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Abstract

Many large GWAS consortia are expanding to simultaneously examine the joint

role of DNA methylation in addition to genotype in the same subjects. However,

integrating information from both data types is challenging. In this paper, we propose

a composite kernel machine regression model to test the joint epigenetic and genetic

effect. Our approach works at the gene level, which allows for a common unit of

analysis across different data types. The model compares the pairwise similarities in

the phenotype to the pairwise similarities in the genotype and methylation values; and

high correspondence is suggestive of association. A composite kernel is constructed

to measure the similarities in the genotype and methylation values between pairs of

samples. We demonstrate through simulations and real data applications that the

proposed approach can correctly control type I error, and is more robust and powerful

than using only the genotype or methylation data in detecting trait-associated genes.

We applied our method to investigate the genetic and epigenetic regulation of gene

expression in response to stressful life events using data that are collected from the

Grady Trauma Project. Within the kernel machine testing framework, our methods

allows for heterogeneity in effect sizes, nonlinear and interactive effects, as well as rapid

p-value computation.

1 Introduction

The etiology for most common human diseases is believed to be multifactorial, with risk

factors including heritable genetic variants as well as environmental, behavioral factors and

possible interactions between them (Luzzatto and Pandolfi, 2015; Kirchner et al., 2013). In

the past few years, genome-wide association studies (GWAS) have been successful in iden-

tifying genetic variants, especially in the form of single nucleotide polymorphisms (SNP),

that are associated with a number of human diseases (Visscher et al., 2012). However, SNPs

discovered by GWAS can usually account for only a small fraction of the genetic varia-
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tion of phenotypes in the human population, leading to the so-called “missing heritability”

phenomenon (Maher, 2008; Manolio et al., 2009).

Several reasons have been suggested for the missing heritability, including the possibil-

ity that environmental or genetic risk factors impact the disease risk through epigenetic

modifications, especially via DNA methylation (Johannes et al., 2008, 2009). Consequently,

many large GWAS consortia are expanding to simultaneously examine the joint effect of

DNA methylation. For example, Liu et al. (2013) identified two clusters within the ma-

jor histocompatibility complex region whose methylation level mediates the genetic risk of

rheumatoid arthritis using genome-wide methylation variation. The importance of jointly

considering the genetic and epigenetic effect is further highlighted by the association be-

tween epigenetic perturbations and cancer (Zhang et al., 2012; Kulis and Esteller, 2010).

Some large scale genomic studies, such as the Cancer Genome Atlas (The Cancer Genome

Atlas Consortium, 2012, 2008), International Cancer Genome Consortium (Hudson et al.,

2010), now routinely collect information on methylation for different types of cancers. This

“multi-dimensional genomic data” provides unique opportunities to explore the regulation

in biological processes underlying the disease of interest.

Current examination of the “multi-dimensional” genetic and methylation data often

starts by forming SNP-CpG pairs, and then tests the joint effect of each SNP-CpG pair

via parametric models, followed by subsequent multiple comparison adjustment (Liu et al.,

2013; Hong et al., 2015). This approach suffers from the same limitations as the single SNP

analysis in GWAS. First, the method can be underpowered due to the multiple-comparison

burden. When the number of SNPs and CpGs increases, the multiple-comparison burden

can very quickly become extremely stringent, prohibiting such methods from genome-wide

application. Filtering is necessary so that only CpGs that are differentially methylated and

SNPs that are partially associated with the phenotype can be included in the integrative

analysis (Liu et al., 2013). Second, because of the imperfect linkage disequilibrium (LD)
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between the typed SNPs and the true causal variants, this single SNP analysis suffers from

poor reproducibility. Third, the single marker analysis fails to detect joint and possible in-

teractive effects from multiple SNPs and CpGs. To overcome these limitations, we propose a

region-based approach that combines SNPs and CpGs into biologically meaningful marker-

sets and tests their joint association with the phenotype. We focus on gene-based analysis.

SNPs and CpGs that are mapped to the same gene form a SNP-set and a CpG-set. It is

also possible to group the SNPs and CpGs based on other genomic features such as biologi-

cal pathways, functional groups or other important genomic regions, which we will broadly

referred to as a “gene”. We consider a “gene” as the unit of analysis. By combining the

genotype and methylation data together, our approach answers the simple and biologically

meaningful question “is the ‘gene’ associated with the phenotype?” and “if so, what is the

possible underlying causal relationship?”

We propose to use the semiparametric kernel machine regression (KMR) framework for

testing the joint genetic and epigenetic effect on the phenotype. KMR (Liu et al., 2007,

2008) is a powerful and operationally simple approach that has gained much popularity in

the field of GWAS (Kwee et al., 2008; Wu et al., 2010; Lin et al., 2011) and rare variant

association studies (Wu et al., 2011; Lee et al., 2012). The KMR measures the genetic

similarity with a kernel function, a common tool in the support vector machine literature

(Cristianini and Shawe-Taylor, 2000), and compares the pairwise similarity in genotype to

the pairwise similarity in the phenotype. High correspondence is suggestive of association.

For the joint testing, we propose to construct a composite kernel, a weighted average of two

kernels that are constructed from genotype and methylation data seperately, to measure the

joint similarity in both data types. This composite kernel is then compared to the phenotype

for association testing. The weighting parameter in the composite kernel can be varied for

optimal power. Statistical significance of association is evaluated via a perturbation based

approach, which is more powerful in some scenarios, or a projection approach, which is

4



computationally faster.

We applied our method to investigate the genetic and epigenetic regulation of gene expres-

sion in response to stressful life events using data that are collected from the Grady Trauma

Project, and identified 732 genes that showed significant cis-regulation, i.e., the genotype

and methylation regulates the expression of the gene itself. For genes that show significant

joint association, we further considered a subsequent mediation model to infer the possible

causal relation, with the assumption that the methylation can be a potential mediator of the

genetic effect on gene expression. The mediation model extends the classical causal steps

model (Baron and Kenny, 1986; Judd and Kenny, 1981; MacKinnon et al., 2007), and inves-

tigates the possible causal relationships between genotype, methylation and gene expression

in this data set by evaluating whether 1) the genotype is associated with methylation and

2) whether the methylation is associated with gene expression on the genotype.

Our proposed framework provides a unified approach for integrative analysis of genotype

and methylation. By testing the genetic and epigenetic effect together, our joint analysis

approach can be more robust and usually more powerful than methods that investigate only

one data type. The gene-based approach provides a common unit of analysis for different

data types, reduces the number of comparisons, and facilitates interpretation of results.

2 Method

2.1 Models and Notations

Suppose that data are collected on n independent subjects with quantitative or dichotomous

phenotype (y1, y2, · · · , yn)′. We assume that the SNPs and CpGs are grouped into different

genes based on prior biological information. G is a n× p1 matrix of the genotype data and

M is a n × p2 matrix containing the methylation values, with each row denoting data for

a single subject. p1 and p2 are the total number of SNPs and CpG sites in this gene. Let
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X denote a n × q matrix of additional variables that we want to adjust for, such as age,

gender, smoking status, and principal components (PC) for population structure. We let

Z = (G,M) represent both the genotype and methylation data.

We relate the phenotype to genotype and methylation via a semiparametric KMR model.

Specifically, we consider that:

g(E(y)) = β0 + Xβ + h(Z), (1)

where g(·) is a link function that can be set to the identity function or the logistic function

when the y is continuous or dichotomous. β is the vector of regression coefficients for the

additional covariates X, and h(·) is a possibly nonlinear function of the joint genotype and

methylation effect on the phenotype of interest.

2.2 Kernel Machine Regression Model

Under the KMR framework, h is assumed to be a function in a reproducing Kernel Hilbert

space H generated by some kernel function K(·, ·). The kernel matrix K is a matrix with

the (i, i′)th element being K(Zi, Zi′), which measures the similarity between individual i and

i′ based on the genotype and methylation values.

We are interested in the joint genotype and methylation effect. The null hypothesis is:

H0 : h(·) = 0.

To test this hypothesis, we use the connection with linear mixed model. Specifically, it has

been shown that the KMR model in (1) is equivalent to the (generalized) linear mixed model

(Liu et al., 2007; Pearce and Wand, 2006)

g(E(y)) = β0 + Xβ + h,
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in which h is a random effect with mean 0 and variance τK. Under this mixed model

specification, testing the null hypothesis h = 0 is equivalent to testing whether τ = 0.

Under the KMR framework, hypothesis testing is conducted via the variance component

score test (Kwee et al., 2008; Wu et al., 2010, 2011; Liu et al., 2007). The test statistic is

constructed as

Q = (y − ŷ0)
′K(y − ŷ0)/φ,

where ŷ0 are the estimates of y under the null hypothesis, and φ is the estimated dispersion

parameter. φ = σ̂2
0, the estimated residual variance under the null hypothesis when y is

continuous, and φ = 1 when y is dichotomous. Under the null hypothesis, Q asymptotically

follows a mixture of χ2 distribution, which can be obtained easily via moment matching (Liu

et al., 2007, 2009) or exact methods (Davies, 1980).

2.3 Composite Kernel for Combined Genotype and Methylation Effect

In principle, any positive semi-definite matrix that satisfies Mercer’s theorem (Cristianini

and Shawe-Taylor, 2000) can be used as a valid kernel. However, good choices of kernel that

fully incorporate the properties of the data can lead to statistical tests with higher power.

Constructing a kernel using either genotype or methylation data is a common practice, with

many kernels designed for each data type. For example, popular kernels in SNP-set analysis

include the linear kernel, the quadratic kernel, the identical by state (IBS) kernel and their

weighted counterparts.

• Linear Kernel: K(Gi,Gi′) = G′iGi′

• Quadratic Kernel: K(Gi,Gi′) = (G′iGi′ + 1)2

• IBS Kernel: K(Gi,Gi′) = 1
2p

∑p
j=1(2− |Gij −Gi′,j|)

Suitable kernels for methylation data include the Gaussian kernel, the linear kernel, and
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kernels that incorporate both the methylation values and the CpG location (Mayo et al.,

2015).

While kernels for individual data type exist, constructing a proper kernel that incor-

porates both genotype and methylation data is not straightforward. First, it is usually

unrealistic to assume that the SNP-set and the CpG-set influence the phenotype in the

same manner, and naive construction of kernels using a data-set that concatenates the two

data types is often inappropriate. Secondly, the units and scales are inherently different for

genotype and methylation data. Genotype data counts the number of minor alleles at each

locus and is scaled to 0, 1 and 2. However, methylation data measures the proportion of

CpGs that are methylated at each position and is inherently quantitative. Proper weighting

is necessary in constructing a kernel that incorporates both data types.

We propose to construct a composite kernel as follows:

K(Z,Z) = wK1(G,G) + (1− w)K2(M,M),

where K1 and K2 are kernel functions for genotype and methylation respectively, and w ∈

[0, 1] is a weighting parameter. Any valid kernel based on genotype or methylation data can

be used for K1 or K2, allowing for distinct genotype and methylation effect to be modeled

additively. Per the connection with generalized linear mixed model (Liu et al., 2007; Pearce

and Wand, 2006), the function h in the kernel machine regression model (1) with such a

composite kernel can be considered as a random effect with mean 0 and variance τwK1 +

τ(1− w)K2.

Because of the possibility that K1 and K2 are of different scales, and that QG = φ−1(y−

ŷ0)
′K1(y − ŷ0) and QM = φ−1(y − ŷ0)

′K2(y − ŷ0) are of orders of magnitude different, we

standardize K1 and K2 before constructing an composite kernel. In specific, we calculate

η = SD(QG)/ (SD(QG) + SD(QM)), take K̃1 = (1 − η)K1 and K̃2 = ηK2, and use K̃1 and
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K̃2 to construct the composite kernel. With some abuse of notation, we designate K̃1 and

K̃2 as K1 and K2. By doing this standardization, the genetic and epigenetic data contribute

equally to the test statistic when w is selected as 0.5. By doing so, we implicitly scales the

genotype and methylation data by weighting at the kernel level instead of at the original data

level. w is constrained to ensure the positive semi-definiteness of the composite kernel. w

controls the relative contribution of the genotype and methylation to the phenotype. When

w = 1, the implicit assumption is that the phenotype does not depend on methylation; and

w = 0 implies that the genotype effect is zero.

When w is fixed, hypothesis testing is straightforward through the usual variance com-

ponent test by considering the composite kernel as merely a single kernel. In reality, the

optimal choice of w depends on the true nature of the genotype and methylation effects

and is unknown prior to analysis. In the prediction-based statistical learning literature, w

is usually estimated from the data. Unfortunately, this supervised estimation of w can lead

to inflated type I error. In this manuscript, we propose two approaches that both consider

multiple choices of w in constructing the composite kernel for association testing. The first

method utilizes a perturbation based approach for the evaluation of statistical significance.

The second method uses the idea of Kernel PCA, and enables analytical computation of the

p-value.

2.3.1 Perturbation based Inference Based on Composite Kernel

The objective is to test the joint genotype and methylation effect using a composite kernel,

without a prior specification of w. The perturbation based approach starts by considering a

grid of w: (w1, . . . , wL) between 0 and 1. This corresponds to L different kernels

Kd(Z,Z) = wdK1(G,G) + (1− wd)K2(M,M).
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For each Kd, it is easy to construct the score statistic Qd and obtain the corresponding

p-value pd. We use the minimum p-value across different choices of ds as the test statistic,

which is then compared to its null distribution for the final p-value. The null distribution is

obtained through a perturbation-based approach that takes into account of the correlation

between the score statistics. The technical details of the perturbation procedure are outlined

in Wu et al. (2013), but we provide an overview of the procedure below.

This perturbation based approach takes advantage of our knowledge about the asymptotic

distribution of the quadratic forms for (Q1, . . . , QL). For quantitative traits, (y− ŷ0)/σ̂0 is

asymptotically distributed as standard normal when the null hypothesis is true. Then each

Qd can be viewed as a quadratic form of standard normal vectors sandwiching different kernel

matrices. The vector of normals are the same across (Q1, . . . , QL), with all the differences in

the kernels. Therefore, we can replace (y − ŷ0)/σ̂0 using newly generated standard normal

vectors to construct the empirical null distribution. The simulated standard normal vectors

are rotated properly (using an augmented matrix constructed from all the kernels) to capture

the correlation between different kernels. Then for each perturbation sample and each kernel,

we can obtain a p-value. We compare the smallest p-value from the original dataset with

the smallest p-values across all kernels in all the perturbations for final p-value calculation,

which guarantees that we have correct type I error control. The procedure is similar when

y is dichotomous except that we need to use the working linear model.

Although this perturbation approach relies on a Monte Carlo generation of p-value, it

offers advantages to permutation because it retains all the possible correlation between ad-

ditional covariates and genotype/methylation effect, while direct permutation fails to do so.

Perturbation is also computationally efficient: it requires only generating random normal

vectors while permutation requires reconstruction of kernel matrices, and recalculation of p-

values through the moment matching or characteristic function inversion method. Therefore,

the perturbation based approach is computationally much faster than permutation.

10



The number of grids L can impact both the computational speed of the algorithm and

the power of the test. With the increase of L, the computational time can have a modest

increase, due to the need to generate a rotation matrix with dimensionality equal to the

sum of number of nonzero eigenvalues from all of the kernels under consideration, followed

by an eigen-decomposition of this matrix. If the rank of individual composite kernel is high

(i.e. many SNPs and/or methylation markers with low correlation) and if the number of

kernels under consideration is large (i.e. L is large), the reduction in computational speed is

more profound. The relationship between L and the power is more complicated. The power

depends on the number of tests under consideration (L), and the correlations between these

tests and the test using the “optimal” kernel (i.e. the composite kernel with the optimal

value of w). By taking into account the correlations between tests using different kernels, the

perturbation procedure can have very little power loss even when many tests are conducted

if the tests are highly correlated. In the most extreme cases that the tests from the different

kernels output exactly the same p-value (for example, the same kernel is repeated multiple

times), the final p-value will be the same as the individual p-values. However, in cases

when the tests using different kernels are independent, including too many tests can lead

to substantial power loss. Because the composite kernel is constructed using a weighted

average of two kernels, correlation between tests depends on the weighting parameter w . If

we set the grid points too crude, we run into the risk that none of the kernels captures the

underlying data structure. However, if we set the grid points too dense, we include many

tests that output very different p-values from the “optimal” kernel. Both situations will

lead to reduced power. In our simulation and real data analysis, we selected to use five grid

points (0, 0.25,0.5,0.75, 1), which showed a good practical balance.
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2.3.2 Kernel PCA Based on Composite Kernel

Although computationally more efficient than permutation, the perturbation method still

relies on Monte Carlo calculation of p-values. Analytical calculation of p-values cannot be

obtained easily because of the possible correlation between the genotype and methylation

effects.

Here we propose an alternative approach that starts from the same composite kernel, but

linearly transform the kernel space using kernel PCA and basis projection, which enables

analytical computation of the final p-values. Model (1) with a composite kernel is equivalent

to the following model

g(E(y)) = β0 + Xβ + h1(G) + h2(M), (2)

in which h1 and h2 are from function spaces generated by kernel functions K1 and K2.

We use kernel PCA, a nonlinear version of PCA to transform the unknown nonparametric

functions h1 and h2 into linear functions. Consider eigendecomposition of K1 and K2 such

that K1 = VGΛGV′G and K2 = VMΛMV′M where VG and VM are the eigenvectors and

ΛG = diag(λG,1 ≥ λG,2 ≥ · · · ≥ λG,k) and ΛM = diag(λM,1 ≥ λM,2 ≥ · · · ≥ λM,`) are the

associated positive eigenvalues. Let ZG = VGΛ
1/2
G and ZM = VMΛ

1/2
M . Model (2) can be

rewritten as

g(E(y)) = β0 + Xβ + ZGβG + ZMβM . (3)

The major purpose of this kernel PCA is to transform the unknown nonparametric func-

tions h1 and h2 into linear functions, which can then be easily manipulated. Although the

dimension of the nonparametric functions h1 and h2 are unknown and potentially infinite,

the dimensions of ZG and ZM are bounded by n. Low-rank approximation is also possible

that we only use the leading eigenvectors for ZG and ZM that can explain the majority of
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the variability in the genotype and methylation data.

After linearizing, we project the methylation data to the genotype and construct the

following model:

g(E(y)) = β0 + Xβ + ZGγG + Z∗MγM , (4)

where Z∗M = (I − PG)ZM with PG = ZG(Z′GZG)−1Z′G. Z∗M is the residuals obtained by

performing linear regressions of each component of ZM on ZG. It corresponds to a subspace

that is orthogonal to the column space of ZG. γG and γM are the regression coefficients

under the transformed model.

We now assume γG and γM are random variables with mean 0 and variance τw and

τ(1−w) respectively — this corresponds to that the genetic and epigenetic effect are random

effects with mean 0 and variance τwK1 and τ(1−w)K∗2 respectively, in which K∗2 = Z∗MZ∗′M =

ZM(I − PG)Z′M . The null hypothesis can be written as H0 : τ = 0 under this transformed

model. A variance component score statistic under the transformed model can be constructed

as follows:

Q∗ = φ−1[w(y− ŷ0)
′K1(y− ŷ0) + (1− w)(y− ŷ0)

′K∗2(y− ŷ0)]

= wQG + (1− w)Q∗M ,

(5)

Because ZG and Z∗M are orthogonal to each other, QG and Q∗M are asymptotically inde-

pendent mixtures of χ2 distributions. Therefore, Q∗ also follows a mixture of χ2 distributions,

which can be approximated using the moment matching approach as developed in Ionita-

Laza et al. (2013). The details of choosing w and obtaining the final p-value can be found

in the supplemental file section S1.

Note that we project the methylation data onto the genotype data, similar to a procedure

that includes methylation as covariates and test for additional epigenetic effects beyond the

genetic effect on the outcome. Projection on the other direction is also possible.
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2.4 Simulation Studies

2.4.1 Simulations when the genotype and methylation are independent

We first conducted simulations when genotype and methylation are simulated independently.

We simulated gene ASAH1 (acid ceramidase 1), a gene that encodes enzyme acid ceramidase,

which has been associated with a lysosomal storage disorder known as Farber disease (Li

et al., 1999). 93 SNPs within ASAH1 were simulated using HAPGEN2 (Su et al., 2011) to

have the same LD structure as the CEU (Utah residents with ancestry from northern and

western Europe) samples from international HAPMAP project under release 24 (Altschuler

et al., 2005). Supplemental figure S1 shows a heatmap illustrating the LD structure of this

simulated gene. We simulated genotypes for 15,000 subjects and randomly selected from

this pool to generate data sets with desired sample sizes. 29 of the 93 SNPs are genotyped

in the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA),

constituting the “typed” SNPs. Only these “typed” SNPs were used for association testing.

This mimics a real GWAS in that the causal SNPs may not be genotyped, but are only in

LD with the “typed” SNPs. Methylation data (21 CpGs) for the same gene was simulated

as multivariate normal N(0,Σ1), with the correlation Σ1 estimated from a real data (Alisch

et al., 2012).

We evaluated the performances of four testing approaches. Specifically, we considered the

proposed model (1) that uses the composite kernel to evaluate the joint effect. To construct

the composite kernel, we used IBS kernel for genotype because of its ability to model complex

genetic effects, and linear kernel for methylation. We evaluated the performance of the kernel

PCA approach (KPCA) and perturbation based method (Perturbation) by a grid of w as

0, 0.25, 0.5, 0.75 and 1. We also evaluated the KMR models (Wu et al., 2011; Lee et al., 2012)

that test only the genotype effect (IBS kernel) or the methylation effect (linear kernel). For

all methods, 100,000 simulations were conducted to assess the type I error rate at different
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α level. 2,000 simulations were conducted to evaluate the statistical power.

We simulated under the following model to evaluate the type I error:

yi = Xi + εi, (6)

where X ∼ N(0, 1), ε ∼ N(0, 1). We simulated n = 500 and 1000 individuals.

To evaluate the power, we selected 9 SNPs and 2 methylation markers that influence the

phenotype. This corresponds to approximately 10% of the SNPs and CpG markers. We

simulated two scenarios. In scenario Ia:

yi = Xi + βs
∑
j∈J1

Gi,j + βm
∑
j∈J2

Mi,j + εi, (7)

in which Gi,j is the genotype of the jth SNP in sample i; Mi,j is the methylation value of

the jth CpG in sample i. J1 = {10, 20, · · · , 90} and J2 = {10, 20} are the selected SNPs

and CpG markers. When βs = 0, there is no genetic effect; and when βm = 0, there is no

methylation effect.

In scenario Ib,

yi = Xi + β × [p
∑
j∈J1

Gi,j + (1− p)
∑
j∈J2

Mi,j] + εi, (8)

in which Gi,j,Mi,j, J1 and J2 are all the same as in scenario Ia. p is a random binary variable

that takes value 0 and 1 each with probability of 0.5. β controls the effect size. This

simulation mimics real studies when it is unknown whether there is genotype or methylation

effect.
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2.4.2 Simulations when the genotype and methylation are correlated

We considered two simulation scenarios (scenarios II and III) to evaluate the performance

of our method when genotype and methylation are correlated. In scenario II, we simulated

data (genotype and methylation together) based on a 50-dimensional multivariate normal

with mean 0 and variance Σ2. Σ2 has a block-like covariance structure, with three contiguous

blocks of sizes 8, 23 and 19. All variables within the same block have a correlation of 0.1,

and variables in different blocks have a correlation of 0.01. All simulated variables have

variance of 1. Then we randomly selected 21 variables from this multivariate normal to form

the methylation data. The remaining 29 variables were used to generate SNP data (0,1, or

2) by comparing the data values to their 36th and 84th percentiles (so that the minor allele

frequency is 0.4). This simulation mimics the LD structure in genotype. In this simulation,

every SNP is correlated with every CpG, therefore, the correlation between G and M is

strong.

We simulated in the same way as in (6) to evaluate the type I error. For power, we

similarly considered two scenarios:

Scenario IIa: yi = Xi + βs
∑
j∈J1

Gi,j + βm
∑
j∈J2

Mi,j + εi,

.Scenario IIb: yi = Xi + β × [p
∑
j∈J1

Gi,j + (1− p)
∑
j∈J2

Mi,j] + εi,

in which J1 and J2 are randomly selected 3 SNPs and 2 CpG markers, which correspond to

approximately 10% of the SNPs and 10% of the CpG markers. βs, βm, β and p are all the

same as in scenarios Ia and Ib.

Simulation scenario III mimicked a more realistic correlation structure between genotype

and methylation, and generated correlated genotype and methylation data via a methylation

quantitative trait loci (mQTL). We simulated the genotype data for ASAH1 the same way
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as in scenario I. For methylation data, we first simulated in the same way as in scenario I as

well. Then we considered the 29th SNPs as an mQTL that can affect the methylation value

of the 19th CpG marker, and added 0.1×G29 to the originally simulated methylation value

of the 19th CpG. Type I error and power simulations were conducted the same way as in

Scenario I (via equation (6), (7) and (8)).

2.5 Integrative Analysis of Grady Trauma Project

We applied our proposed framework to analyze the genetic and epigenetic regulation of gene

expression (GE) using data collected from the Grady Trauma Project (GTP), a large study

investigating the role of genetic and environmental factors in predicting response to stressful

life events (Gillespie et al., 2009; Davis et al., 2008). Individuals were recruited from the

waiting rooms of primary care and obstetrics-gynecology clinics of Grady Memorial Hospital

in Atlanta, GA. Genotype, methylation and mRNA expression were measured using whole

blood samples. We limited our analysis to 337 samples that have all three types of data

(genotype, methylation and GE). The GE and methylation data are available at GEO (Gene

Expression Omnibus) under the accessions GSE58137 (Peters et al., 2015) and GSE72680.

Details about the genotyping can be found in Almli et al. (2014).

We based all our analysis on the gene level. SNPs that fall between 10kb upstream and

40kb downstream of gene transcription starting site were grouped into SNP-set. CpGs that

are located within the same gene were grouped into CpG set. Methylation probes containing

SNPs were removed from analysis due to the possibility of biased methylation measurement

(Daca-Roszak et al., 2015; Zhi et al., 2013). Because the DNA was extracted from the whole

blood, the proportions of different white blood cells may differ among different samples,

which may confound the result. We therefore estimated the proportion of white blood cell

types using the methylation data via the Houseman’s method (Houseman et al., 2012), and

adjusted for them in our model. We further adjusted for the age, sex and the top 5 PCs in
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our model.

We applied the proposed composite kernel test to evaluate the joint genotype and methy-

lation effect in cis-regulation of the GE, i.e., regulation of the expression of the gene itself.

The composite kernel was constructed by a weighted average of an IBS kernel from genotype

data and a linear kernel from methylation data, with the grid of the weighting parameter

w = (0, 0.25, 0.5, 0.75, 1). We used the kernel PCA and projected the methylation data to

the genotype data for fast p-value calculation. For comparison, we also used the KMR to

evaluate the association between genotype and GE and the association between methylation

and GE.

For genes that showed significant cis-regulation, we further conducted a mediation model

to infer the causal relationship between the genotype, methylation and GE. For simplicity,

we adopt the causal steps model (Baron and Kenny, 1986; MacKinnon, 2008) for mediation

analysis, and extend it to multi-dimensional “omic” data by incorporating multivariate KMR

framework. This causal steps model assumed that methylation is a potential mediator of the

genetic effect on the GE. Then we tested 1) whether genotype and methylation are associated

and 2) whether methylation is associated with the phenotype conditional on the genotype

data. When genotype, methylation and the phenotype are all univariate, these two conditions

can be evaluated by testing whether a and b in Figure 1 are zero using (generalized) linear

regression models. In our gene-based analysis framework, G and M are multi-dimensional,

and the linear model approaches are no longer applicable. Instead, we utilize the KMR

framework in which the effect of SNP/CpG-set are modeled nonparametrically. We used the

multivariate kernel machine regression model (Maity et al., 2012) and the additive kernel

machine regression model (Clark, 2013) to evaluate the associations in the two steps. Details

about the statistical methods for evaluating each steps can be found in supplemental file

section S2.
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3 Results

3.1 Simulation results

The type I errors of the simulations when the data is simulated from the complete null (6)

are summarized in table i and supplemental tables S1-S2 . Table i shows the type I error

results when G and M are independent, and supplemental tables S1-S2 show the type I error

results when G and M are correlated. All the methods showed correct type I error control

at all the α levels that are tested on when G and M are independent. When G and M

are correlated via an mQTL (scenario III), the type I errors are also well-controlled at the

nominal α level. However, when G and M are strongly correlated (scenario II), the type I

error can be conservative, especially when the sample size is not large enough.

Table ii shows the power result for simulation scenario Ia. Unsurprisingly, in the partial

null that βm = 0, βs 6= 0, the model that only tests the SNP effect is the most powerful. The

method that tests only the methylation effect has correctly controlled type I error, although it

does not adjust for the genetic effect. Similar conclusions can be made when βm 6= 0, βs = 0.

When there is both genetic and epigenetic effect, the proposed composite kernel approaches

are more powerful than methods that test only G or M. In reality, information on the

underlying genetic architecture is never known prior to analysis. The proposed composite

kernel approaches are more robust than the methods based on only one type of data.

Table iii shows the power result for simulation scenario IIa. Similarly, when there is

only genetic effect (βm = 0, βs 6= 0), methods that test only the genetic effect is the most

powerful. However, unlike in simulation scenario Ia, method that tests only methylation

effect has inflated type I error, even when there is no methylation effect. This is due to the

correlation between the genotype and the methylation. Similar results hold for the simulation

when βm 6= 0, βs = 0.

The power result for simulation scenarios Ib, IIb and IIIb was summarized in tables iv,
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v and vii. Essentially, when it is unknown whether there is genetic or epigenetic effect, the

proposed joint analysis approach is usually more powerful than methods that evaluate only

one data type.

We then compared the power result between kernel PCA and the perturbation based

approach. When G and M are independent, kernel PCA and the perturbation based proce-

dure have similar power. However, when G and M are correlated, the perturbation approach

showed consistent power gain compared to the kernel PCA approach. The power gain is more

profound when the correlation between G and M is strong and when the methylation effect

is large (Scenario II, table iii). The power loss is mild when the correlation between G and

M is modest, such as in simulation scenario III (table vi).

The weighting parameter w determines the relative contribution of G and M into the

score statistic. Our proposed approaches do not aim to directly estimate w. From the mixed

model point of view, estimating the w is equivalent to estimating a variance component that

disappears when the null hypothesis is true. Instead, our grid search selects the w based on

which the composite kernel provides the minimum p-value. Note that the selected w is not

the maximum likelihood estimate of the weighting parameter.

Table S3 lists the means and standard deviations (SD) of w that are selected in simulation

scenario Ia using the perturbation based approach. When the null hypothesis (βs = βm = 0)

is true, w is non-identifiable. Empirically, our method selects w to have a mean close to

0.5 and large SD in such situation. When there is no genetic (βs = 0) or epigenetic effect

(βm = 0), our method selects w close to 0 or 1 respectively with small SD. When there

are both genetic and epigenetic effects, the selected w is determined by the relative size of

genetic and epigenetic effects.
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3.2 GTP Integrative Analysis Results

We analyzed the data from the GTP study using our proposed framework. We focused on

the cis-regulation of GE, i.e., whether the genotype and the methylation within the gene can

regulate the expression of the same gene. We further limited our analysis to 8563 genes with

2 or more SNPs and CpG markers in the gene.

We used the kernel PCA and projected methylation to genotype for fast computation.

We used Bonferroni corrected family error rate based on the total number of genes (8563) as

cutoff for statistical significance. After adjusting for age, gender, top 5 PCs, and estimated

white blood cell proportions, 732 genes showed significant genetic and epigenetic regulation at

Bonferroni 0.05 level. We also applied the methods that test only the genetic or epigenetic

effect on GE. 652 and 228 genes showed significant genetic and epigenetic effect on GE

respectively. The proposed joint analysis provides higher power than methods that use only

one data type. A venn-diagram (Figure 2) shows the relationship between these genes that

showed significant GE regulation.

Table S4 lists the 11 genes that show significant genetic and epigenetic effect on GE

regulation using our integrative analysis approach, but not by testing only G or M (af-

ter Bonferroni correction). Among these genes are ALOX15 and GSTM2, both of which

play important roles in response to stress. Genes ALOX15 and ALOX12 (a structurally

and functionally similar gene to ALOX15 ) encode enzyme 12/15-lipoxygenase (12/15LOX),

which is considered as “the central executioner in an oxidative stress-related neuronal death

program” (Pallast et al., 2009). 12/15LOX sits in the major pathway through which post-

traumatic stress disorder can lead to oxidative stress, which in turn causes neural damage

(Miller et al., 2015). GSTM2 belongs to a superfamily of genes that encodes glutathione

S-transferase, a key element in detoxification of oxidative stress. GSTM2 has been shown to

play a prominent role in the etiology of many diseases, including hypertension (Zhou et al.,

2008) and many cancers (Gorrini et al., 2013).
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We conducted the casual steps mediation model to the 732 genes that showed significant

joint genetic and epigenetic effect on GE. Of them, 277 genes showed significant genotype-

methylation association (at nominal α = 0.05 level), among which 94 genes showed sig-

nificant methylation-GE association after controlling for the genetic effect, suggesting that

methylation possibly mediates the genetic effect in regulating the GE of these genes.

Our causal mediation model assumes the causal diagram G → M → GE. Because our

model is based on association testing for causal interpretation, we can not distinguish between

this traditional causal relationship and the reverse causality G → GE → M . However, our

assumption of the causal relationship is reasonable because the traditional causal relationship

has much stronger evidence and applies to many more genes than the reverse causality (van

Eijk et al., 2012). In addition, it is biologically unlikely that the GE can change the DNA

methylation level of the same gene.

Among the 94 genes that are discovered in the GTP data are BTN3A2, CTSW, CDC16

and NAPRT1, all of which have been shown to convey both eQTL (expression QTL) and

mQTL (van Eijk et al., 2012; Wagner et al., 2014), i.e., the genetic variations in these genes

have a cis-effect on the methylation and GE level. Previous research has shown strong

evidence of the causal relationship G→M → GE for genes BTN3A2, CTSW, CDC16 and

NAPRT1 (van Eijk et al., 2012). In fact, we have replicated most of the previous findings

(4 out of 6) that showed a strong evidence of this causal relationship (van Eijk et al., 2012).

4 Discussion

In this paper, we propose a statistical framework for integrative analysis of genome-wide

methylation and genotype data. We propose to test the joint genetic/epigenetic effect via

a flexible, semiparametric KMR by constructing composite kernels. This approach unifies

the units in analyzing genotype and methylation data, and allows for easy interpretation

of results. The composite kernel, which is a weighted average of genotype and methylation
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specific kernels, is flexible to incorporate SNP-specific and methylation-specific kernels.

This composite kernel approach, albeit very flexible, assumes additive genetic and epi-

genetic effect, and does not allow for genotype-methylation interaction. Incorporating addi-

tional G-M interaction is possible by constructing a composite kernel as K = w1K1+w2K2+

(1 − w1 − w2)K1 ◦ K2, where ◦ represents element-wise product and K1 ◦ K2 models the

G-M interaction, similar to the method in testing gene-gene interaction (Larson and Schaid,

2013). Statistical significance may be evaluated by choosing different values of w1 and w2.

This, however, can be very computationally expensive for perturbation-based approach due

to the large number of combinations that w1 and w2 can be. For the kernel PCA approach,

this implies an additional orthogonalization and a more-complex two-degree integration to

obtain the p-value. In addition to the computational difficulties, understanding the causal

relationship when G and M interact is very challenging, or even impossible. In causal in-

ference literature, there are methods that use the counterfactual definition in evaluating the

mediation effect with interactive effect. The approach, however, relies on assumptions that

are not easy to evaluate and can not be easily adapted to our situation when the mediator

(methylation) is multidimensional. The causal steps model can only evaluate the causal

relationship assuming there is no interaction.

Of the two methods that are proposed in this paper, the perturbation based approach is

more powerful than the kernel PCA, especially when the G and M have high correlation.

This is due to the fact that the kernel PCA loses information when one data type is projected

on the other one. Nevertheless, we show, via simulations and theoretical justification, that

kernel PCA can have comparable power to the perturbation based approach in many realistic

situations, such as when G and M are independent or have only modest correlation, or when

the methylation effect is small (if we project the methylation data onto the genotype data).

In addition, kernel PCA is much faster in computation compared to the perturbation based

approach, especially when people are interested in very small α levels, such as in genome
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wide association studies, in which a large number of perturbation is required. We show in

Figure S2 the comparison of computation time needed for the kernel PCA and perturbation

approach at different sample sizes.

We considered a multivariate causal steps model for mediation in our analysis of the GTP

data set. Our multivariate causal steps model extends the classical univariate causal steps

model (Baron and Kenny, 1986; Judd and Kenny, 1981) in social psychological studies to in-

corporate multidimensional mediator and multidimensional independent variables. Critical

to the mediation analysis is the correct specification of the causal diagram prior to analysis.

Further assumptions include 1) no unmeasured confounding of the genotype-methylation

relationship, 2) no unmeasured confounding of the genotype-phenotype relationship, 3) no

unmeasured confounding of the methylation-phenotype relationship, and 4) no genotype-

induced confounder for the methylation-phenotype association. In usual genomic studies,

because of the random assortment of genetic alleles, the first two assumptions hold auto-

matically. Potential confounding of the methylation-phenotype should be carefully studied

and adjusted in the model.

Although the specific steps in our causal mediation model, i.e., the multivariate kernel

machine regression model for testing the genetic effect on methylation and the additive kernel

machine regression model for testing the epigenetic effect conditional on the genetic data,

are adopted from previous research, we bring these association testing procedures into a

novel multivariate causal mediation framework in which M is considered as a multivariate

mediator. Our research extends the classical causal steps model (Baron and Kenny, 1986;

Judd and Kenny, 1981) to incorporate multi-dimensional mediator.

It is noteworthy that the proposed mediation analysis result should be taken with caution,

especially in the context of disjoint effect or inconsistent mediation (Huang and Pan, 2016).

For example, with two exposures (G1 and G2) and two mediators (M1 and M2), it is possible

that G1 → M1 and M2 → Y . In this case of disjoint effect, the proposed analysis approach
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will capture this as “mediation effect”, while in fact there is no real causal effect between

the genotype (the exposures) and the phenotype. Further, the proposed mediation model

only tests for marginal mediation effect, i.e., the overall effect mediated through the group

of methylation markers regardless through which element of M. In reality, element-wise

mediation effect may cancel each other out, resulting in a non-significant marginal mediation

effect. For example, it is possible that G1 increases the phenotype through M1 but decreases

the phenotype through M2. In this case of inconsistent mediation, we may observe no

marginal effect despite true mediation effect. Therefore, causal interpretation for such high-

dimensional mediator model needs to be cautious (Huang and Pan, 2016).

Our proposed approaches are motivated by the need to integrate genotype and methyla-

tion data from the same set of samples, which are increasingly collected in GWAS. Although

the composite kernel and the perturbation based approach have been studied previously

(Wu et al., 2013), they provide a natural way for joint analysis of such data, and lead to

powerful tests with interpretable result. The specific steps in our causal mediation model

are adopted from previous research, however, we bring them into a novel framework in which

the methylation data is tested as a multivariate mediator.

In summary, our proposed gene-based analysis provides a general framework for assessing

the relationship between genotype, methylation and a phenotype of interest, which can be

easily extended to analyze other types of data. The composite kernel approach is directly

applicable to analyze the joint effect of different data types, such as common and rare vari-

ants, GE, miRNA, gene environment interactions, etc. The mediation model may be applied

to studies when the potential mediator is multi-dimensional, such as the gene expressions for

multiple genes in a pathway. The method, albeit preliminary, provides some insights to un-

derstanding the potential causal relationships and can be helpful in our better understanding

the biological processes, and identifying novel targets for clinical practice and prevention.
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5 Figures and Tables

b
a

M

G Y

c’

Figure 1: Mediation diagram. The causal steps model considers the genotype (G) as the
independent exposure, whose effect on the phenotype Y may be mediated through methyla-
tion (M). The path a and b in the figure represent the indirect path, and c′ represents the
direct effect.
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Figure 2: Venn Diagram shows the number of genes that show significant association with
GE using 1) joint genotype-methylation test 2) genotype only test and 3) methylation only
test.
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Table i: Empirical Type I Error Rate at different α levels when G and M are independent.

α n KPCA Perturbation G M

0.05
500 0.0482 0.0491 0.0495 0.0496
1000 0.0481 0.0498 0.0495 0.0503

0.01
500 0.0096 0.0098 0.0096 0.0099
1000 0.0093 0.0096 0.0097 0.0095

0.001
500 0.00093 0.00099 0.00095 0.00097
1000 0.00094 0.00099 0.00099 0.00096

Table ii: Empirical Power for Simulation Scenario Ia

n βs βm KPCA Perturbation G M

500

0 0.1 0.3235 0.3585 0.0485 0.4440
0.1 0 0.4245 0.4390 0.5585 0.0480
0.1 0.1 0.6070 0.6245 0.5235 0.4160
0.2 0.2 1.0000 0.9995 0.9935 0.9635

1000

0 0.1 0.6305 0.6435 0.0465 0.7535
0.1 0 0.7915 0.8000 0.8770 0.0435
0.05 0.05 0.3185 0.3280 0.2680 0.2400
0.1 0.1 0.9615 0.9620 0.8845 0.7605
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Table iii: Empirical Power for Simulation Scenario IIa

n βs βm KPCA Perturbation G M

500

0 0.1 0.2505 0.3205 0.0605 0.4150
0.2 0 0.7930 0.8125 0.8710 0.1390
0.05 0.05 0.1125 0.1405 0.0975 0.1510
0.1 0.1 0.4395 0.5705 0.3405 0.5535

1000

0 0.1 0.6490 0.7100 0.1010 0.7970
0.1 0 0.4155 0.4465 0.5155 0.0955
0.05 0.05 0.2270 0.2865 0.1760 0.2885
0.1 0.1 0.8855 0.9430 0.7235 0.8990

Table iv: Empirical Power for Simulation Scenario Ib

n β KPCA Perturbation G M

500
0.1 0.6300 0.6535 0.3950 0.3650
0.3 0.9725 0.9755 0.5080 0.5225

1000
0.1 0.8125 0.8210 0.4805 0.4285
0.2 0.9695 0.9725 0.5360 0.4910

Table v: Empirical Power for Simulation Scenario IIb

n β KPCA Perturbation G M

500
0.2 0.8600 0.8845 0.4960 0.5645
0.3 0.9980 0.9980 0.6525 0.6140

1000
0.1 0.5145 0.5685 0.3105 0.4235
0.2 0.9995 0.9995 0.6505 0.6215

Table vi: Empirical Power for Simulation Scenario IIIa

n βs βm KPCA Perturbation G M

500

0 0.1 0.3265 0.3520 0.0435 0.4545
0.1 0 0.4185 0.4230 0.5390 0.0440
0.1 0.1 0.6345 0.6540 0.5405 0.4680
0.2 0.2 0.9990 0.9995 0.9920 0.9685

1000

0 0.1 0.6530 0.6690 0.0565 0.7780
0.1 0 0.8315 0.8345 0.9110 0.0405
0.05 0.05 0.3285 0.3370 0.2755 0.2370
0.1 0.1 0.9555 0.9540 0.8670 0.7690
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Table vii: Empirical Power for Simulation Scenario IIIb

n β KPCA Perturbation G M

500
0.1 0.3725 0.3940 0.2840 0.2630
0.2 0.9530 0.9545 0.5255 0.4915

1000
0.1 0.7455 0.7560 0.4680 0.4165
0.2 1.0000 1.0000 0.5315 0.5200
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