I am interested in how Helicobacter pylori adapts to the hostile and ever-changing environment of the host gastric epithelium. I use next-gen sequencing data to look at large, structural genetic polymorphisms that arise over chronic colonization. I characterize the functional effects of these polymorphisms using an array of molecular tools, proteomics, and microscopy.
I am involved in projects that aim to understand the epidemiological impacts and genomic diversity of H. pylori using droplet digital PCR. I also help ensure that things run as smoothly as possible in the lab.
My research expertise is in chronic bacterial infections and their impact on the host. In the Salama lab I am using mouse models and human tissue samples to investigate the molecular mechanism(s) through which chronic Helicobacter pylori infection leads to the development of gastric cancer.
As a research technician I aid the rest of the staff in their various projects while at the same time carrying out tasks to make sure things in lab run appropriately. On top of this, I’m also trying to understand how H. pylori could affect the stomach of mice at a molecular and morphological level.
I am investigating how a cytoskeletal protein in H. pylori helps the bacteria maintain its characteristic helical cell shape and how this shape promotes pathogenesis. To understand how this protein defines H. pylori’s helical cell shape I use bacterial genetics, multiple types of microscopy, and biochemical techniques. Additionally, I use 2D gastric organoid models to understand how modulating the shape of H. pylori impacts its ability to colonize the gastric epithelium and cause disease.
I am interested in how Helicobacter pylori infection impacts gastric cell biology to promote cancer development. To investigate this, I utilize gastric organoids and mouse model systems.