35–37 However, both methods have poten-

tial limitations. On one hand, it is computationally expensive to use permuta-

tions to achieve genome-wide significance. On the other hand, it is observed

that asymptotic methods can be conservative when the sample size is small or

modest.45, 46 To overcome these potential limitations, we calculate the p-value of

DKAT using a fast pseudo-permutation method, closely following the strategy be-

ing used in the RV coefficient literature,47–49 where a typical RV coefficient shares

the same form of DKAT statistic but uses totally different matrices other than KG
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and KY (both introduced in the next section) as used in this paper. Specifically, a

Pearson type III distribution is used to approximate the permutation null distri-

bution of DKAT by matching first three moments.49 The advantages of the new

DKAT p-value calculation strategy are two-fold. First, no explicit permutation is

required as the finite-sample empirical moments can be analytically calculated.

Second, closed-form expression of the Pearson type III density is available, and

thus our method allows fast and analytic p-value calculation for genetic associa-

tion analysis.

Choices of Kernels

A key aspect of DKAT is the kernels, which appropriately summarize the pheno-

typic and genotypic similarities between pairwise subjects. Even though DKAT is

statistically valid in protecting the correct type I error, irrespective of the kernels

being used. However, good choice of kernels, which better reflect the unique data

features, can improve the test power.33, 34 In this section, we first briefly review

some genotype kernels widely used in existing kernel-based association tests and

some kernels that could potentially be used for phenotypes. And then, we pro-

pose a specific phenotype kernel for the high-dimensional structured phenotypes

considered in this paper.

In literature, many kernels have been proposed for genotype data.42, 43 Some

popular examples include the linear kernel and the identity-by-state (IBS) kernel:

• Linear Kernel: kg(Gi,Gj) = G′iGj =
∑m

l=1 gilgjl
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• IBS Kernel: kg(Gi,Gj) = 1
2m

∑m
l=1(2− |gil − gjl|)

The linear kernel assumes a linear association pattern. That is, the function f(·)

in model (1) is of a linear form. It is simple and can be powerful when the true

underlying association pattern is linear. The IBS kernel measures the similarity

between Gi and Gj in terms of the number of alleles with IBS sharing by a pair.

The IBS kernel is positive definite,35 however the spanned functional space is less

studied. Both the linear kernel and the IBS kernel are additive forms, which makes

it easy to incorporate weights wl, l = 1, . . . ,m for each genetic variant.37

On the other hand, few studies have described the use of kernels for the com-

plex multi-dimensional traits as considered in this paper. In general, if all traits

are continuous, then the Gaussian kernel and the dth-order polynomial kernel are

often used. Also the binary kernel was shown to be a valid kernel function for all

multivariate binary traits.

• Gaussian Kernel: ky(Yi,Yj; ρ) = exp{−
∑p

l=1(yil − yjl)2/ρ}

• Polynomial Kernel: ky(Yi,Yj; d) =
∑p

l=1(yilyjl + 1)d

• Binary Kernel: ky(Yi,Yj) =
∑p

l=1 I[yil 6= yjl]

If the traits are mixed (a combination of continuous variables and binary vari-

ables), then we can define kernels for both the continuous and binary parts sep-

arately and then multiply them together as the final kernel function, which has

been shown to be valid for association analysis.39

No matter how large the dimension p is, the information in all traits is pooled

into a scalar by using the phenotype kernel. In this sense, DKAT is robust a-
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gainst high-dimensional phenotypes, which can be a major advantage over most

existing multivariate regression-based testing methods.27, 29 Besides the robust-

ness to high-dimensional traits, another major concern of this paper is to address

the network-type traits, such as expression of genes belonging to the same path-

way. For such gene pathway data, a network-based kernel has been proposed of

the form KY = YNY′,34 where N is the undirected adjacency matrix, and Nij = 1

represents that gene i and gene j interact with each other in an activating fashion,

Nij = −1 represents an inhibition pattern.

In reality, it is difficult to know the functional relationship between each gene

pair within the pathway. Hence, we replace the adjacency matrix N with the pre-

cision matrix Θ (also called inverse covariance matrix Σ−1), which can be estimat-

ed from the data without any prior biological knowledge. The precision matrix

Θ is useful in estimating partial correlations, which incorporates the functional

mechanism of the whole pathway. For example, under the Gaussian assumption,

Θij = 0 indicates that gene i and gene j are conditionally independent given all

other genes in the network/pathway, or equivalently speaking, gene i and j are

unconnected in the gene network/pathway.55 Similar to the undirected adjacen-

cy matrix N, Θ can also incorporate the underlying network-structure. Thus, we

propose the phenotype kernel matrix as KY = YΘ̂Y′, where Θ̂ is the estimated

precision matrix. A simple estimator is the sample precision matrix Θ̂s, and the

corresponding phenotype kernel matrix KY is proportional to the so-called pro-

jection similarity matrix in literature.30, 56 When the dimension of traits is high,

the sample precision matrix Θ̂s is unstable or even not estimable. In such a high-
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dimensionality scenario, we estimate the precision matrix via regularization. For

example, a graphical lasso estimator Θ̂gl can be derived by maximizing the lasso-

penalized log-likelihood.55

In practice, it is often true that multiple kernelsK1
G, . . . , K

t
G andK1

Y , . . . , K
s
Y are

available for testing in DKAT. Without knowing the true underlying association

model, it is of importance to accommodate multiple candidate kernels. In general,

there are two approaches to tackle this issue. The first average-type strategy is to

calculate an omnibusKo
G which is usually a linear combination ofK1

G, . . . , K
t
G, and

another omnibus Ko
Y which is usually a linear combination of K1

Y , . . . , K
s
Y . Then

a final DKAT(Ko
G, K

o
Y ) test is applied. The other minimum-type approach to ac-

commodate multiple candidate kernels is to pick the most significant kernel pair.

That is, K∗G and K∗Y are selected such that DKAT(K∗G, K
∗
Y ) has the smallest p-value

over all ts kernel pairs (Ki
G, K

j
Y ), i = 1, . . . , t, j = 1, . . . , s. However, the minimum

p-value is no longer a genuine p-value and permutations are often needed to es-

tablish the final significance. Details of these two approaches of accommodating

multiple candidate kernels, along with numerical evaluations, can be found in the

supplementary materials.

Besides the kernels, another important practical issue is to adjust for the con-

founding covariates effects, such as age, gender and principal components of

genotypes (for adjusting population structures). In genetic association tests, a

common strategy of adjusting for covariates is the residual-based approach.28, 30, 36, 37, 40, 41

That is, we first fit the null model with covariates only: g(E(yi|Xi)) = Xiα and

then calculate the residuals εY = Y − Ŷ of the null model. Next, one can con-
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struct the phenotype kernel on the residuals as the subject-wise trait similari-

ty after adjusting for covariates. That is, the phenotype kernel matrix KY =

(Y − Ŷ)Θ̂(Y − Ŷ)′ is used in DKAT, where Θ̂ is the estimated precision matrix

of residuals. Existing numerical studies have shown that it can have the correct

type I error as long as the number of covariates is much smaller than the sample

size.28, 30, 36, 37

Simulation Studies

We conducted extensive simulation studies under different scenarios to evaluate

the performance of DKAT in testing the association between high-dimensional

structured traits and genotypes. To mimic a relatively high-dimensional scenari-

o, p = 200 traits (e.g., expressions of genes belonging to a pathway) were con-

sidered in our simulation. As a comparison, most existing multivariate associa-

tion tests usually considered less than 20 traits.5, 14, 18, 25, 27, 29, 30 Two different cor-

relation structures were used in this simulation. One was the compound sym-

metry covariance structure as commonly used in literature.14, 25, 27, 29, 30 That was,

Σii = 1 and Σij = ρ for all i 6= j, where Σ was the covariance matrix of the

traits. The other correlation structure was the banded inverse covariance (preci-

sion) matrix Θ with Θi,i = 1, Θi,i−1 = Θi−1,i = ρ, and zero otherwise, where

Θ = Σ−1 was the precision matrix of traits. Assuming all traits were continu-

ous, then Rij|−{i,j} = −Θij/
√

ΘiiΘjj , where Rij|−{i,j} was the partial correlation

between trait i and j given all other traits. Thus, the banded precision matrix Θ

represented such a pathway that each gene was only related to its nearby genes
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conditional on all other genes in the pathway. In contrast to the compound sym-

metry covariance structure, the banded inverse covariance structure mimicked the

complicated functional regulatory mechanisms in a gene pathway. For simplicity,

we denoted these two covariance structures as Σ1 and Σ2 = Θ−1 in the rest of the

simulation section. To guarantee positive definiteness of Σ1 and Σ2, we simply

simulated ρ from Uniform (0,0.5) distribution. Finally, we conducted three differ-

ent simulation studies, where Simulation I was for a single SNP, Simulation II

was for multiple SNPs, and Simulation III was for multiple rare variants. Under

each simulation scenario, we considered sample size of either 500 or 1000 subjects.

Simulation I This simulation was designed to mimic the pleiotropy effect, where

a common SNP affected multiple traits. The data were generated from the model

yij = βj · gi + εij, i = 1, . . . , n, j = 1, . . . , p, (4)

where yij was the expression value of gene j for subject i and gi was a single S-

NP taking values 0, 1 and 2, with a MAF of 0.3. For each i, εij, j = 1, . . . p was

distributed as multivariate Gaussian with mean zero and covariance matrix Σ,

where Σ = Σ1 or Σ2. For simplicity, we did not consider covariates in the mod-

el since they could be easily adjusted via the residual-based approach described

previously. Under the null model, all βj = 0. Under the alternative model, we

set a proportion (γ = 10%, 20%, 30%) of traits to be truly associated with the SNP

(with non-zero β-coefficients). Without loss of generality, we set the first p∗ = γp

traits as relevant ones with coefficients βj generated from a uniform (0,
√

30/n)
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distribution, for j = 1, . . . , p∗, and βj = 0 for j = (p∗ + 1), . . . , p. The effect sizes

(following uniform (0,
√

30/n) distribution) changed with sample size and hence

it was meaningless to compare test powers under different sample sizes. These

effect sizes were selected to better distinguish different tests under each scenario.

Simulation II In the second simulation scenario, we tested the association be-

tween multiple SNPs and multiple traits. The multiple SNPs were generated

based on the LD structure of gene ASAH1, acid ceramidase 1, as used previous-

ly.36 A total of 93 HapMap SNPs are located within this gene. Based on the LD

structure of the ASAH1 gene, we used HAPGEN57 to generate SNP genotype data

at each of the 93 loci. After the SNPs were simulated, we generated the traits from

the following model:

yij =
93∑
k=1

βkjgik + εij, i = 1, . . . , n, j = 1, . . . , p, (5)

where relevant model parameters (e.g., γ,Σ) were the same as the previous Simu-

lation I. We selected 29 typed SNPs on Affy6 to calculate the genotype kernel KG

in the analysis. Under the null model βkj = 0, k = 1, . . . , 93, j = 1, . . . , p. Under the

alternative model, we selected the first p∗ = γp traits as causal ones which were

truly associated with the SNPs. For each causal trait, we randomly selected three

SNPs from the 93 SNPs as the causal SNPs for that trait, and simulated the nonzero

βkj-coefficient from uniform (0,
√

30/n) distribution for k = j1, j2, j3 ∈ {1, . . . , 93}

and j = 1, . . . , p∗, where different traits could have different causal SNPs. Final-

ly, to allow for the heterogeneous effect of different loci, we randomly assigned a
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sign for the β-coefficient of each SNP with even probability.

Simulation III For simulation of rare variants, we considered the previous de-

sign37 to generate rare variants. We simulated 10000 haplotypes for 1Mb region

on the basis of COSI58 to mimic the LD pattern, local recombination rate and pop-

ulation history of European descent. Only those variants with MAF< 3% were

included in the analysis. After rare variants being simulated, we generated the

traits according to model (5). Under the alternative model, we randomly selected

10% of the rare variants as causal ones and simulated the nonzero β-coefficients

from uniform (0, 2
√

30/n) × |log10(MAF )|. Other simulation settings were the

same as Simulation II.

Competing methods After the data were generated, DKAT was applied to test

the association between genotypes and phenotypes. The phenotype kernel used

in DKAT was KY = (Y − Ŷ)Θ̂gl(Y − Ŷ)′, where Ŷ was the phenotypes sample

mean and the graphical lasso regularization parameter was set as ρgl = 0.1 in

our simulation. The graphical lasso method was used for illustrative purposes

of constructing the phenotype kernel incorporating the high dimensionality as

well as network structures in traits. An optimal graphical lasso regularization

parameter was beyond the scope of this paper.

Along with DKAT, we also evaluated other methods for comparison. Among

existing multivariate-trait association tests, both multiple testing adjusted uni-

variate trait methods17, 18 and dimension reduction-based methods5, 19 can be lim-

ited with high-dimensional traits. Other multivariate traits-single SNP associa-
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tion testing methods20 suffer from power loss when there are systematic but weak

marginal effects for each SNP. To make the comparison fair, we focus on existing

methods that test association between multivariate-trait and multiple SNPs/rare

variants. Two of such methods are the Gene Association with Multiple Traits

(GAMuT) test30 and the multivariate sequence kernel association tests (MSKAT),29

which are briefly introduced in the following paragraph.

The GAMuT test statistic30 is actually the numerator of the DKAT statistic in

(3). However, it calculates the p-value differently, using large-sample results.30

The asymptotic distribution of GAMuT statistic is
∑n

i=1

∑n
j=1 λiξjχ

2
ij , where λi, ξj

are eigenvalues of HKGH and HKY H respectively, and χ2
ij are i.i.d. χ2 distribut-

ed with 1 degree of freedom. Then, the GAMuT p-value is calculated based on

this asymptotic distribution with quadratic form approximations.53, 54 To make a

fair comparison, the same phenotype kernel KY = (Y − Ŷ)Θ̂gl(Y − Ŷ)′ in DKAT

was applied in GAMuT in our simulations. The other method MSKAT assumes

a linear model between each individual trait with multiple genetic variants, and

considers the score test statistics sjk between the kth trait and jth variant, where

k = 1, . . . , p, j = 1, . . . ,M . Let Sj = (sj1, . . . sjp)
′ be the score vector between

the jth variant and all traits. Ignoring the weights, the MSKAT statistic has been

proposed as Q =
∑M

j=1 S
′
jΘ̂sSj ,29 where Θ̂s is the sample precision matrix. Un-

like Θ̂gl-based DKAT and GAMuT, the MSKAT statistic uses Θ̂s = Σ̂
−1

, which

requires n > p. To avoid this potential limitation, another variant of statistic

Q2 =
∑M

j=1 S
′
jSj is also considered,29 which is termed as MSKAT2 in our simu-

lations. MSKAT2 represents a broad class of multivariate-trait association testing
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methods that ignore the correlation structures among outcomes (such as DKAT

and GAMuT with the linear phenotype kernel K′Y = (Y − Ŷ)(Y − Ŷ)′). MSKAT

and MSKAT2 p-values are calculated in a similar way as GAMuT, which is based

on its asymptotic quadratic form approximation.29 MSKAT and MSKAT2 implic-

itly used the (weighted) linear kernel for genetic variants. To make the compar-

ison fair, the same linear kernels were used in DKAT and GAMuT. In particular,

we used the same linear kernel for the SNPs simulations (Simulation I and I-

I) and weighted linear kernel for the rare variants simulation (Simulation III).

The weight for each rare variant was specified as Beta(MAF,1,25) as suggested in

SKAT.37 Finally, under each simulation scenario, we evaluated the type I error of

each test with 1,000,000 replicates under the null model, and the power with 1,000

replicates under the alternative model. The empirical type I error rate and pow-

er were calculated as the proportion of replicates with a p-value smaller than the

nominal significance level.

Results

Type I Error Simulation Results

The empirical type I error rates under Simulation I are reported in Table 1. Based

on the table, DKAT is always able to protect the correct type I error across different

scenarios. On the other hand, GAMuT and MSKAT are conservative under each

simulation scenario, especially when the sample size is relatively small (n = 500).

MSKAT2 seems to be more conservative under Σ2 than Σ1. To further explore the
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type I error of all tests at more stringent significance levels, we present the QQ-

plots of p-values under the configuration of n = 500 and Σ = Σ1 in Figure 1. As

we can see, the p-values of DKAT stick with the 45 degree line, which indicates

that the type I error of DKAT is well controlled under different significance levels.

For GAMuT and MSKAT, we can see a clear departure from the 45 degree line

with plots skewing downward, implying these tests are very conservative, which

are all consistent with the results from Table 1. QQ-plots under other simulation

configurations are qualitatively similar and hence are not reported. Similar empir-

ical type I error results have also been observed in Simulation II and Simulation

III.

It has been observed in single trait kernel association tests that estimation error

(due to small sample size) can lead to conservative tests,45, 46 which also explains

the conservativeness of GAMuT and MSKAT in this simulation. Taking GAMuT

as an example, the asymptotic null distribution of GMAuT depends on the eigen-

values of matrix HKY H where KY = (Y− Ŷ)Θ̂gl(Y− Ŷ)′, which further requires

accurate estimation of the precision matrix. Given the high dimensionality of trait-

s, many parameters in the precision matrix need to be estimated. The accumulated

estimation errors in GAMuT deteriorate the performance of the test resulting in

over-protected (conservative) p-values.45, 46 Unlike GAMuT and MSKAT, which

need to estimate the whole precision matrix Θ, MSKAT2 only needs to estimate

the diagonals Σjj , j = 1, . . . p. The accumulated estimation errors in MSKAT2 is

much smaller and hence it is less conservative than GAMuT and MSKAT. Final-

ly, the way DKAT calculates its p-value is more robust to these estimation errors,
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and hence DKAT is robust to small samples and high-dimensional traits. To sum-

marize, the proposed DKAT always has the correct type I error rate even under

a very stringent nominal significance level. On the other hand, GAMuT, MSKAT

and MSKAT2 can be conservative especially when the sample size is relatively

small or modest.

Power Simulation Results

Without loss of generality, we compare the power of all tests under significance

level α = 2.5 × 10−6 (reflecting a genome-wide Bonferroni correction for 20,000

genes). The power under Simulation I is presented in Figure 2. It is clear to see

that DKAT is always the most powerful test under each scenario. On the other

hand, MSKAT2 always tends to be the least powerful test (except for the small

sample scenario, where MSKAT can have lower power due to the its conserva-

tiveness as seen in the previous type-I error simulation results section). This is

because the phenotype kernel KY = (Y − Ŷ)Θ̂gl(Y − Ŷ)′ used in DKAT and

GAMuT (or Θ̂s used in MSKAT) can incorporate the inherent correlation struc-

ture among the multivariate traits, while MSKAT2 simply ignores the correlations

among traits. The power gain of DKAT/GAMuT/MSKAT over MSKAT2 increas-

es with the (partial) correlation strength among traits (i.e., ρ value in Σ1 or Σ2).

For each test considered in this simulation study, the power of test increases as

the proportion (γ) of associated traits increases (i.e., as the genes are increasingly

pleiotropic). This is because it can further amplify the association signal by in-

cluding more relevant traits into the multi-trait association analysis. Qualitatively
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similar empirical power results are also observed in Simulation II and Simula-

tion III.

To summarize, DKAT is always more powerful than GAMuT, MSKAT and

MSKAT2. The power gain probably comes from two aspects. One is the usage

of phenotype kernel to incorporate the complex structure of traits into association

analysis (compared to MSKAT2). The other is from the new efficient and robust

p-value calculation (compared to GAMuT and MSKAT).

Analysis of the Grady Trauma Project Data

We applied the newly proposed DKAT approach to a Grady Trauma Project data

set that was collected as part of a larger study investigating the role of genetic

and environmental factors in predicting response to stressful life events.60 337

individuals were recruited from the Grady Memorial Hospital in Atlanta, Geor-

gia. Blood samples were collected from these individuals who provided informed

consent and participated in a verbal interview. For each individual, both gene

expressions and genotypes were measured. Demographic data such as gender,

age and race were also collected. Details on data collection and preprocessing can

be obtained from previous publications.60 Previous studies have shown that ge-

netic risk factors may account for up to 30%-40% of the heritability of developing

post-traumatic stress disorder (PTSD) following a trauma, and many gene path-

ways that are associated with PTSD have been identified.61 In this analysis, we

further studied the genetic regulation of expressions of genes belonging to these

pathways. In particular, we were particularly interested in the cis-regulation, that
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was, whether pathway gene expressions were associated with the SNPs in the

same pathway. Expressions of 8,588 genes belonging to 224 pathways (with more

than one gene in each pathway) were measured. In each pathway analysis, the

phenotypes were the gene expression values and the genotypes were the SNPs

in that pathway. A total of 164,503 SNPs were mapped to the 8,588 genes in 224

pathways. The median number of genes in a pathway was 27 with the first and

third quantiles being 14 and 48.

Two different sets of association analyses were conducted. In the first set of

association analysis, we evaluated the association between the multiple gene ex-

pressions in a pathway and all SNPs in the same pathway using DKAT, GAMuT,

MSKAT and MSKAT2. In the second set of association analysis, we evaluated the

importance of each individual gene for certain pathways that might be of interest

based on results of the first analysis. In other words, we examined the association

between the pathway gene expressions and SNPs in each individual gene belong-

ing to the pathway. For all association analyses, we adjusted the covariates effects

of gender, age, race and the top ten principal components of the genotype data.

To account for multiple testing, we set family-wise significance level of 2.2 ×

10−4 = 0.05/224, which corresponds to a Bonferroni correction based on the num-

ber of pathways being tested. Under this significance level, 18, 17, 16 and 1 path-

ways have been found that their gene expressions were significantly associated

with their SNPs by DKAT, GAMuT, MSKAT and MSKAT2 respectively. Com-

pared with MSKAT2, it is clear that incorporating the network-type gene regula-

tory structure via the precision matrix (as in DKAT/GAMuT/MSKAT) can large-
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ly enhance the discovery power of association analysis between pathway gene

expressions and SNPs. The DKAT is slightly more powerful than GAMuT and

MSKAT, which is probably because the test design of DKAT is more efficient for

this data set.

The only significant pathway detected by all DKAT, GAMuT, MSKAT and M-

SKAT was asthma (KEGG: hsa05310). A further interesting analysis was to test

which individual gene regulates the asthma pathway gene expressions. That was,

we tested the association between asthma pathway gene expressions and all S-

NPs in a single gene belonging to that pathway. In this data, a total of 167 SNPs

were detected in 10 genes in the asthma pathway. Under the gene-level SNPs and

pathway-level expressions association analysis, DKAT, GAMuT and MSKAT al-

l detected four genes (HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1) which

regulated the asthma pathway expressions while MSKAT2 only detected two of

them (HLA-DRB1, HLA-DQA1). Further functional study of these genes on asth-

ma may be of biological interest.

Discussion

In this article, we have proposed DKAT for evaluating the association between

high-dimensional structured traits and multiple SNPs or rare variants. Compared

with most existing kernel association tests (e.g., SKAT), the novelties of DKAT are

two-folded. First, an additional phenotype/trait kernel is used, which can incor-

porate the inherent complex structure of the traits and thereby improve the statis-
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tical power for detecting an existing association signal. The numerical studies in

this paper are mainly designed to mimic the scenario of high-dimensional, struc-

tured traits, where we propose a network-type phenotype kernel by replacing the

adjacency matrix34 with the precision matrix. We emphasize that it is possible to

design new appropriate kernels for other data types, which can lead to useful and

powerful association analysis. Second, unlike existing association tests, DKAT

provides a new robust strategy to compute p-values in genetic association testing.

The DKAT p-value is less sensitive to estimating errors in covariance terms com-

pared to other methods (e.g., GAMuT and MSKAT), and is extremely appealing

with high-dimensional traits, where it is difficult to accurately estimate the trait

covariance matrix given the dimensionality. Thus, DKAT is more robust than most

existing methods in testing the association between high-dimensional structured

traits and genotypes.

As an association test, DKAT has four advantages. First, DKAT is methodolog-

ically flexible in testing association between an arbitrary set of traits and an arbi-

trary set of genetic variants. It can test the association between multiple traits and

either a single/multiple SNPs or multiple rare variants, without making paramet-

ric assumptions. On the contrary, many existing multivariate trait association tests

can only handle a single SNP.14, 20, 23–25 Others often assume that traits are associat-

ed with SNPs through a linear model.27, 29 Second, DKAT can evaluate biologically

meaningful hypotheses. The phenotype kernel in DKAT can capture pleiotropy

effects among the phenotypes and the genotype kernel can capture epistasis ef-

fects among SNPs. With prior biological knowledge, it can be of interest to apply
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DKAT to test associations between a pre-specified set of traits and a pre-specified

region of genetic variants, the results of which may further lead to meaningful

biological insights. Third, DKAT is also statistically very powerful. As illustrated

previously in the SNP-set association test,35, 36 a SNP-kernel can amplify the as-

sociation signal by collapsing information across multiple SNPs. Moreover, the

phenotype kernel in DKAT can further amplify the association signal by collaps-

ing information across multiple traits. After amplifying twice, DKAT can greatly

improve the statistical power to detect any existing association signal. Fourth, D-

KAT is also computationally scalable. Only matrix multiplication is required in

DKAT. However, both GAMuT and MSKAT requires eigendecomposition of n×n

matrices, which can be computationally unstable for large sample size. Further-

more, the asymptotic p-value calculation in GAMuT and MSKAT requires large

n or small p, otherwise it can be conservative due to estimation error.45, 46 On the

other hand, DKAT is applicable to any sample size n and trait dimension p. In

this regard, DKAT is appropriate for the large p small n problems as frequently

encountered in modern scientific studies.

The design of Simulation II (SNPs-set) and Simulation III (rare variants) is in

vein with previous simulation studies in the literature.36, 37 For example, the same

ASAH1 gene/LD structure is used in the paper. Since no relevant assumptions

are made, we believe that our method should also work well with other genes/LD

structures. As indicated in our numerical studies, including more relevant traits

in DKAT increases the power to a large extent. However, when more noise traits

(not associated with the SNP-set) are added, it may lead to power loss. In practice,
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the true association signal may not be known. Adaptive testing strategies could

be used to address this uncertainty.44, 64 Finally, to aid interpretation of which ge-

netic variants or which traits are associated, it is of interest to prioritize individual

genetic variants/traits by incorporating variable selection in DKAT.65 We believe

these issues are of importance and warrant further investigation.
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Figure Legends

Figure 1: QQ plots: − log10 QQ plots for DKAT, GAMuT, MSKAT and MSKAT2

under Simulation I with 500 samples. X-axis represents − log10 expected p-values

and Y-axis represents − log10 observed p-values.

Figure 2: Power under Simulation I: Power for DKAT (black), GAMuT (red), M-

SKAT (green) and MSKAT2 (blue). X-axis represents proportion of relevant traits

(γ = 10%, 20%, 30%) and Y-axis represents power.

Table 1: Empirical type I error rates (divided by the nominal significance level α)
under Simulation I.

Σ n α DKAT GAMuT MSKAT MSKAT2
10−3 1.04 0.09 0.01 0.87

500 10−4 1.06 0.01 0 0.67
10−5 0.90 0 0 0.50

Σ1

10−3 0.92 0.31 0.19 0.93
1000 10−4 1.07 0.13 0.12 0.56

10−5 1.00 0 0 0.80
10−3 0.96 0.10 0.01 0.21

500 10−4 1.03 0.02 0 0.12
10−5 0.90 0 0 0.10

Σ2

10−3 1.06 0.23 0.27 0.37
1000 10−4 0.89 0.14 0.10 0.23

10−5 0.90 0 0 0.30
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